Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12323/4671
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEroglu, A.-
dc.contributor.authorGuliyev, V.S.-
dc.contributor.authorAzizov, J.V.-
dc.date.accessioned2020-08-09T08:53:08Z-
dc.date.available2020-08-09T08:53:08Z-
dc.date.issued2017-
dc.identifier.citationMathematical Notesen_US
dc.identifier.issn0001-4346-
dc.identifier.urihttp://hdl.handle.net/20.500.12323/4671-
dc.description.abstractIn this paper we study the boundedness of the fractional integral operator Iα on Carnot group G in the generalized Morrey spaces Mp,ϕ(G). We shall give a characterization for the strong and weak type boundedness of Iα on the generalized Morrey spaces, respectively. As applications of the properties of the fundamental solution of sub-Laplacian L on G, we prove two Sobolev–Stein embedding theorems on generalized Morrey spaces in the Carnot group setting.en_US
dc.language.isoenen_US
dc.publisherPleiades Publishing, Ltd.en_US
dc.relation.ispartofseriesVol. 102;№ 5-
dc.subjectCarnot groupen_US
dc.subjectfractional integral operatoren_US
dc.subjectgeneralized Morrey spaceen_US
dc.titleCharacterizations for the Fractional Integral Operators in Generalized Morrey Spaces on Carnot Groupsen_US
dc.typeArticleen_US
Appears in Collections:Publication



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.