Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12323/4671
Title: Characterizations for the Fractional Integral Operators in Generalized Morrey Spaces on Carnot Groups
Authors: Eroglu, A.
Guliyev, V.S.
Azizov, J.V.
Keywords: Carnot group
fractional integral operator
generalized Morrey space
Issue Date: 2017
Publisher: Pleiades Publishing, Ltd.
Citation: Mathematical Notes
Series/Report no.: Vol. 102;№ 5
Abstract: In this paper we study the boundedness of the fractional integral operator Iα on Carnot group G in the generalized Morrey spaces Mp,ϕ(G). We shall give a characterization for the strong and weak type boundedness of Iα on the generalized Morrey spaces, respectively. As applications of the properties of the fundamental solution of sub-Laplacian L on G, we prove two Sobolev–Stein embedding theorems on generalized Morrey spaces in the Carnot group setting.
URI: http://hdl.handle.net/20.500.12323/4671
ISSN: 0001-4346
Appears in Collections:Publication



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.