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Preface

The pursuit of knowledge in mathematics consistently yields profound 
insights into the theoretical frameworks that underpin our understanding 
of the structure of the natural world and complex structures. This book 
represents a collection of work that explores the boundaries of mathematical 
reasoning, algorithmic design, and geometric analysis, showcasing the 
diverse applications and innovative methodologies that define modern 
research.

From the discovery of unit fractions and the development of mathematical 
generalizations to the complex behavior of helix, rectifying, hyperquadrical, 
and hyperelastic curves in Galilean 3-space and Minkowski geometry, this 
collection serves as a testament to the dynamic interplay between theory and 
practice. Each chapter exemplifies the creativity and rigor of its contributors, 
providing both foundational knowledge and new perspectives for readers 
interested in the mathematical sciences and their applications.

The chapters presented here also highlight the critical role of mathematical 
modeling and algorithm development in addressing real-world problems 
such as optimizing spatial representations in service delivery. These 
contributions highlight not only the elegance of mathematics as a discipline 
but also its practical importance in solving everyday problems and advancing 
technological innovation.

I sincerely hope that this book will inspire researchers, educators, 
and students to further explore the depths and limitless applications 
of mathematical theory. The collective efforts of the authors and their 
commitment to academic excellence have culminated in a resource that 
will undoubtedly enrich its readers’ understanding and appreciation of 
mathematics.

I express my gratitude to all contributors for their extraordinary work 
and dedication, and I am confident that readers will find this collection as 
enlightening and engaging as it was for those who collaborated in its creation.
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In this chapter, we first derive the position vector of the natural mate of a 

non-null curve in Minkowski 3 −space by using the Frenet apparatus of the 

curve and a function that includes the distance function of the natural mate 

and its derivative. Using the position vector of the natural mate of a non-

null curve, we establish the necessary and sufficient conditions for the non-

null curve to be a Bertrand curve. As an example, we give spacelike natural 

mate of spacelike Salkowski curve with a spacelike principal normal. We 

then obtain a new characterization of the general helix. Finally, we 

construct the position vector of the conjugate mate of a non-null space 

curve with the aid of the Frenet apparatus of the curve and a function 

containing the distance function of the conjugate mate, its derivatives and 

the torsion of the curve. We present a result for the case where the 

conjugate mate of a non-null curve is a hyperquadrical curve or a rectifying 

curve. 
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1. Introduction 

Differential geometry of curves is one of the most interesting topics in both 

Euclidean 3 −space and Minkowski 3 −space. In particular, some special 

curves such as general helix, spherical curves (hyperquadrical curves in 

Minkowski 3 −space), rectifying curves and Bertrand curves are of more 

interest to study. On the other hand, some mathematicians have studied 

various associated curves of a given curve. These associated curves can 

characterize an original curve and explain its behavior. Associated curves 

are given as integral curves of some vector fields generated by the elements 

of the Frenet frame along the curve (Choi and Kim, 2012; Choi et al., 2012; 

Deshmukh et al., 2018b; Kelleci, 2019; Kelleci, 2020; Chen, 2023; 

Alghanemi et al., 2023). 

With this motivation, we study the natural mate (principal direction curve 

or integral curve of the principal normal vector field) and the conjugate 

mate (binormal direction curve or integral curve of the binormal vector 

field) of non-null curves in Minkowski 3 −space and characterize the 

special curves mentioned above. 

We now begin by recalling Minkowski 3 −space (or the 3 −dimensional 

Lorentzian space), denoted by 𝑅𝑅1
3. The first step is to define a new inner 

product on Euclidean 3 −space 𝑅𝑅3, called the Lorentzian inner product. 

This leads to some new concepts, and we express these concepts from 

(O’Neill, 1983; Birman and Nomizu, 1984; Ratcliffe, 1994; Barros et al., 

2001; López, 2014). The Minkowski 3 −space 𝑅𝑅1
3 is a real linear space 

with indefinite inner product given by 

                          < 𝑢𝑢, 𝑣𝑣 >= −𝑢𝑢₁𝑣𝑣₁ + 𝑢𝑢₂𝑣𝑣₂ + 𝑢𝑢₃𝑣𝑣₃         (1.1) 

for vectors 𝑢𝑢 = (𝑢𝑢₁, 𝑢𝑢₂, 𝑢𝑢₃) and 𝑣𝑣 = (𝑣𝑣₁, 𝑣𝑣₂, 𝑣𝑣₃) in 𝑅𝑅3. Then, the norm of a 

vector 𝑢𝑢 in 𝑅𝑅1
3 is defined as the real number ‖𝑢𝑢‖ = √|< 𝑢𝑢, 𝑢𝑢 >|. The 

Lorentzian vector product of 𝑢𝑢 and 𝑣𝑣 is given by 

         𝑢𝑢 × 𝑣𝑣 = (𝑢𝑢₃𝑣𝑣₂ − 𝑢𝑢₂𝑣𝑣₃, 𝑢𝑢₃𝑣𝑣₁ − 𝑢𝑢₁𝑣𝑣₃, 𝑢𝑢₁𝑣𝑣₂ − 𝑢𝑢₂𝑣𝑣₁). 
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and null (lightlike). If < 𝑢𝑢, 𝑢𝑢 >> 0 (or 𝑢𝑢 = 0), < 𝑢𝑢, 𝑢𝑢 >< 0, < 𝑢𝑢, 𝑢𝑢 >= 0 

(and 𝑢𝑢 ≠ 0) then a vector 𝑢𝑢 is named to be spacelike, timelike or null, 

respectively. A plane in Minkowski 3 −space is called spacelike, timelike 

or null if the restriction on this plane of the inner product defined by (1.1) is 

positive definite, indefinite non-degenerate or degenerate, respectively. 

Let us assume that 𝑢𝑢 and 𝑣𝑣 are two non-null vectors in 𝑅𝑅13. Then, depending 

on whether 𝑢𝑢 and 𝑣𝑣 are spacelike or timelike, the notions of Lorentzian 

timelike or spacelike angles are given as follows: 

i) If 𝑢𝑢 and 𝑣𝑣 are spacelike vectors that span a timelike vector subspace, a 

unique positive real number 𝜃𝜃 exists, referred to as the Lorentzian timelike 

angle between 𝑢𝑢 and 𝑣𝑣, satisfying the condition that 

| < 𝑢𝑢, 𝑣𝑣 > | = ‖𝑢𝑢‖‖𝑣𝑣‖𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝜃𝜃, 

ii) If 𝑢𝑢 is a spacelike vector and 𝑣𝑣 is a positive timelike vector, then there is 

a unique non-negative real number 𝜃𝜃 is known the Lorentzian timelike 

angle between 𝑢𝑢 and 𝑣𝑣 such that 

| < 𝑢𝑢, 𝑣𝑣 > | = ‖𝑢𝑢‖‖𝑣𝑣‖𝑐𝑐𝑠𝑠𝑠𝑠ℎ𝜃𝜃, 

iii) If 𝑢𝑢 and 𝑣𝑣 are positive (negative) timelike vectors, then there is a unique 

non-negative real number 𝜃𝜃 called the Lorentzian timelike angle between 𝑢𝑢 

and 𝑣𝑣, satisfying the condition that 

< 𝑢𝑢, 𝑣𝑣 >= ‖𝑢𝑢‖‖𝑣𝑣‖𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝜃𝜃, 

iv) If 𝑢𝑢 and 𝑣𝑣 are spacelike vectors that span a spacelike vector subspace, a 

unique real number 𝜃𝜃, 0 ≤ 𝜃𝜃 ≤ 𝜋𝜋, exists, referred to as the Lorentzian 

spacelike angle between 𝑢𝑢 and 𝑣𝑣 such that 

< 𝑢𝑢, 𝑣𝑣 >= ‖𝑢𝑢‖‖𝑣𝑣‖𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃. 
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A smooth curve is a differentiable map 𝛾𝛾: 𝐼𝐼 ⊂ 𝑅𝑅 → 𝑅𝑅1
3, where I is an open 

interval. We know that the causal character of the curve is determined by 

the causal character of its velocity. Therefore, a curve 𝛾𝛾 is said to spacelike, 

timelike or null if its velocity vector is spacelike, timelike or null vector, 

respectively. Lastly, a surface is named non-degenerate (or degenerate) if 

induced metric on its tangent plane is non degenerate (or degenerate). As 

known, the most familiar non-degenerate surfaces are pseudo-sphere of 

radius 𝑟𝑟 > 0 

𝑆𝑆1
2 = {𝑝𝑝 ∈ 𝑅𝑅1

3│ < 𝑝𝑝, 𝑝𝑝 >= 𝑟𝑟2, 𝑟𝑟 > 0} 

and the pseudo-hyperbolic space of radius 𝑟𝑟 > 0    

𝐻𝐻0
2 = {𝑝𝑝 ∈ 𝑅𝑅1

3│ < 𝑝𝑝, 𝑝𝑝 >= −𝑟𝑟2, 𝑟𝑟 > 0}. 

These surfaces are called the hyperquadrics of 𝑅𝑅1
3. A curve lies on 

hyperquadrics is called hyperquadrical curve. While there are three 

different causal characters of a curve on the pseudo-sphere, there are only 

spacelike curves on the pseudo-hyperbolic space. 

As is known, a curve is studied in Minkowski 3 −space 𝑅𝑅1
3 , as in 

Euclidean 3 −space 𝑅𝑅3, by assigning at each point a certain frame. If the 

curve can be continuously differentiable at least three times, choosing 

frame along the curve is usually the Frenet frame {𝑇𝑇, 𝑁𝑁, 𝐵𝐵}. Then the ratio 

of changes of the three vectors 𝑇𝑇, 𝑁𝑁 and 𝐵𝐵 along the curve is expressed in 

terms of the vectors themselves by the celebrated Frenet formulas. With 

this understanding, the theory of curves in 𝑅𝑅1
3 is only a consequence of 

these fundamental formulas. The formulas are expressed as follows: Let 

𝛾𝛾: 𝐼𝐼 → 𝑅𝑅1
3, be a regular and non-null curve. The arclength parameter of 𝛾𝛾 is 

determined by 𝑠𝑠 such that ‖𝛾𝛾′(𝑠𝑠)‖ = 1,  𝛾𝛾′(𝑠𝑠) = 𝑑𝑑𝛾𝛾
𝑑𝑑𝑑𝑑. At a point 𝛾𝛾(𝑠𝑠) of 𝛾𝛾, 

let 𝑇𝑇(𝑠𝑠) = 𝛾𝛾′(𝑠𝑠) denote the unit tangent vector, 𝑁𝑁(𝑠𝑠) the unit principle 

normal vector and 𝜀𝜀2𝐵𝐵(𝑠𝑠) = 𝑇𝑇(𝑠𝑠) × 𝑁𝑁(𝑠𝑠) the unit binormal vector of 𝛾𝛾,  



Ahmet YÜCESAN • Adile Gökçe ÇINAR

5

A smooth curve is a differentiable map 𝛾𝛾: 𝐼𝐼 ⊂ 𝑅𝑅 → 𝑅𝑅1
3, where I is an open 

interval. We know that the causal character of the curve is determined by 

the causal character of its velocity. Therefore, a curve 𝛾𝛾 is said to spacelike, 

timelike or null if its velocity vector is spacelike, timelike or null vector, 

respectively. Lastly, a surface is named non-degenerate (or degenerate) if 

induced metric on its tangent plane is non degenerate (or degenerate). As 

known, the most familiar non-degenerate surfaces are pseudo-sphere of 

radius 𝑟𝑟 > 0 

𝑆𝑆1
2 = {𝑝𝑝 ∈ 𝑅𝑅1

3│ < 𝑝𝑝, 𝑝𝑝 >= 𝑟𝑟2, 𝑟𝑟 > 0} 

and the pseudo-hyperbolic space of radius 𝑟𝑟 > 0    

𝐻𝐻0
2 = {𝑝𝑝 ∈ 𝑅𝑅1

3│ < 𝑝𝑝, 𝑝𝑝 >= −𝑟𝑟2, 𝑟𝑟 > 0}. 

