Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12323/7945
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGolmankhaneh, Alireza Khalili-
dc.contributor.authorVidović, Zoran-
dc.contributor.authorTuna, Hüseyin-
dc.contributor.authorAllahverdiev, Bilender P.-
dc.date.accessioned2025-05-13T06:06:28Z-
dc.date.available2025-05-13T06:06:28Z-
dc.date.issued2025-04-22-
dc.identifier.citationGolmankhaneh, A.K.; Vidovi´c, Z.; Tuna, H.; Allahverdiev, B.P. Fractal Sturm–Liouville Theory. Fractal Fract. 2025, 9, 268. https:// doi.org/10.3390/fractalfract9050268en_US
dc.identifier.issn2504-3110-
dc.identifier.urihttp://hdl.handle.net/20.500.12323/7945-
dc.description.abstractThis paper provides a short summary of fractal calculus and its application to generalized Sturm–Liouville theory. It presents both the fractal homogeneous and nonhomogeneous Sturm–Liouville problems and explores the theory’s applications in optics. We include examples and graphs to illustrate the effect of fractal support on the solutions and propose new models for fractal structures.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofseriesVol. 9;Fractal Fract, № 5-
dc.subjectfractal calculusen_US
dc.subjectfractal Sturm–Liouville theoryen_US
dc.subjectfractal modelsen_US
dc.subjectfractal differential operatorsen_US
dc.titleFractal Sturm–Liouville Theoryen_US
dc.typeArticleen_US
Appears in Collections:Publications

Files in This Item:
File Description SizeFormat 
Fractal Sturm–Liouville Theory.pdf644.98 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.