Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.12323/7945
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Golmankhaneh, Alireza Khalili | - |
dc.contributor.author | Vidović, Zoran | - |
dc.contributor.author | Tuna, Hüseyin | - |
dc.contributor.author | Allahverdiev, Bilender P. | - |
dc.date.accessioned | 2025-05-13T06:06:28Z | - |
dc.date.available | 2025-05-13T06:06:28Z | - |
dc.date.issued | 2025-04-22 | - |
dc.identifier.citation | Golmankhaneh, A.K.; Vidovi´c, Z.; Tuna, H.; Allahverdiev, B.P. Fractal Sturm–Liouville Theory. Fractal Fract. 2025, 9, 268. https:// doi.org/10.3390/fractalfract9050268 | en_US |
dc.identifier.issn | 2504-3110 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12323/7945 | - |
dc.description.abstract | This paper provides a short summary of fractal calculus and its application to generalized Sturm–Liouville theory. It presents both the fractal homogeneous and nonhomogeneous Sturm–Liouville problems and explores the theory’s applications in optics. We include examples and graphs to illustrate the effect of fractal support on the solutions and propose new models for fractal structures. | en_US |
dc.language.iso | en | en_US |
dc.publisher | MDPI | en_US |
dc.relation.ispartofseries | Vol. 9;Fractal Fract, № 5 | - |
dc.subject | fractal calculus | en_US |
dc.subject | fractal Sturm–Liouville theory | en_US |
dc.subject | fractal models | en_US |
dc.subject | fractal differential operators | en_US |
dc.title | Fractal Sturm–Liouville Theory | en_US |
dc.type | Article | en_US |
Appears in Collections: | Publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Fractal Sturm–Liouville Theory.pdf | 644.98 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.