These surfaces are called the hyperquadrics of 𝑅𝑅1
3. A curve lies on 

hyperquadrics is called hyperquadrical curve. While there are three 

different causal characters of a curve on the pseudo-sphere, there are only 

spacelike curves on the pseudo-hyperbolic space. 

As is known, a curve is studied in Minkowski 3 −space 𝑅𝑅1
3 , as in 

Euclidean 3 −space 𝑅𝑅3, by assigning at each point a certain frame. If the 

curve can be continuously differentiable at least three times, choosing 

frame along the curve is usually the Frenet frame {𝑇𝑇, 𝑁𝑁, 𝐵𝐵}. Then the ratio 

of changes of the three vectors 𝑇𝑇, 𝑁𝑁 and 𝐵𝐵 along the curve is expressed in 

terms of the vectors themselves by the celebrated Frenet formulas. With 

this understanding, the theory of curves in 𝑅𝑅1
3 is only a consequence of 

these fundamental formulas. The formulas are expressed as follows: Let 

𝛾𝛾: 𝐼𝐼 → 𝑅𝑅1
3, be a regular and non-null curve. The arclength parameter of 𝛾𝛾 is 

determined by 𝑠𝑠 such that ‖𝛾𝛾′(𝑠𝑠)‖ = 1,  𝛾𝛾′(𝑠𝑠) = 𝑑𝑑𝛾𝛾
𝑑𝑑𝑑𝑑. At a point 𝛾𝛾(𝑠𝑠) of 𝛾𝛾, 

let 𝑇𝑇(𝑠𝑠) = 𝛾𝛾′(𝑠𝑠) denote the unit tangent vector, 𝑁𝑁(𝑠𝑠) the unit principle 

normal vector and 𝜀𝜀2𝐵𝐵(𝑠𝑠) = 𝑇𝑇(𝑠𝑠) × 𝑁𝑁(𝑠𝑠) the unit binormal vector of 𝛾𝛾,  

where  𝜀𝜀2 =< 𝐵𝐵(𝑠𝑠), 𝐵𝐵(𝑠𝑠) >= ±1. The Frenet formulas of the frame 

{𝑇𝑇(𝑠𝑠), 𝑁𝑁(𝑠𝑠), 𝐵𝐵(𝑠𝑠)} are given by 

  𝑇𝑇′(𝑠𝑠) = 𝜀𝜀1𝜅𝜅(𝑠𝑠)𝑁𝑁(𝑠𝑠) 

  𝑁𝑁′(𝑠𝑠) = −𝜀𝜀0 𝜅𝜅(𝑠𝑠)𝑇𝑇(𝑠𝑠) + 𝜀𝜀2𝜏𝜏(𝑠𝑠)𝐵𝐵(𝑠𝑠)            (1.2) 

  𝐵𝐵′(𝑠𝑠) = −𝜀𝜀1 𝜏𝜏(𝑠𝑠)𝑁𝑁(𝑠𝑠), 
where 𝜀𝜀0 =< 𝑇𝑇(𝑠𝑠), 𝑇𝑇(𝑠𝑠) >= ±1, 𝜀𝜀1 =< 𝑁𝑁(𝑠𝑠), 𝑁𝑁(𝑠𝑠) >= ±1, 𝜅𝜅(𝑠𝑠) is the 

curvature and 𝜏𝜏(𝑠𝑠) is the torsion of 𝛾𝛾 at 𝑠𝑠. 

After introducing Minkowski 3 −space, let us state the definitions and 

characterizations of the special curves we mentioned above: 

Definition 1.1 A general helix 𝛾𝛾: 𝐼𝐼 ⊂ 𝑅𝑅 → 𝑅𝑅1
3 is a regular curve 

parametrized by arc length (or by the pseudo arc length if 𝛾𝛾 is null) such 

that there exists a non-zero constant vector 𝑈𝑈 ∈ 𝑅𝑅1
3 with the property that 

the function < 𝑇𝑇, 𝑈𝑈 > is a constant. Any line parallel this direction 𝑈𝑈 is 

called the axis of the general helix (Barros et al., 2001; Lopez, 2014). 

Theorem 1.1 Let 𝛾𝛾 be a non-null curve with non-null principal normal in 

Minkowski 3 −space 𝑅𝑅1
3. Then, 𝛾𝛾 is a general helix if and only if 𝜏𝜏/𝜅𝜅 is 

constant (Barros et al., 2001; Lopez, 2014). 

Definition 1.2 Let 𝛾𝛾 = 𝛾𝛾(𝑠𝑠) be a regular curve in Minkowski 3 −space 𝑅𝑅1
3. 

Then, 𝛾𝛾 is called a rectifying curve if its position vector always lies in its 

rectifying plane at each point (Kim et al., 1993; Chen, 2003; İlarslan et al., 

2003). 

Theorem 1.2 Let 𝛾𝛾 = 𝛾𝛾(𝑠𝑠) be a unit speed rectifying curve in 𝑅𝑅1
3 with 

spacelike or timelike rectifying plane, the curvature 𝜅𝜅(𝑠𝑠) > 0. Then the 

following statements hold: 

i) The distance function 𝑑𝑑 = ‖𝛾𝛾(𝑠𝑠)‖ satisfies 

𝑑𝑑2= |𝜀𝜀₀𝑠𝑠² + 𝑐𝑐₁𝑠𝑠 + 𝑐𝑐₂|,             (1.3) 
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for some 𝑐𝑐₁, 𝑐𝑐₂ ∈ 𝑅𝑅 with 𝑐𝑐₂ ≠ 0. 

ii) The tangential component of the position vector of 𝛾𝛾 is given by 

< 𝛾𝛾, 𝑇𝑇 >= 𝜀𝜀₀𝑠𝑠 + 𝑐𝑐,  

where 𝑐𝑐 ∈ 𝑅𝑅 

iii) The normal component 𝛾𝛾𝑁𝑁 of the position vector of the curve has a 

constant length and the distance function 𝑑𝑑 is non-constant 

iv) The torsion 𝜏𝜏(𝑠𝑠) ≠ 0 and the binormal component of the position vector 

of the curve is constant, i.e. < 𝛾𝛾, 𝐵𝐵 > is a constant (İlarslan et al., 2003). 

Theorem 1.3 Let 𝛾𝛾: 𝐼𝐼 ⊂ 𝑅𝑅 → 𝑅𝑅1
3 be a unit speed curve with a spacelike 

or a timelike rectifying plane and with the curvature 𝜅𝜅(𝑠𝑠) > 0. Then 𝛾𝛾 

is congruent to a rectifying curve if and only if the ratio of torsion 

and curvature of the curve is a non-constant linear function in 

arclength function 𝑠𝑠, i.e., 𝜏𝜏(𝑠𝑠)
𝜅𝜅(𝑠𝑠) = 𝑐𝑐1𝑠𝑠 + 𝑐𝑐2 for some 𝑐𝑐₁, 𝑐𝑐₂ ∈ 𝑅𝑅 with 𝑐𝑐₂ ≠

0 (İlarslan et al., 2003). 

Definition 1.3 A regular curve 𝛾𝛾 is said to be a hyperquadrical curve if it 

lies on hyperquadrics (O'Neill, 1983). 

Theorem 1.4 Let 𝛾𝛾 = 𝛾𝛾(𝑠𝑠) be a unit speed curve in 𝑅𝑅1
3 with 𝜅𝜅 > 0 and 𝜏𝜏 ≠

0. Then 𝛾𝛾 is a hyperquadrical curve, i.e. for it to lie on a pseudo-sphere or 

pseudo-hyperbolic space, if and only if 

𝜀𝜀₁ (1
𝜏𝜏 (1

𝜅𝜅)
′
)

′
+ 𝜀𝜀₂ (𝜏𝜏

𝜅𝜅) = 0  

(see Struik, 1961; Pekmen and Paşalı, 1999; Petrovic-Torgasev and 

Sucurovic, 2000a,b; Petrovic-Torgasev and Sucurovic, 2001; İlarslan et al., 

2003). 
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0. Then 𝛾𝛾 is a hyperquadrical curve, i.e. for it to lie on a pseudo-sphere or 
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𝜀𝜀₁ (1
𝜏𝜏 (1

𝜅𝜅)
′
)

′
+ 𝜀𝜀₂ (𝜏𝜏

𝜅𝜅) = 0  

(see Struik, 1961; Pekmen and Paşalı, 1999; Petrovic-Torgasev and 

Sucurovic, 2000a,b; Petrovic-Torgasev and Sucurovic, 2001; İlarslan et al., 

2003). 

Definition 1.4 A non-null curve 𝛾𝛾 with non-zero curvature is said to be a 

Bertrand curve if there exists another immersed non-null curve 𝛽𝛽 =
𝛽𝛽(𝜎𝜎): 𝐽𝐽 ⊂ 𝑅𝑅 → 𝑅𝑅1

3, 𝛽𝛽 ≠ ±𝛾𝛾, and a one-to-one correspondence between 𝛾𝛾 

and 𝛽𝛽 (i.e. a map 𝑠𝑠 ∈ 𝐼𝐼 → 𝜎𝜎(𝑠𝑠) ∈ 𝐽𝐽), such that both curves have common 

principal normal at corresponding points. 𝛽𝛽 is called the Bertrand mate of 

𝛾𝛾; the curves 𝛾𝛾 and 𝛽𝛽 are said that a pair of non-null Bertrand curves 

(Lucas and Ortega-Yagües, 2013). 

Theorem 1.5 A non-null curve 𝛾𝛾 with 𝜅𝜅 > 0 and 𝜏𝜏 ≠ 0 in 𝑅𝑅1
3 is a Bertrand 

curve if and only if there exist two constants 𝜆𝜆 ≠ 0 and 𝜇𝜇 such that 

𝜆𝜆𝜅𝜅 + 𝜇𝜇𝜏𝜏 = 1.              (1.4) 

(Balgetir et al., 2004; Lucas and Ortega-Yagües, 2013). 

Definition 1.5 The curve 𝛾𝛾: 𝐼𝐼 ⊂ 𝑅𝑅 → 𝑅𝑅1
3 given by 

𝛾𝛾(𝑡𝑡) = 𝑛𝑛
4𝑚𝑚 (2𝑐𝑐𝑐𝑐𝑠𝑠ℎ(𝑡𝑡) − 1+𝑛𝑛

1−2𝑛𝑛 𝑐𝑐𝑐𝑐𝑠𝑠ℎ((1 − 2𝑛𝑛)𝑡𝑡) − 1−𝑛𝑛
1+2𝑛𝑛 𝑐𝑐𝑐𝑐𝑠𝑠ℎ((1 + 2𝑛𝑛)𝑡𝑡),       (1.5) 

2𝑐𝑐𝑐𝑐𝑠𝑠ℎ(𝑡𝑡) − 1 + 𝑛𝑛
1 − 2𝑛𝑛 𝑠𝑠𝑠𝑠𝑛𝑛ℎ((1 − 2𝑛𝑛)𝑡𝑡) − 1 − 𝑛𝑛

1 + 2𝑛𝑛 𝑠𝑠𝑠𝑠𝑛𝑛ℎ((1 + 2𝑛𝑛)𝑡𝑡), 1
𝑚𝑚 cosh (2𝑛𝑛𝑡𝑡)) 

with 𝑛𝑛 = 𝑚𝑚
√𝑚𝑚2−1 for any 𝑚𝑚 ∈ 𝑅𝑅 with 𝑚𝑚 > 1 is called a spacelike Salkowski 

curve with a spacelike principal normal (Ali, 2009). 

Definition 1.6 Let 𝛾𝛾: 𝐼𝐼 ⊂ 𝑅𝑅 → 𝑅𝑅1
3 be a unit speed non-null curve with 

Frenet frame {𝑇𝑇, 𝑁𝑁, 𝐵𝐵}. Then a unit speed curve 𝛽𝛽 given by 𝛽𝛽(𝑠𝑠) = ∫ 𝑁𝑁𝑁𝑁𝑠𝑠 

is called the natural mate (or principal direction curve) of 𝛾𝛾 (Choi and Kim, 

2012; Choi et al., 2012; Deshmukh et al., 2018b; Kelleci, 2020). 

