Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12323/7945
Title: Fractal Sturm–Liouville Theory
Authors: Golmankhaneh, Alireza Khalili
Vidović, Zoran
Tuna, Hüseyin
Allahverdiev, Bilender P.
Keywords: fractal calculus
fractal Sturm–Liouville theory
fractal models
fractal differential operators
Issue Date: 22-Apr-2025
Publisher: MDPI
Citation: Golmankhaneh, A.K.; Vidovi´c, Z.; Tuna, H.; Allahverdiev, B.P. Fractal Sturm–Liouville Theory. Fractal Fract. 2025, 9, 268. https:// doi.org/10.3390/fractalfract9050268
Series/Report no.: Vol. 9;Fractal Fract, № 5
Abstract: This paper provides a short summary of fractal calculus and its application to generalized Sturm–Liouville theory. It presents both the fractal homogeneous and nonhomogeneous Sturm–Liouville problems and explores the theory’s applications in optics. We include examples and graphs to illustrate the effect of fractal support on the solutions and propose new models for fractal structures.
URI: http://hdl.handle.net/20.500.12323/7945
ISSN: 2504-3110
Appears in Collections:Publications

Files in This Item:
File Description SizeFormat 
Fractal Sturm–Liouville Theory.pdf644.98 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.