Definition 1.7 Let 𝛾𝛾: 𝐼𝐼 ⊂ 𝑅𝑅 → 𝑅𝑅1
3 be a unit speed with Frenet frame 

{𝑇𝑇, 𝑁𝑁, 𝐵𝐵}. Then a unit speed curve 𝛼𝛼 given by 𝛼𝛼(𝑠𝑠) = ∫ 𝐵𝐵𝑁𝑁𝑠𝑠 is called the 

conjugate mate (or binormal direction curve) of 𝛾𝛾 (Choi and Kim, 2012; 

Choi et al., 2012; Deshmukh et al., 2018b; Kelleci, 2019). 
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2. Natural and Conjugate Mates of Non-null Space Curves 

First, we give the position vector of the natural mate of a non-null curve. 

With the help of the position vector of the curve, we study some 

relationship between given a non-null curve and its natural mate. Then, we 

are similarly interested in the conjugate mate of the curve. 

Let 𝛾𝛾: 𝐼𝐼 ⊂ 𝑅𝑅 → 𝑅𝑅13 be a unit speed curve with Frenet apparatus 

{𝜅𝜅, 𝜏𝜏, 𝑇𝑇, 𝑁𝑁, 𝐵𝐵} in Minkowski 3 −space 𝑅𝑅13. Then the natural mate 𝛽𝛽 of 𝛾𝛾 is 

𝛽𝛽(𝑠𝑠) = ∫ 𝑁𝑁𝑁𝑁𝑠𝑠 = 𝜀𝜀₀𝑔𝑔𝑇𝑇 + 𝜀𝜀₁ℎ𝑁𝑁 + 𝜀𝜀₂𝑙𝑙𝐵𝐵,         (2.1) 

where 𝑔𝑔, ℎ and 𝑙𝑙 are differentiable functions. We begin with the derivative 

of (2.1) with respect to 𝑠𝑠. Then we find 

𝑁𝑁 = 𝜀𝜀₀(𝑔𝑔′ − 𝜀𝜀₁𝜅𝜅ℎ)𝑇𝑇 + 𝜀𝜀₁(𝜀𝜀₀𝑔𝑔𝜅𝜅 + ℎ′ − 𝜀𝜀₂𝑙𝑙𝜏𝜏)𝑁𝑁 + 𝜀𝜀₂(𝜀𝜀₁ℎ𝜏𝜏 + 𝑙𝑙′)𝐵𝐵.   (2.2) 

From (2.2), we obtain the following system of equations: 

{
𝑔𝑔′ − 𝜀𝜀1𝜅𝜅ℎ = 0

𝜀𝜀0𝑔𝑔𝜅𝜅 + ℎ′ − 𝜀𝜀2𝑙𝑙𝜏𝜏 = 𝜀𝜀1
𝜀𝜀1ℎ𝜏𝜏 + 𝑙𝑙′ = 0.

   (2.3) 

So we have 

𝑔𝑔 = 𝜀𝜀1 ∫(𝜅𝜅ℎ)𝑁𝑁𝑠𝑠,
𝑙𝑙 = −𝜀𝜀1 ∫(𝜏𝜏ℎ)𝑁𝑁𝑠𝑠.

    (2.4) 

On the other hand, the distance squared function, 𝑁𝑁² of 𝛽𝛽 is given by 

𝛿𝛿𝑁𝑁² = 𝜀𝜀₀𝑔𝑔² + 𝜀𝜀₁ℎ² + 𝜀𝜀₂𝑙𝑙²,   (2.5) 

where 𝛿𝛿 = <𝛽𝛽,𝛽𝛽>
|<𝛽𝛽,𝛽𝛽>| = ±1 (see Deshmukh et al., 2018a; Engin and Yücesan, 

2020). By differentiating (2.5) with respect to 𝑠𝑠 and using (2.3) and (2.4), 

we get 

ℎ = 𝛿𝛿𝑁𝑁𝑁𝑁′. 

Then we can give the following theorem. 
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we get 
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Theorem 2.1 Let 𝛾𝛾 = 𝛾𝛾(𝑠𝑠) be a unit speed curve with Frenet apparatus 

{𝜅𝜅, 𝜏𝜏, 𝑇𝑇, 𝑁𝑁, 𝐵𝐵} in Minkowski 3 −space 𝑅𝑅1
3. Then the natural mate 𝛽𝛽 of 𝛾𝛾 is 

given by  

𝛽𝛽(𝑠𝑠) = 𝜀𝜀₀𝜀𝜀₁∫ (𝜅𝜅ℎ)𝑑𝑑𝑠𝑠𝑇𝑇 + 𝜀𝜀₁ℎ𝑁𝑁 − 𝜀𝜀₁𝜀𝜀₂∫ (𝜏𝜏ℎ)𝑑𝑑𝑠𝑠𝐵𝐵,     (2.6) 

where ℎ = 𝛿𝛿𝑑𝑑𝑑𝑑′, 𝑑𝑑 is the distance function of 𝛽𝛽 and 𝛿𝛿 = <𝛽𝛽,𝛽𝛽>
|<𝛽𝛽,𝛽𝛽>| = ±1. 

Now, using Theorem 2.1, we give a theorem concerning the Bertrand 

curve, the hyperquadrical curve and the rectifying plane. Then, we consider 

the spacelike Salkowski curve with spacelike principal normal and its 

natural mate lying on the pseudo-sphere 𝑆𝑆1
2. 

Theorem 2.2 Let γ : I→ 𝑅𝑅1
3 be a unit speed curve with Frenet apparatus     

{𝜅𝜅 > 0, 𝜏𝜏 ≠ 0, 𝑇𝑇, 𝑁𝑁, 𝐵𝐵} and 𝛽𝛽 be its natural mate. Then the following 

statements hold: 

i) γ is a non-null Bertrand curve, 

ii) β is a hyperquadrical curve, 

iii) β lies in the rectifying plane of γ. 

Proof. Let γ = γ(s) be a unit speed curve with κ> 0 and 𝜏𝜏 ≠  0 and 𝛽𝛽 be 

its natural mate. From Theorem 2.1, β is given by (2.6) that is 

                    𝛽𝛽(𝑠𝑠)  = 𝜀𝜀0𝜀𝜀1 ∫(𝜅𝜅ℎ)𝑑𝑑𝑠𝑠𝑇𝑇 + 𝜀𝜀1ℎ𝑁𝑁 − 𝜀𝜀1𝜀𝜀2 ∫(𝜏𝜏ℎ)𝑑𝑑𝑠𝑠𝐵𝐵, 

where ℎ = 𝛿𝛿𝑑𝑑𝑑𝑑′ and 𝑑𝑑 is the distance function of 𝛽𝛽. Then the natural mate 

𝛽𝛽 of the curve γ is a hyperquadrical curve (i.e. 𝑑𝑑 =  ±𝑟𝑟 =  𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 >  0 

and 𝑑𝑑𝑑𝑑′ = 0) if and only if 

                              𝛽𝛽(𝑠𝑠) = 𝜀𝜀0𝜀𝜀1𝑐𝑐1𝑇𝑇 −  𝜀𝜀1𝜀𝜀2𝑐𝑐2𝐵𝐵,                             (2.7) 

where 𝑐𝑐1 and 𝑐𝑐2 are non-zero constants and it is understand that 𝛽𝛽 lies in 

the rectifying plane of γ. Considering Definition 1.6 and taking derivative 

of both sides (2.7) with respect to 𝑠𝑠, we find 

𝜀𝜀0𝑐𝑐1𝜅𝜅 + 𝜀𝜀2𝑐𝑐2𝜏𝜏 = 1 
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if and only if γ is a non-null Bertrand curve. 

As an application of Theorem 2.2, we give a simple result about Salkowski 

curves before giving that a spacelike Salkowski curve with a spacelike 

principal normal and its Bertrand mate lying on the pseudo-sphere 𝑆𝑆1
2. 

Corollary 2.1 If γ is a non-null Salkowski curve, then its natural mate β is 

given by 

                                 β = 𝜀𝜀1
𝜅𝜅 𝑇𝑇.           (2.8) 

Example 2.1 Let 𝛾𝛾: 𝐼𝐼 ⊂ 𝑅𝑅 → 𝑅𝑅1
3, be spacelike Salkowski curve with a 

spacelike principal normal given by (1.5). This curve has 𝜅𝜅(𝑡𝑡) = 1 and 

𝜏𝜏(𝑡𝑡) = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑡𝑡𝑡𝑡). From (2.8), the natural mate β of 𝛾𝛾 is 

β = (𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛ℎ(𝑡𝑡)𝑛𝑛𝑠𝑠𝑡𝑡ℎ(𝑡𝑡𝑡𝑡) − 𝑛𝑛𝑠𝑠𝑡𝑡ℎ(𝑡𝑡)𝑛𝑛𝑛𝑛𝑛𝑛ℎ(𝑡𝑡𝑡𝑡),

                   𝑡𝑡𝑛𝑛𝑠𝑠𝑡𝑡ℎ(𝑡𝑡)𝑛𝑛𝑠𝑠𝑡𝑡ℎ(𝑡𝑡𝑡𝑡) − 𝑛𝑛𝑛𝑛𝑛𝑛ℎ(𝑡𝑡)𝑛𝑛𝑛𝑛𝑛𝑛ℎ(𝑡𝑡𝑡𝑡), 𝑛𝑛
𝑚𝑚 𝑛𝑛𝑠𝑠𝑡𝑡ℎ(𝑡𝑡𝑡𝑡)), 

where 𝑡𝑡 = 𝑚𝑚
√𝑚𝑚2−1 for any 𝑚𝑚 ∈ 𝑅𝑅 with 𝑚𝑚 > 1 and β lies on a unit pseudo-

sphere 𝑆𝑆1
2. When 𝑚𝑚 = 15, the spacelike Salkowski curve with a spacelike 

principal normal and its natural mate are drawn as shown in Figure 2.1(a) 

and Figure 2.1(b), respectively. 

                  

      (a) The curve 𝛾𝛾                    (b) The black curve is β lying on the pseudo-sphere 𝑆𝑆1
2. 

Figure 2.1 When 𝑚𝑚 = 15, the spacelike Salkowski curve 𝛾𝛾 with a 

spacelike principal normal and its natural mate 𝛽𝛽. 
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if and only if γ is a non-null Bertrand curve. 

As an application of Theorem 2.2, we give a simple result about Salkowski 

curves before giving that a spacelike Salkowski curve with a spacelike 

principal normal and its Bertrand mate lying on the pseudo-sphere 𝑆𝑆1
2. 

Corollary 2.1 If γ is a non-null Salkowski curve, then its natural mate β is 

given by 

                                 β = 𝜀𝜀1
𝜅𝜅 𝑇𝑇.           (2.8) 

Example 2.1 Let 𝛾𝛾: 𝐼𝐼 ⊂ 𝑅𝑅 → 𝑅𝑅1
3, be spacelike Salkowski curve with a 

spacelike principal normal given by (1.5). This curve has 𝜅𝜅(𝑡𝑡) = 1 and 

𝜏𝜏(𝑡𝑡) = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑡𝑡𝑡𝑡). From (2.8), the natural mate β of 𝛾𝛾 is 

β = (𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛ℎ(𝑡𝑡)𝑛𝑛𝑠𝑠𝑡𝑡ℎ(𝑡𝑡𝑡𝑡) − 𝑛𝑛𝑠𝑠𝑡𝑡ℎ(𝑡𝑡)𝑛𝑛𝑛𝑛𝑛𝑛ℎ(𝑡𝑡𝑡𝑡),

                   𝑡𝑡𝑛𝑛𝑠𝑠𝑡𝑡ℎ(𝑡𝑡)𝑛𝑛𝑠𝑠𝑡𝑡ℎ(𝑡𝑡𝑡𝑡) − 𝑛𝑛𝑛𝑛𝑛𝑛ℎ(𝑡𝑡)𝑛𝑛𝑛𝑛𝑛𝑛ℎ(𝑡𝑡𝑡𝑡), 𝑛𝑛
𝑚𝑚 𝑛𝑛𝑠𝑠𝑡𝑡ℎ(𝑡𝑡𝑡𝑡)), 

where 𝑡𝑡 = 𝑚𝑚
√𝑚𝑚2−1 for any 𝑚𝑚 ∈ 𝑅𝑅 with 𝑚𝑚 > 1 and β lies on a unit pseudo-

sphere 𝑆𝑆1
2. When 𝑚𝑚 = 15, the spacelike Salkowski curve with a spacelike 

principal normal and its natural mate are drawn as shown in Figure 2.1(a) 

and Figure 2.1(b), respectively. 

                  

      (a) The curve 𝛾𝛾                    (b) The black curve is β lying on the pseudo-sphere 𝑆𝑆1
2. 

Figure 2.1 When 𝑚𝑚 = 15, the spacelike Salkowski curve 𝛾𝛾 with a 

spacelike principal normal and its natural mate 𝛽𝛽. 

Theorem 2.3 Let γ : I→ 𝑅𝑅1
3 be a unit speed curve with Frenet apparatus     

{𝜅𝜅 > 0, 𝜏𝜏 ≠ 0, 𝑇𝑇, 𝑁𝑁, 𝐵𝐵}. Then, γ is a general helix if and only if there exists 

a fixed direction orthogonal to its natural mate 𝛽𝛽. 

Proof. Let γ : I→ 𝑅𝑅1
3 be a unit speed curve with the curvature 𝜅𝜅 > 0, the 

torsion 𝜏𝜏 ≠ 0 and 𝛽𝛽 be its natural mate. Suppose that 𝛾𝛾 is a general helix, 

then there exists a fixed direction makes a constant angle with its tangent. 

Let 𝑈𝑈 be a unit constant vector lies on that direction, then  <  𝑇𝑇, 𝑈𝑈 >=
 𝜙𝜙(𝜃𝜃)  = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and <  𝐵𝐵, 𝑈𝑈 >=  𝜂𝜂(𝜃𝜃) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, where 𝜃𝜃 is the 

fixed angle between 𝑇𝑇 and 𝑈𝑈. Also, 𝜙𝜙 and 𝜂𝜂 are constant functions 

satisfying 

 𝜀𝜀0𝜙𝜙2(𝜃𝜃) + 𝜀𝜀2𝜂𝜂2(𝜃𝜃) = 𝜀𝜀, 

where 𝜀𝜀 =< 𝑈𝑈, 𝑈𝑈 >= ±1. Considering into Theorem 2.1, we have  

<  𝛽𝛽, 𝑈𝑈 >= 𝜀𝜀0𝜀𝜀1 𝜙𝜙(𝜃𝜃) ∫(𝜅𝜅ℎ)𝑑𝑑𝑐𝑐 − 𝜀𝜀1𝜀𝜀2 𝜂𝜂(𝜃𝜃) ∫(𝜏𝜏ℎ)𝑑𝑑𝑐𝑐. 

Since 𝛾𝛾 is a general helix, then 

𝜀𝜀0𝜀𝜀1 𝜙𝜙(𝜃𝜃) ∫(𝜅𝜅ℎ)𝑑𝑑𝑐𝑐 − 𝜀𝜀1𝜀𝜀2 𝜂𝜂(𝜃𝜃) ∫(𝜏𝜏ℎ)𝑑𝑑𝑐𝑐 = 0 

imply that <  𝛽𝛽, 𝑈𝑈 >=  0 that is 𝑈𝑈 is ortogonal to 𝛽𝛽. 

Conversely, suppose that there is a fixed direction orthogonal to 𝛽𝛽 and let 𝑈𝑈 

be a unit constant vector lies on this direction. Then <  𝛽𝛽, 𝑈𝑈 >=  0. Taking 

derivative in both sides of this equation with respect to 𝑐𝑐, we obtain                  

<  𝑁𝑁, 𝑈𝑈 >=  0 and using the Frenet formulas (1.2) we get <  𝑇𝑇, 𝑈𝑈 >=
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. Therefore 𝛾𝛾 is a general helix. 

Similarly, we give the position vector of the conjugate mate of a non-null 

curve in Minkowski 3 −space. 

Theorem 2.4 Let 𝛾𝛾 = 𝛾𝛾(𝑐𝑐) be a unit speed curve with Frenet apparatus     

{𝜅𝜅 > 0, 𝜏𝜏 ≠ 0, 𝑇𝑇, 𝑁𝑁, 𝐵𝐵} in Minkowski 3 −space 𝑅𝑅1
3. Then the conjugate 

mate 𝛼𝛼 of 𝛾𝛾 is given by 
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𝛼𝛼(𝑠𝑠) = 𝜀𝜀0𝜀𝜀1 ∫(𝜅𝜅ℎ1)𝑑𝑑𝑠𝑠 𝑇𝑇 + 𝜀𝜀1ℎ1𝑁𝑁 + (𝑠𝑠 − 𝜀𝜀1𝜀𝜀2 ∫(𝜏𝜏ℎ1)𝑑𝑑𝑠𝑠)𝐵𝐵      (2.9) 

where ℎ1 = 𝜀𝜀1
𝜏𝜏 (𝜀𝜀2 − 𝛿𝛿1(𝑑𝑑1

′ 2 + 𝑑𝑑1𝑑𝑑1
′′)), 𝑑𝑑1 is the distance function of 𝛼𝛼 and 

𝛿𝛿1 = <α,α>
|<α,α>| = ±1. 

Proof. Suppose that 𝛾𝛾 =  𝛾𝛾(𝑠𝑠) is a unit speed curve with Frenet apparatus 

{𝜅𝜅 > 0, 𝜏𝜏 ≠ 0, 𝑇𝑇, 𝑁𝑁, 𝐵𝐵} and 𝛼𝛼 is the conjugate mate of 𝛼𝛼. Then we can write 

𝛼𝛼(𝑠𝑠) = ∫ 𝐵𝐵𝑑𝑑𝑠𝑠 = 𝜀𝜀₀𝑔𝑔1𝑇𝑇 + 𝜀𝜀₁ℎ1𝑁𝑁 + 𝜀𝜀₂𝑙𝑙1𝐵𝐵,            (2.10) 

where 𝑔𝑔1, ℎ1 and 𝑙𝑙1 are differentiable functions. Differentiation of (2.10) 

with respect to 𝑠𝑠 and using the Frenet formulas (1.2), we obtain 

{
𝑔𝑔1

′ − 𝜀𝜀1𝜅𝜅ℎ1 = 0
𝜀𝜀1ℎ1

′ + 𝜀𝜀0𝜀𝜀1𝜅𝜅𝑔𝑔1 − 𝜀𝜀1𝜀𝜀2𝑙𝑙1𝜏𝜏 = 0
𝜀𝜀1ℎ1𝜏𝜏 + 𝑙𝑙1

′ = 𝜀𝜀2.
  (2.11) 

From (2.11), we have 

𝑔𝑔1 = 𝜀𝜀1 ∫ 𝜅𝜅ℎ1𝑑𝑑𝑠𝑠,
𝑙𝑙1 = 𝜀𝜀2𝑠𝑠 − 𝜀𝜀1 ∫ 𝜏𝜏ℎ1𝑑𝑑𝑠𝑠 .               (2.12) 

If we define the distance squared function of 𝛼𝛼 as 𝑑𝑑1
2 then it is written as 

𝛿𝛿1𝑑𝑑1
2 = 𝜀𝜀₀𝑔𝑔1

2 + 𝜀𝜀₁ℎ1
2 + 𝜀𝜀₂𝑙𝑙1

2,   (2.13) 

where 𝛿𝛿1 = <𝛼𝛼,𝛼𝛼>
|<𝛼𝛼,𝛼𝛼>| = ±1. Taking derivative with respect to 𝑠𝑠 in (2.13) and 

using (2.11) and (2.12), we easly get 

ℎ1 = 𝜀𝜀₁
𝜏𝜏 (𝜀𝜀2 − 𝛿𝛿1(𝑑𝑑1

′ 2 + 𝑑𝑑1𝑑𝑑1
′′)).  (2.14) 

We give the following corollary of Theorem 2.4: 

Corollary 2.2 Let 𝛾𝛾 be a unit speed curve with Frenet apparatus {𝜅𝜅 > 0, 
 𝜏𝜏 ≠ 0, 𝑇𝑇, 𝑁𝑁, 𝐵𝐵} in Minkowski 3 −space 𝑅𝑅1

3 and 𝛼𝛼 be its conjugate mate. 

Then,  

i) If 𝛼𝛼 is a hyperquadrical curve, then 
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𝛼𝛼(𝑠𝑠) = 𝜀𝜀0𝜀𝜀1 ∫(𝜅𝜅ℎ1)𝑑𝑑𝑠𝑠 𝑇𝑇 + 𝜀𝜀1ℎ1𝑁𝑁 + (𝑠𝑠 − 𝜀𝜀1𝜀𝜀2 ∫(𝜏𝜏ℎ1)𝑑𝑑𝑠𝑠)𝐵𝐵      (2.9) 

where ℎ1 = 𝜀𝜀1
𝜏𝜏 (𝜀𝜀2 − 𝛿𝛿1(𝑑𝑑1

′ 2 + 𝑑𝑑1𝑑𝑑1
′′)), 𝑑𝑑1 is the distance function of 𝛼𝛼 and 

𝛿𝛿1 = <α,α>
|<α,α>| = ±1. 

Proof. Suppose that 𝛾𝛾 =  𝛾𝛾(𝑠𝑠) is a unit speed curve with Frenet apparatus 

{𝜅𝜅 > 0, 𝜏𝜏 ≠ 0, 𝑇𝑇, 𝑁𝑁, 𝐵𝐵} and 𝛼𝛼 is the conjugate mate of 𝛼𝛼. Then we can write 

𝛼𝛼(𝑠𝑠) = ∫ 𝐵𝐵𝑑𝑑𝑠𝑠 = 𝜀𝜀₀𝑔𝑔1𝑇𝑇 + 𝜀𝜀₁ℎ1𝑁𝑁 + 𝜀𝜀₂𝑙𝑙1𝐵𝐵,            (2.10) 

where 𝑔𝑔1, ℎ1 and 𝑙𝑙1 are differentiable functions. Differentiation of (2.10) 

with respect to 𝑠𝑠 and using the Frenet formulas (1.2), we obtain 

{
𝑔𝑔1

′ − 𝜀𝜀1𝜅𝜅ℎ1 = 0
𝜀𝜀1ℎ1

′ + 𝜀𝜀0𝜀𝜀1𝜅𝜅𝑔𝑔1 − 𝜀𝜀1𝜀𝜀2𝑙𝑙1𝜏𝜏 = 0
𝜀𝜀1ℎ1𝜏𝜏 + 𝑙𝑙1

′ = 𝜀𝜀2.
  (2.11) 

From (2.11), we have 

𝑔𝑔1 = 𝜀𝜀1 ∫ 𝜅𝜅ℎ1𝑑𝑑𝑠𝑠,
𝑙𝑙1 = 𝜀𝜀2𝑠𝑠 − 𝜀𝜀1 ∫ 𝜏𝜏ℎ1𝑑𝑑𝑠𝑠 .               (2.12) 

If we define the distance squared function of 𝛼𝛼 as 𝑑𝑑1
2 then it is written as 

𝛿𝛿1𝑑𝑑1
2 = 𝜀𝜀₀𝑔𝑔1

2 + 𝜀𝜀₁ℎ1
2 + 𝜀𝜀₂𝑙𝑙1

2,   (2.13) 

where 𝛿𝛿1 = <𝛼𝛼,𝛼𝛼>
|<𝛼𝛼,𝛼𝛼>| = ±1. Taking derivative with respect to 𝑠𝑠 in (2.13) and 

using (2.11) and (2.12), we easly get 

ℎ1 = 𝜀𝜀₁
𝜏𝜏 (𝜀𝜀2 − 𝛿𝛿1(𝑑𝑑1

′ 2 + 𝑑𝑑1𝑑𝑑1
′′)).  (2.14) 

We give the following corollary of Theorem 2.4: 

Corollary 2.2 Let 𝛾𝛾 be a unit speed curve with Frenet apparatus {𝜅𝜅 > 0, 
 𝜏𝜏 ≠ 0, 𝑇𝑇, 𝑁𝑁, 𝐵𝐵} in Minkowski 3 −space 𝑅𝑅1

3 and 𝛼𝛼 be its conjugate mate. 

Then,  

i) If 𝛼𝛼 is a hyperquadrical curve, then 

                                               ℎ1 =
𝜀𝜀1𝜀𝜀2
𝜏𝜏                              (2.15) 

ii) If 𝛼𝛼 is a rectifying curve, then ℎ1 = 0. 

Proof. We assume that 𝛾𝛾 is a unit speed curve with Frenet apparatus          

{𝜅𝜅 > 0, 𝜏𝜏 ≠ 0, 𝑇𝑇, 𝑁𝑁, 𝐵𝐵} and  𝛼𝛼 is the conjugate mate of 𝛾𝛾. 

i) If 𝛼𝛼 is a hyperquadrical curve, then 𝑑𝑑1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. So from (2.14), we 

easly get (2.15). 

ii) If 𝛼𝛼 is a rectifying curve, then 𝛿𝛿1𝑑𝑑12 = 𝜀𝜀2𝑐𝑐2 + 𝑐𝑐1𝑐𝑐 + 𝑐𝑐2 for some 

constants 𝑐𝑐1 and 𝑐𝑐₂ ≠ 0. From (2.14), we obtain ℎ1 = 0.            

 

3. Conclussion. 

As is well known, position vectors find applications throughout 

mathematics, engineering, and the natural sciences. With this motivation, 

we study the position vectors of the natural and conjugate mates of a non-

null curve in Minkowski 3-space. We characterize a non-degenerate helix, 

non-null Bertrand curves, hyperquadrical curves, and rectifying curves by 

means of the position vectors of the natural and conjugate mates of a non-

null space curve. 
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Hyperelastic curves are defined as curves obtained by solving a more 
general form of the variational problem, where the integral of the square of 
curvature, under suitable initial conditions, is treated as a critical point. In 
the differential geometry literature, these curves are examined using 
various metrics tailored to the structure of the space and analyzed based on 
their geometric properties in both Euclidean and non-Euclidean contexts. 
Investigating hyperelastic curves in Galilean 3-space under the Galilean 
metric provides a unique perspective to thoroughly understand the behavior 
of these curves within distinct metric frameworks and to explore the 
evolution of their geometric properties. Accordingly, we study the 
curvature energy action in Galilean 3-space, identify hyperelastic curves as 
critical points of this action, and analyze their geometric behavior under 
this specific metric structure. The characterization of hyperelastic curves is 
achieved through an Euler-Lagrange equation in Galilean 3-space, with 
examples provided to illustrate their theoretical and geometric features. 
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1. Introduction 

The concept of curvature energy action refers to a functional that measures 

the energy associated with the curvature of a curve. It is defined as the 

integral of a function of its curvature along the entire length of the curve. 

This energy action is fundamental in variational problems where the aim is 

to find curves that minimize or maximize this energy, and leads in 

particular to the study of elastic and hyperelastic curves, which are the 

subject of this chapter. By characterizing curves by means of their 

curvature energy, it is possible to discover the equilibrium forms and 

stability properties of various geometric and physical systems, making it an 

important tool in the study of differential geometry and elastic phenomena. 

We consider a space curve 𝛽𝛽 with curvature 𝜅𝜅 and torsion 𝜏𝜏. Then the 

general functional represented by the curvature and torsion of the curve 𝛽𝛽, 

∫ 𝑓𝑓(𝜅𝜅, 𝜏𝜏, 𝜅𝜅′, 𝜏𝜏′, . . . )𝑑𝑑𝑑𝑑, is known a Hamiltonian for 𝛽𝛽 (Capovilla et al., 2002; 

Tükel, 2019). This Hamiltonian formulation allows us to describe the 

behavior of the space curve 𝛽𝛽 through a variational approach, where the 

energy of the system is determined by the curvature 𝜅𝜅, torsion 𝜏𝜏, and their 

higher-order derivatives. By analyzing this functional, we can derive the 

Euler-Lagrange equations that govern the equilibrium states of the curve, 

offering insight into the geometric and physical properties of 𝛽𝛽. Such an 

approach is fundamental in studying the stability and behavior of elastic 

curves and has applications in fields like mechanics and differential 

geometry. One of the significant applications of these Hamiltonians is the 

functional ∫ (𝜅𝜅𝑟𝑟 + 𝜆𝜆)𝑑𝑑𝑑𝑑, for the natural number 𝑟𝑟 ≥ 2 and the Lagrange 

multiplier 𝜆𝜆, whose critical points under sutable boundary conditions are 

known as hyperelastic (or r-elastic) curves. In the case of 𝜆𝜆 = 0, solutions 

of the functional are known as free hyperelastic curves. Also, the solutions 

of the functional are classical elastic curves when 𝑟𝑟 = 2 (Barros et al., 

1998; Arroyo et al., 2003; Şahin et al., 2021). This field has been 
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1. Introduction 

The concept of curvature energy action refers to a functional that measures 

the energy associated with the curvature of a curve. It is defined as the 

integral of a function of its curvature along the entire length of the curve. 

This energy action is fundamental in variational problems where the aim is 

to find curves that minimize or maximize this energy, and leads in 

particular to the study of elastic and hyperelastic curves, which are the 

subject of this chapter. By characterizing curves by means of their 

curvature energy, it is possible to discover the equilibrium forms and 

stability properties of various geometric and physical systems, making it an 

important tool in the study of differential geometry and elastic phenomena. 

We consider a space curve 𝛽𝛽 with curvature 𝜅𝜅 and torsion 𝜏𝜏. Then the 

general functional represented by the curvature and torsion of the curve 𝛽𝛽, 

∫ 𝑓𝑓(𝜅𝜅, 𝜏𝜏, 𝜅𝜅′, 𝜏𝜏′, . . . )𝑑𝑑𝑑𝑑, is known a Hamiltonian for 𝛽𝛽 (Capovilla et al., 2002; 

Tükel, 2019). This Hamiltonian formulation allows us to describe the 

behavior of the space curve 𝛽𝛽 through a variational approach, where the 

energy of the system is determined by the curvature 𝜅𝜅, torsion 𝜏𝜏, and their 

higher-order derivatives. By analyzing this functional, we can derive the 

Euler-Lagrange equations that govern the equilibrium states of the curve, 

offering insight into the geometric and physical properties of 𝛽𝛽. Such an 

approach is fundamental in studying the stability and behavior of elastic 

curves and has applications in fields like mechanics and differential 

geometry. One of the significant applications of these Hamiltonians is the 

functional ∫ (𝜅𝜅𝑟𝑟 + 𝜆𝜆)𝑑𝑑𝑑𝑑, for the natural number 𝑟𝑟 ≥ 2 and the Lagrange 

multiplier 𝜆𝜆, whose critical points under sutable boundary conditions are 

known as hyperelastic (or r-elastic) curves. In the case of 𝜆𝜆 = 0, solutions 

of the functional are known as free hyperelastic curves. Also, the solutions 

of the functional are classical elastic curves when 𝑟𝑟 = 2 (Barros et al., 

1998; Arroyo et al., 2003; Şahin et al., 2021). This field has been 

extensively studied by numerous researchers over the years and continues 

to be a vibrant area of ongoing research and innovation. For example, 

Arroyo et al., (2003) explore closed free hyperelastic curves within the 

hyperbolic plane, examining their properties and connections to Chen-

Willmore rotational hypersurfaces. The authors employ variational methods 

to study the geometric evolution of these curves, highlighting their 

mathematical and physical significance in the context of hyperbolic 

geometry. Arroyo et al., (2003) investigate closed generalized elastic 

curves in the unit 2-sphere, deriving their characterization through 

variational principles and analyzing their geometric properties within the 

framework of differential geometry. The paper written by Ferrández et al. 

in (2006) investigates the motion of relativistic particles described by an 

action that depends on the curvature and torsion of their paths in three-

dimensional pseudo-Riemannian space forms. The authors derive Euler-

Lagrange equations for these systems and discuss the moduli space of 

solutions, employing Killing vector fields and variational principles. Özkan 

Tükel et al. (2020) investigate a constrained variational problem in the 

context of a 2-dimensional null cone within Minkowski 3-space, deriving 

and solving the Euler-Lagrange equation for hyperelastic curves and 

exploring the application of Killing vector fields to describe these curves' 

geometric properties. Later, Kağızman and Yücesan (2022) generalized the 

study to a 3-dimensional lightlike cone.  

Galilean geometry, inspired by Galileo Galilei, is a form of non-Euclidean 

geometry frequently applied in classical mechanics. Unlike Euclidean 

geometry, it treats time and space in a distinct way, laying the groundwork 

for the development of modern physics concepts. Studies on bending 

energy functionals are frequently conducted in Galilean 3-space, where the 

geometric properties of curves and energy minimization problems are 

examined in detail within this context (see, Şahin, 2013; Gürbüz, 2013; 
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Tükel and Turhan, 2020; Çivi et al., 2021, etc.). Tükel and Turhan (2020) 

study classical Euler-Bernoulli elastic curves within the context of Galilean 

3-space, deriving the Euler-Lagrange equations for bending energy and 

solving them to illustrate examples of elastic curves in this non-Euclidean 

setting. Tükel and Turhan (2023) investigate the geometry of natural 

Hamiltonians for curves in Galilean and Pseudo-Galilean 3-space, deriving 

Euler-Lagrange equations to characterize elastic curves and providing 

detailed solutions through variational principles. 

In the present work, we investigate the extremals of the functional 

∫ (𝜅𝜅𝑟𝑟 + 𝜆𝜆)𝑑𝑑𝑑𝑑 for curves under certain boundary conditions in Galilean 3-

space. This study is motivated by the desire to understand the geometric 

behavior of curves that arise as critical points of this variational problem 

under the Galilean metric structure. By employing the principles of the 

calculus of variations, we derive the associated Euler-Lagrange equations, 

which serve to characterize the solutions of this functional. These solutions 

are then defined as Galilean hyperelastic curves, a generalization that offers 

insights into their intrinsic geometric properties. Furthermore, we provide 

illustrative examples to demonstrate the application of our theoretical 

framework, showcasing the relevance and implications of Galilean 

hyperelastic curves within the context of differential geometry. 

2. Conceptual Framework 

Galilean geometry, rooted in the principles established by Galileo Galilei, 

stands as a non-Euclidean framework widely applied in classical 

mechanics. Unlike the fixed notions of distance and angle consistency in 

Euclidean geometry, Galilean geometry introduces a distinct treatment of 

spatial and temporal dimensions. This alternative perspective on space and 

time serves as a foundational element that bridges the gap to more complex 

geometric and physical theories. Galilean space is a specific example of a 
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Tükel and Turhan, 2020; Çivi et al., 2021, etc.). Tükel and Turhan (2020) 

study classical Euler-Bernoulli elastic curves within the context of Galilean 

3-space, deriving the Euler-Lagrange equations for bending energy and 

solving them to illustrate examples of elastic curves in this non-Euclidean 

setting. Tükel and Turhan (2023) investigate the geometry of natural 

Hamiltonians for curves in Galilean and Pseudo-Galilean 3-space, deriving 

Euler-Lagrange equations to characterize elastic curves and providing 

detailed solutions through variational principles. 

In the present work, we investigate the extremals of the functional 

∫ (𝜅𝜅𝑟𝑟 + 𝜆𝜆)𝑑𝑑𝑑𝑑 for curves under certain boundary conditions in Galilean 3-

space. This study is motivated by the desire to understand the geometric 

behavior of curves that arise as critical points of this variational problem 

under the Galilean metric structure. By employing the principles of the 

calculus of variations, we derive the associated Euler-Lagrange equations, 

which serve to characterize the solutions of this functional. These solutions 

are then defined as Galilean hyperelastic curves, a generalization that offers 

insights into their intrinsic geometric properties. Furthermore, we provide 

illustrative examples to demonstrate the application of our theoretical 

framework, showcasing the relevance and implications of Galilean 

hyperelastic curves within the context of differential geometry. 

2. Conceptual Framework 

Galilean geometry, rooted in the principles established by Galileo Galilei, 

stands as a non-Euclidean framework widely applied in classical 

mechanics. Unlike the fixed notions of distance and angle consistency in 

Euclidean geometry, Galilean geometry introduces a distinct treatment of 

spatial and temporal dimensions. This alternative perspective on space and 

time serves as a foundational element that bridges the gap to more complex 

geometric and physical theories. Galilean space is a specific example of a 

real Cayley-Klein space, characterized by unique geometric properties that 

differentiate it from classical Euclidean space.  When traditional geometric 

findings from Euclidean space are adapted to Galilean settings, they reveal 

profound and impactful insights. 

Let 𝐺𝐺3 be the Galilean 3-space and 𝑢𝑢 = (𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3), 𝑣𝑣 =
(𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3)  vectors in 𝐺𝐺3. The Galilean scalar product of 𝑢𝑢, 𝑣𝑣 is written as   

< 𝑢𝑢, 𝑣𝑣 >𝐺𝐺3 = { 𝑢𝑢1𝑣𝑣1 𝑖𝑖𝑖𝑖 𝑢𝑢1 ≠ 0 𝑜𝑜𝑜𝑜 𝑣𝑣1 ≠ 0,
𝑢𝑢2𝑣𝑣2 + 𝑢𝑢3𝑣𝑣3 𝑖𝑖𝑖𝑖 𝑢𝑢1 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣1 = 0. 

For simplicity and a cleaner appearance, subscript notation will be omitted 

from this point forward. The vectors 𝑢𝑢 and 𝑣𝑣 are said to be perpendicular in 

the Galilean sense if < 𝑢𝑢, 𝑣𝑣 >= 0. The vector 𝑢𝑢 = (𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3) is called as 

isotropic (non-isotropic) if 𝑢𝑢1 = 0 (𝑢𝑢1 ≠ 0). Any unit non-isotropic vector 

has the form 𝑢𝑢 = (1, 𝑢𝑢2, 𝑢𝑢3). The Galilean norm of the vector 𝑢𝑢 is 

calculated as follows 

‖𝑢𝑢‖ = {
|𝑢𝑢1| 𝑖𝑖𝑖𝑖 𝑢𝑢1 ≠ 0,

√𝑢𝑢2
2 + 𝑢𝑢3

2 𝑖𝑖𝑖𝑖 𝑢𝑢1 = 0, 

(Keleş, 2004; Yaglom, 1979).  

A curve 𝛽𝛽: 𝐼𝐼 ⊂ 𝑅𝑅 → 𝐺𝐺3 is called as admissible if it has no inflection points 

and no isotropic tangents (Erjavec, 2014). For a unit speed admissible curve 

𝛽𝛽(𝑠𝑠) parametrized by 

𝛽𝛽(𝑠𝑠) = (𝑠𝑠, 𝛽𝛽2(𝑠𝑠), 𝛽𝛽3(𝑠𝑠)), 

where 𝑠𝑠 is the arclength parameter of 𝛽𝛽, we have the curvature 𝜅𝜅(𝑠𝑠) and the 

torsion 𝜏𝜏(𝑠𝑠) as follows 

𝜅𝜅(𝑠𝑠) = √𝛽𝛽2
′′(𝑠𝑠) + 𝛽𝛽3

′′(𝑠𝑠) 
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and 

𝜏𝜏(𝑠𝑠) = det (𝛽𝛽′(𝑠𝑠), 𝛽𝛽′′(𝑠𝑠), 𝛽𝛽′′′(𝑠𝑠))
𝜅𝜅2(𝑠𝑠) . 

The Galilean Frenet frame of the curve 𝛽𝛽(𝑠𝑠) is given by 

𝑇𝑇(𝑠𝑠) = 𝛽𝛽′(𝑠𝑠),

𝑁𝑁(𝑠𝑠) = 1
𝜅𝜅(𝑠𝑠) 𝛽𝛽′′(𝑠𝑠),

𝐵𝐵(𝑠𝑠) = 1
𝜅𝜅(𝑠𝑠) (0, −𝛽𝛽3

′′(𝑠𝑠), 𝛽𝛽2
′′(𝑠𝑠)),

 

where T, N, and B are respectively known as the tangent vector, principal 

normal vector and binormal vectors of 𝛽𝛽(𝑠𝑠). The Frenet equations of 𝛽𝛽(s) 

are given in matrix form as 

 [
𝑇𝑇′(𝑠𝑠)
𝑁𝑁′(𝑠𝑠)
𝐵𝐵′(𝑠𝑠)

] = [
0 𝜅𝜅(𝑠𝑠) 0
0 0 𝜏𝜏(𝑠𝑠)
0 −𝜏𝜏(𝑠𝑠) 0

] [
𝑇𝑇(𝑠𝑠)
𝑁𝑁(𝑠𝑠)
𝐵𝐵(𝑠𝑠)

],        (1)  

(Tükel and Turhan, 2020). 

3. Results 

This section is devoted to deriving the Euler-Lagrange equations that 

characterize the critical points of the curvature energy action in Galilean 3-

space 𝑮𝑮𝟑𝟑. These equations serve as the foundation for understanding 

Galilean hyperelastic curves, which are defined as extremals of this 

functional. The study of such curves provides insight into how curvature-

driven energy optimization operates under the Galilean metric, revealing 

their unique geometric properties and behaviors. Through this derivation, 

we aim to establish a deeper connection between the variational principles 

and the geometry of curves in non-Euclidean metric spaces. 

Now, we consider admissible curves in 𝐺𝐺3 defined on the fixed interval 

[0, 𝐿𝐿]. A hyperelastic curve 𝛽𝛽 with curvature 𝜅𝜅 and speed 𝜈𝜈 is a critical 
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𝜅𝜅2(𝑠𝑠) . 

The Galilean Frenet frame of the curve 𝛽𝛽(𝑠𝑠) is given by 

𝑇𝑇(𝑠𝑠) = 𝛽𝛽′(𝑠𝑠),

𝑁𝑁(𝑠𝑠) = 1
𝜅𝜅(𝑠𝑠) 𝛽𝛽′′(𝑠𝑠),

𝐵𝐵(𝑠𝑠) = 1
𝜅𝜅(𝑠𝑠) (0, −𝛽𝛽3

′′(𝑠𝑠), 𝛽𝛽2
′′(𝑠𝑠)),

 

where T, N, and B are respectively known as the tangent vector, principal 

normal vector and binormal vectors of 𝛽𝛽(𝑠𝑠). The Frenet equations of 𝛽𝛽(s) 

are given in matrix form as 

 [
𝑇𝑇′(𝑠𝑠)
𝑁𝑁′(𝑠𝑠)
𝐵𝐵′(𝑠𝑠)

] = [
0 𝜅𝜅(𝑠𝑠) 0
0 0 𝜏𝜏(𝑠𝑠)
0 −𝜏𝜏(𝑠𝑠) 0

] [
𝑇𝑇(𝑠𝑠)
𝑁𝑁(𝑠𝑠)
𝐵𝐵(𝑠𝑠)

],        (1)  

(Tükel and Turhan, 2020). 

3. Results 

This section is devoted to deriving the Euler-Lagrange equations that 

characterize the critical points of the curvature energy action in Galilean 3-

space 𝑮𝑮𝟑𝟑. These equations serve as the foundation for understanding 

Galilean hyperelastic curves, which are defined as extremals of this 

functional. The study of such curves provides insight into how curvature-

driven energy optimization operates under the Galilean metric, revealing 

their unique geometric properties and behaviors. Through this derivation, 

we aim to establish a deeper connection between the variational principles 

and the geometry of curves in non-Euclidean metric spaces. 

Now, we consider admissible curves in 𝐺𝐺3 defined on the fixed interval 

[0, 𝐿𝐿]. A hyperelastic curve 𝛽𝛽 with curvature 𝜅𝜅 and speed 𝜈𝜈 is a critical 

point of the following bending energy functional  

ℱ(𝛽𝛽) = ∫ 𝜅𝜅r(𝑠𝑠)𝑑𝑑𝑠𝑠 
𝛽𝛽

= ∫ 𝜅𝜅r(𝑡𝑡)𝜈𝜈𝑑𝑑𝑡𝑡
𝐿𝐿

0
 

with fixed length and boundary conditions. We consider Ω denotes the set 

of the admissible curves 

𝛽𝛽 ∶  [0, L]  ⊂  𝑅𝑅 → 𝐺𝐺3 

with 𝛽𝛽(𝑖𝑖L) = 𝑝𝑝𝑖𝑖 , 𝛽𝛽′(𝑖𝑖L) = 𝑣𝑣𝑖𝑖 for 𝑝𝑝𝑖𝑖 ∈ 𝐺𝐺3 and 𝑣𝑣𝑖𝑖 ∈ 𝑇𝑇𝑝𝑝𝑖𝑖𝐺𝐺3, 𝑖𝑖 =  0, 1, and 

Ω𝑢𝑢 the subspace of unit speed curves. Then ℱ𝜆𝜆: Ω ⟶  𝑅𝑅  

𝐹𝐹𝜆𝜆(𝛽𝛽) = 1
2 ∫ (‖𝛽𝛽′′(𝑡𝑡)‖r + Λ(𝑡𝑡)(‖𝛽𝛽′(𝑡𝑡)‖2 − 1))𝑑𝑑𝑡𝑡.

𝛽𝛽
 

One version of the Lagrange multiplier principle says a minimum of ℱ on 

Ω𝑢𝑢 is a critical point for ℱ𝜆𝜆(𝛽𝛽) for some  Λ(t) which depends on constant 𝜆𝜆  

(Singer, 2008). Note that a natural Hamiltonian produced by the scalar 

product < 𝑇𝑇′, 𝑇𝑇′ >, where T is the tangent vector of a curve 𝛽𝛽 ∈ Ω ⊂ 𝐺𝐺3 is 

defined as the problem of finding critical points of the total squared 

curvature functional ∫ 𝜅𝜅2𝑑𝑑𝑠𝑠𝛽𝛽  acting on Ω and the solutions to this 

variational problem are elastic curves in 𝐺𝐺3. This also corresponds to the 

case r = 2 of the ℱ functional. Therefore, the functional ℱ can also be 

considered as a generalization of the natural Hamiltonian functional. Tükel 

and Turhan (2020) reorganized the bending energy functional using the 

Lagrange multiplier principle with a Lagrange constant Λ dependent on 

length and minimized it by using Singer’s approach. They derived Euler 

Lagrange equation that characterizes elastic curves in 𝐺𝐺3 and they solve the 

equations. According to the characterization for an elastic curve 𝛽𝛽 in 𝐺𝐺3 is 

given by the Euler Lagrange equation  
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  𝜅𝜅′′ − 𝑐𝑐2

𝜅𝜅3 − 𝜆𝜆
2 𝜅𝜅 = 0,                    (2) 

  

where 𝜆𝜆 = 2Λ and 𝑐𝑐 are constants.  

To find the solutions of the variational problem, the first variation must be 

computed. For this purpose, we consider a map 𝛽𝛽: (−𝜀𝜀, 𝜀𝜀) ×  𝐼𝐼 →  𝐺𝐺3, so 

that (𝑤𝑤, 𝑡𝑡)  →  𝛽𝛽 (𝑤𝑤, 𝑡𝑡)  =  𝛽𝛽𝑤𝑤 (𝑡𝑡) and the curve 𝛽𝛽𝑤𝑤 (𝑡𝑡) goes throughout 𝛽𝛽 

provided that 𝛽𝛽(0, 𝑡𝑡)  = 𝛽𝛽(𝑡𝑡). Then 𝛽𝛽𝑤𝑤 (𝑡𝑡)  is a variation of 𝛽𝛽. The vector 

fields  

𝑉𝑉(𝑤𝑤, 𝑡𝑡)  = 𝜕𝜕𝜕𝜕(𝑤𝑤,𝑡𝑡)
𝜕𝜕𝑡𝑡    and 𝑊𝑊 (𝑤𝑤, 𝑡𝑡)  = 𝜕𝜕𝜕𝜕(𝑤𝑤,𝑡𝑡)

𝜕𝜕𝑤𝑤  

can be defined, where 𝑉𝑉(0, 𝑡𝑡)  =  𝛽𝛽′(𝑡𝑡) and 𝑊𝑊(𝑡𝑡)  =  𝑊𝑊(0, 𝑡𝑡) is a 

variational vector field along 𝛽𝛽(𝑡𝑡) so that 𝜕𝜕𝜕𝜕(𝑤𝑤,𝑡𝑡)
𝜕𝜕𝑤𝑤 |

𝑤𝑤=0
= 𝑊𝑊 (𝑡𝑡) (Arroyo et 

al., 2003; Turhan and Tükel, 2023). If 𝑠𝑠 denotes the arclength parameter, 

then 𝛽𝛽(𝑤𝑤, 𝑠𝑠), 𝜅𝜅 2(𝑤𝑤, 𝑠𝑠), 𝑉𝑉 (𝑤𝑤, 𝑠𝑠), etc. can be written for the corresponding 

reparametrizations, where 𝑠𝑠 ∈  [0, 𝐿𝐿] and 𝐿𝐿 is arc length of 𝛽𝛽. 

Then we have the following theorem. 

Theorem 1. A hyperelastic curve with curvature 𝜿𝜿 in the Galilean space 𝑮𝑮𝟑𝟑 

is characterized by the Euler Lagrange equation for 𝑟𝑟 ≥ 2 

𝑟𝑟(𝑟𝑟−1)
2 𝜅𝜅𝑟𝑟−2𝜅𝜅′′ + 𝑟𝑟(𝑟𝑟−2)(𝑟𝑟−1)

2 𝜅𝜅𝑟𝑟−3(𝜅𝜅′)2 − 𝑟𝑟
2 𝜅𝜅3−3𝑟𝑟𝑐𝑐2 − 𝜆𝜆

2 𝜅𝜅 = 0.      (3) 

Proof.  We assume that 𝛽𝛽 is an extremum of ℱ𝜆𝜆 and 𝑊𝑊 is an infinitesimal 

variation of 𝛽𝛽. Then we have 

𝜕𝜕ℱ𝜆𝜆(𝑊𝑊) = 𝜕𝜕
𝜕𝜕𝜀𝜀 ℱ𝜆𝜆(𝛽𝛽 + 𝜀𝜀𝑊𝑊)|

𝜀𝜀=0
= 0. 

Thus we obtain 
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𝜕𝜕𝑤𝑤 |

𝑤𝑤=0
= 𝑊𝑊 (𝑡𝑡) (Arroyo et 

al., 2003; Turhan and Tükel, 2023). If 𝑠𝑠 denotes the arclength parameter, 

then 𝛽𝛽(𝑤𝑤, 𝑠𝑠), 𝜅𝜅 2(𝑤𝑤, 𝑠𝑠), 𝑉𝑉 (𝑤𝑤, 𝑠𝑠), etc. can be written for the corresponding 

reparametrizations, where 𝑠𝑠 ∈  [0, 𝐿𝐿] and 𝐿𝐿 is arc length of 𝛽𝛽. 

Then we have the following theorem. 

Theorem 1. A hyperelastic curve with curvature 𝜿𝜿 in the Galilean space 𝑮𝑮𝟑𝟑 

is characterized by the Euler Lagrange equation for 𝑟𝑟 ≥ 2 

𝑟𝑟(𝑟𝑟−1)
2 𝜅𝜅𝑟𝑟−2𝜅𝜅′′ + 𝑟𝑟(𝑟𝑟−2)(𝑟𝑟−1)

2 𝜅𝜅𝑟𝑟−3(𝜅𝜅′)2 − 𝑟𝑟
2 𝜅𝜅3−3𝑟𝑟𝑐𝑐2 − 𝜆𝜆

2 𝜅𝜅 = 0.      (3) 

Proof.  We assume that 𝛽𝛽 is an extremum of ℱ𝜆𝜆 and 𝑊𝑊 is an infinitesimal 

variation of 𝛽𝛽. Then we have 

𝜕𝜕ℱ𝜆𝜆(𝑊𝑊) = 𝜕𝜕
𝜕𝜕𝜀𝜀 ℱ𝜆𝜆(𝛽𝛽 + 𝜀𝜀𝑊𝑊)|

𝜀𝜀=0
= 0. 

Thus we obtain 

0 = 1
2

𝜕𝜕
𝜕𝜕𝜕𝜕 ∫ (‖(𝛽𝛽 + 𝜕𝜕𝜀𝜀)′′‖r + Λ(‖(𝛽𝛽 + 𝜕𝜕𝜀𝜀)′‖2 − 1))𝑑𝑑𝑑𝑑.

𝛽𝛽
 

The steps of the derivation proceed as follows through the variation of the 

curvature energy functional under the Galilean metric: 

0 = ∫ 𝑟𝑟
2 < 𝛽𝛽′′, 𝛽𝛽′′ >

𝑟𝑟−2
2 < 𝛽𝛽′′, 𝜀𝜀′′ > +Λ < 𝛽𝛽′, 𝜀𝜀′ > 𝑑𝑑𝑑𝑑.

𝛽𝛽
 

If partial integration is applied after taking the variation, we obtain 

0 = ∫ < 𝐸𝐸[𝛽𝛽], 𝜀𝜀 > 𝑑𝑑𝑑𝑑 + (𝑆𝑆[𝛽𝛽, 𝜀𝜀])|0
𝐿𝐿

ℓ

0
 

where 

  𝐸𝐸[𝛽𝛽] = ((𝑟𝑟
2 𝜅𝜅𝑟𝑟−2𝛽𝛽′′)

′
− Λ𝛽𝛽′) ′                  (4) 

and 

(𝑆𝑆[𝛽𝛽, 𝜀𝜀])|0
𝐿𝐿 = 𝑟𝑟

2 < 𝜅𝜅𝑟𝑟−2𝛽𝛽′′, 𝜀𝜀′ >|
0

𝐿𝐿
+ < −(𝜅𝜅𝑟𝑟−2𝛽𝛽′′)′ + Λ𝛽𝛽′, 𝜀𝜀 >|0

𝐿𝐿. 

Taking into consideration (1), we get the following derivatives of 𝛽𝛽; 

𝛽𝛽′′ =  𝜅𝜅𝜅𝜅, 

𝛽𝛽′′′ = 𝜅𝜅′𝜅𝜅 + 𝜅𝜅𝜅𝜅𝜅𝜅 

and 

𝛽𝛽′′′′ = (𝜅𝜅′′ − 𝜅𝜅𝜅𝜅2)𝜅𝜅 + (2𝜅𝜅′𝜅𝜅 + 𝜅𝜅𝜅𝜅′)𝜅𝜅. 

Substituting these derivatives into (4), we arrive at 
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𝐸𝐸[𝛽𝛽] = −Λ′𝑇𝑇 + (𝑟𝑟(𝑟𝑟 − 1)
2 𝜅𝜅𝑟𝑟−2𝜅𝜅′′ + 𝑟𝑟(𝑟𝑟 − 2)(𝑟𝑟 − 1)

2 𝜅𝜅𝑟𝑟−3(𝜅𝜅′)2

− 𝑟𝑟
2 𝜅𝜅𝑟𝑟−1𝜏𝜏2 − Λ𝜅𝜅) 𝑁𝑁 + (𝑟𝑟(𝑟𝑟 − 1)𝜅𝜅𝑟𝑟−2𝜅𝜅′𝜏𝜏 + 𝑟𝑟

2 𝜅𝜅𝑟𝑟−1𝜏𝜏′) 𝐵𝐵

= 0 

Using the fact that the quantity 𝐸𝐸[𝛽𝛽] vanishes identically when 𝛽𝛽 is a 

critical point of the functional ℱ𝜆𝜆 (Griffiths, 2013) and 𝑇𝑇, 𝑁𝑁 and 𝐵𝐵 are 

linear independent, we have  

−Λ′𝑇𝑇 = 0,                        (5) 

𝑟𝑟(𝑟𝑟−1)
2 𝜅𝜅𝑟𝑟−2𝜅𝜅′′ + 𝑟𝑟(𝑟𝑟−2)(𝑟𝑟−1)

2 𝜅𝜅𝑟𝑟−3(𝜅𝜅′)2 − 𝑟𝑟
2 𝜅𝜅𝑟𝑟−1𝜏𝜏2 − Λ𝜅𝜅 = 0           (6) 

and 

 𝑟𝑟(𝑟𝑟 − 1)𝜅𝜅𝑟𝑟−2𝜅𝜅′𝜏𝜏 + 𝑟𝑟
2 𝜅𝜅𝑟𝑟−1𝜏𝜏′ = 0.             (7) 

From (5), we obtain  

  Λ = 𝜆𝜆
2,             (8) 

where 𝜆𝜆 is a arbitrary constant. Multiplying by 2𝑟𝑟 𝜅𝜅𝑟𝑟−1  both of sides of (5) 

2(𝑟𝑟 − 1)𝜅𝜅2𝑟𝑟−3𝜅𝜅′𝜏𝜏 + 𝜅𝜅2𝑟𝑟−2𝜏𝜏′ = 0. 

Thus, we arrive at 

(𝜅𝜅2(𝑟𝑟−1)𝜏𝜏)′ = 0, 

that is,  

 𝜅𝜅2(𝑟𝑟−1)𝜏𝜏 = 𝑐𝑐, 𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.         (9) 

Combining (6), (8) and (9), we derive the Euler Lagrange equation (3). 
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𝐸𝐸[𝛽𝛽] = −Λ′𝑇𝑇 + (𝑟𝑟(𝑟𝑟 − 1)
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2 𝜅𝜅𝑟𝑟−3(𝜅𝜅′)2

− 𝑟𝑟
2 𝜅𝜅𝑟𝑟−1𝜏𝜏2 − Λ𝜅𝜅) 𝑁𝑁 + (𝑟𝑟(𝑟𝑟 − 1)𝜅𝜅𝑟𝑟−2𝜅𝜅′𝜏𝜏 + 𝑟𝑟

2 𝜅𝜅𝑟𝑟−1𝜏𝜏′) 𝐵𝐵

= 0 

Using the fact that the quantity 𝐸𝐸[𝛽𝛽] vanishes identically when 𝛽𝛽 is a 

critical point of the functional ℱ𝜆𝜆 (Griffiths, 2013) and 𝑇𝑇, 𝑁𝑁 and 𝐵𝐵 are 

linear independent, we have  

−Λ′𝑇𝑇 = 0,                        (5) 

𝑟𝑟(𝑟𝑟−1)
2 𝜅𝜅𝑟𝑟−2𝜅𝜅′′ + 𝑟𝑟(𝑟𝑟−2)(𝑟𝑟−1)

2 𝜅𝜅𝑟𝑟−3(𝜅𝜅′)2 − 𝑟𝑟
2 𝜅𝜅𝑟𝑟−1𝜏𝜏2 − Λ𝜅𝜅 = 0           (6) 

and 

 𝑟𝑟(𝑟𝑟 − 1)𝜅𝜅𝑟𝑟−2𝜅𝜅′𝜏𝜏 + 𝑟𝑟
2 𝜅𝜅𝑟𝑟−1𝜏𝜏′ = 0.             (7) 

From (5), we obtain  

  Λ = 𝜆𝜆
2,             (8) 

where 𝜆𝜆 is a arbitrary constant. Multiplying by 2𝑟𝑟 𝜅𝜅𝑟𝑟−1  both of sides of (5) 

2(𝑟𝑟 − 1)𝜅𝜅2𝑟𝑟−3𝜅𝜅′𝜏𝜏 + 𝜅𝜅2𝑟𝑟−2𝜏𝜏′ = 0. 

Thus, we arrive at 

(𝜅𝜅2(𝑟𝑟−1)𝜏𝜏)′ = 0, 

that is,  

 𝜅𝜅2(𝑟𝑟−1)𝜏𝜏 = 𝑐𝑐, 𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.         (9) 

Combining (6), (8) and (9), we derive the Euler Lagrange equation (3). 

 

One can see that Euler Lagrange equation (3) corresponds to (2) when 

𝑟𝑟 = 2. 

Example 1. A straight line 𝛽𝛽 in 𝐺𝐺3 (see, Şahin and Dirişen, 2017) is a 

critical point of the functional ℱ, that is, 𝛽𝛽  is a hyperelastic curve. 

Example 2.  Let 𝛽𝛽 be a planar curve in 𝐺𝐺3 (see, Şahin and Dirişen, 2017). 

If 𝛽𝛽 is is a critical point of the functional ℱ, then, 𝛽𝛽 satisfies the following 

Euer Lagrange equation 

𝑟𝑟(𝑟𝑟−1)
2 𝜅𝜅𝑟𝑟−2𝜅𝜅′′ + 𝑟𝑟(𝑟𝑟−2)(𝑟𝑟−1)

2 𝜅𝜅𝑟𝑟−3(𝜅𝜅′)2 − 𝜆𝜆
2 𝜅𝜅 = 0. 

Example 3. Any circular helix or W-curve in 𝐺𝐺3 (see, Şahin and Dirişen, 

2017) is a solution of the functional ℱ. Thus, any circular helix or W-curve 

is a hyperelastic curve with 𝜆𝜆 = −𝑟𝑟𝜅𝜅2−3𝑟𝑟𝑐𝑐2. 

Example 4. Let 𝛽𝛽(𝑠𝑠) = (𝑠𝑠, 𝑠𝑠−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
4 , 𝑠𝑠𝑠𝑠𝑠𝑠2𝑠𝑠−𝑠𝑠2

4 ) be a curve in 𝐺𝐺3. The 

curvature and torsion of 𝛽𝛽(𝑠𝑠) is 𝜅𝜅(𝑠𝑠) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝜏𝜏(𝑠𝑠) = 1 (see, Şahin and 

Dirişen, 2017). This curve is a solution of the functional ℱ for 𝑠𝑠 = 𝜋𝜋
2 +

𝑘𝑘 𝜋𝜋, 𝑘𝑘 ∈ 𝑍𝑍  with 𝜆𝜆 = −𝑟𝑟. For this parameter, 𝛽𝛽 determines a hyperelastic 

curve. 

Conclusion 

In this study, the extremals of the functional ∫ (𝜅𝜅𝑟𝑟 + 𝜆𝜆)𝑑𝑑𝑠𝑠 in Galilean 

space were examined under specific boundary conditions, and the solutions 

of this variational problem were characterized using Euler-Lagrange 

equations. The defined Galilean hyperelastic curves provided a detailed 

understanding of their geometric properties within the framework of the 

Galilean metric structure. The examples presented demonstrated the 

applicability of the theoretical findings and offered significant insights into 

the behavior of curves under different metric structures. These results not 

only lay the groundwork for further exploration of hyperelastic curves in 
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Galilean space but also offer a comparative perspective for studying such 

curves in other metric frameworks. We hope that these findings will 

contribute to new research directions in both mathematical physics and 

differential geometry. 
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Galilean space but also offer a comparative perspective for studying such 

curves in other metric frameworks. We hope that these findings will 

contribute to new research directions in both mathematical physics and 

differential geometry. 
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CHAPTER 3

OPTIMIZATION AND REGION DELINEATION 
BASED ON PROXIMITY TO POINTS: A STUDY 

ON THE PIZZA DELIVERY PROBLEM

Nuh ÖZBEY4

Narin ÇELİK5

Division of Space into Regions based on Proximity 
to Specified Points
Mathematics is a branch of science that deals with the logic of shape, 

quantity, and arrangement. Its influence can be seen in every aspect of our 
daily lives; from the functioning of our computers to the exterior architectural 
design of buildings, from the expression of art to the economic use of money, 
mathematics plays an important role in many areas (Erbaş, 2016). Perhaps the 
most important impact of mathematics on our daily lives is its contribution to 
problem-solving. Problem and problem-solving are an inevitable reality of 
life and are also considered a fundamental part of mathematics. A problem 
is actually a challenge with an unknown solution, arousing a desire in 
individuals to solve it and requiring time to solve (Dündar, 2020).
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An algorithm is a concept consisting of a series of sequential steps 
designed to produce a solution to a problem or achieve a predetermined result 
(Aytekin, 2018). A well-developed algorithm tailored to a specific problem 
allows reaching a logical solution by following the listed steps (Sara, 2019). 
Algorithms are widely used not only in the field of computers but also in 
many areas of daily life (Atlı, 2022). In real life, to perform a task, usually, 
plans are made in advance, and the stages of the task are determined, similar 
to following the steps specified in a recipe to prepare a favorite dessert, which 
resembles the use of an algorithm. In solving a problem encountered in the 
software field, algorithms determine how initial values will be obtained, how 
these values will be processed using which methods, and where the results 
obtained will be used (Akçay, 2019). It is important for an algorithm to be 
as short and understandable as possible (Dündar, 2020). When designing 
an algorithm, the first step is to examine the problem to be solved in detail 
and review all possibilities. Then, a simple and understandable solution path 
that will lead to the result with the minimum number of steps should be 
determined. Finally, the generated algorithm must be executable, and its 
ability to reach the correct result must be verified (Aytekin, 2018).

The relationship between algorithms and mathematical problem solving is 
important for the organized solution of mathematical problems. Mathematical 
problems often require following certain steps, and these steps are defined by 
algorithms. Algorithms divide the problem into smaller parts and guide the 
solution process by determining the order of these parts (Aydoğdu, 2020). 
For example, an algorithm used to solve an equation determines the steps 
based on the characteristics of the equation and the solution method, and 
progresses the solution process systematically. While algorithms make the 
solution of mathematical problems more effective and efficient, they also 
help reduce the complexity of problems (Taşçı, 2016). Therefore, algorithms 
play a critical role in the solution of mathematical problems (Ekim and 
Aydemir, 2016).

There are different views on what a problem is in research. For example, 
according to Altun (2020), problems can be related to both real life and 
mathematics. Real life refers to the world outside of mathematics. Different 
subject areas of new schools and universities also constitute the real life 
of daily life and our environment. According to Polya (as cited in Çimen, 
2023), a problem is the conscious investigation of actions to reach the goal 
in the most suitable way. If a situation in the mind can be solved relatively 
easily with certain actions, it is not considered a problem. It can be said that 
there is a problem to be solved if it is not clearly known which studies will be 
conducted for the solution. According to Polya (as cited in Çimen, 2023), the 
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problem-solving process consists of the following stages: Understanding the 
problem, Creating the solution plan, Implementing the plan, and Checking 
the accuracy of the solution (Çiftçi, 2016). In the Understanding the Problem 
stage, it is important to understand the given information and the desired 
outcomes. The individual may need to understand the problem in their own 
words and, if necessary, draw a shape or diagram. In the Determining the 
Method stage, it is necessary to select appropriate strategies and techniques 
to solve the problem. In the Planning stage, plans are made according to the 
determined method, and operations are carried out. In the Checking stage, 
the accuracy of the operations used is checked, and the result is compared 
with the previously estimated value (Altun, 2020).

The problem-solving process mentioned above can be applied in a wide 
range of areas, from mathematical problems to real-world scenarios. As an 
example, this research started with the pizza delivery problem, which is 
based on a scenario we encounter during Olympiad studies and can also be 
encountered in the real world. This problem is essentially related to a city 
map drawn on a surface organized in unit squares and three different pizza 
branches located on this map. The goal of the problem is to divide the city 
into regions between these pizza branches. However, this division should be 
done in such a way that any point on the given city map is assigned to the 
nearest branch for delivery. In solving this problem, it was also necessary to 
plan how an order from any point on the given city map would be directed to 
the nearest branch. In this context, determining and drawing the boundaries 
was also one of the fundamental issues of the project. It can be said that this 
project, which constitutes the beginning of the studies on the solution of the 
pizza delivery problem, has an important place in showing how mathematical 
problems can arise in daily life and how mathematical thinking skills can be 
applied to real-world problems.

Method
In this research, the method of mathematical modeling was used. The 

mathematical modeling method involves the examination of real-life 
events or realistic situations using mathematical methods. The process of 
mathematical modeling includes problem identification and definition, 
creation of the mathematical model, solution of the model, interpretation of 
the results, and evaluation of the model’s accuracy (Sarı, 2021).

In this context, firstly, the real-life problem to be solved is clearly 
identified, and objectives are defined. Then, a model expressing the problem 
in mathematical terms is created. This model allows the analysis of the 
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problem using mathematical equations, relationships, or graphs. Next, the 
created model is solved using mathematical methods, and the results are 
interpreted and associated with real-world applications. Finally, the accuracy 
of the model is examined, and steps are taken to improve or update the model 
if necessary. These steps ensure that mathematical modeling directs the 
process of solving complex problems in a systematic and effective manner 
(Erdoğan, 2018).

The methodology of this research, designed according to the mathematical 
modeling method, is presented in two stages. The first stage involves 
obtaining the generalization method to be applied when there are n branches 
on a plane. The second stage involves the development of an algorithm for 
implementing applications in one, two, and three-dimensional spaces for this 
problem. These stages address the complexity of mathematical modeling in 
different dimensions, covering the basic findings of the project.

Stage 1: Division of the plane into regions based on proximity among 
n branches

In this stage, data obtained from studies on the division based on proximity 
among n branches, while staying true to the original problem, are presented. 
The presentation here follows the logic of mathematical generalization, 
progressing from smaller to larger.

Division of the plane into 2 regions
When a plane is divided into two parts according to the algorithm specified 

in the method section, a similar division occurs as shown in Figure 1 below.

Figure 1. Division of the plane into 2 regions
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In Figure 1, the region where points closer to point A than point B are 
located has been identified and shown in pink. Similarly, the region where 
points closer to point B than point A are located has been identified and 
shown in orange.

Division of the plane into 3 regions
In this case, drawings similar to the first step have been made, and the 

plane has been divided into 3 regions as shown in Figure 2 below.

Figure 2. Division of the plane into 3 regions

In Figure 2, the region where points closer to point A than to other points 
are located has been identified and shown in pink. The same process has 
been applied to determine the regions of points B and C. According to this 
process, the region of point B is shown in orange, and the region of point C 
is shown in blue.

Division of the plane into 4 regions
In this case, drawings similar to the first step have been made, and the 

plane has been divided into 4 regions as shown in Figure 3 below.
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Figure 3. Division of the plane into 4 regions

The determination of the regions of the points in Figure 3 is similar to 
Step 1 above. According to this determination, the region of point A is shown 
in pink, the region of point B is shown in orange, the region of point C is 
shown in blue, and the region of point D is shown in purple.

Division of the plane into 5 regions
In this case, drawings similar to the first step have been made, and the 

plane has been divided into 5 regions as shown in Figure 4 below.

Figure 4. Division of the plane into 5 regions
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The determination of the regions of the points in Figure 4 is similar to 
Step 1 above. According to this determination, the region of point A is shown 
in pink, the region of point B is shown in orange, the region of point C is 
shown in blue, the region of point D is shown in purple, and the region of 
point E is shown in green.

Stage 2: Formation of Regions in Different Dimensions

In this stage, the division of regions through lines in the plane is considered, 
similar to the division of regions through lines and three-dimensional spaces.

Determination of regions in one dimension
The division of a one-dimensional line segment into regions based on the 

closest distance to certain points occurs as in the following steps. 

Step 1. In this step, a line segment AB as shown in Figure 5 has been 
drawn according to the algorithm specified in the method section.

Figure 5. Determination of the desired number (5) of points on the line segment

Points C, D, E, F, and G on the line segment AB in Figure 5 have been 
determined.

Step 2. In this step, the process of determining the midpoint of the points 
on the line segment AB, as shown in Figure 6, is performed. Below, the 
midpoint of each point on the line segment AB with its neighboring points is 
found, and the green-colored points H, I, J, K, L, and M are created.

Figure 6. Determination of the midpoint of the identified points

In Figure 6, the midpoint of each point on the line segment AB with its 
neighboring points is found, and the green-colored points H, I, J, K, L, and 
M are created.
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Step 3. In this step, as shown in Figure 7, the selected line segments are 
colored with different colors so that each point remains in the center of the 
region closest to it.

Figure 7. Division of the line segment according to the proximity of the selected 
points

In Figure 7, the regions near points A are shown in blue, the regions near 
point C are shown in yellow, the regions near point D are shown in red, the 
regions near point E are shown in purple, the regions near point F are shown 
in orange, the regions near point G are shown in light blue, and the regions 
near point B are shown in brown.

Determination of regions in three dimensions 
The division of 3-dimensional space into regions based on the proximity 

of certain points was carried out in accordance with the developed algorithm, 
as shown in the following steps.

Step 1. In this step, a cube representing space, as shown in Figure 8, was 
drawn, and the different number of points inside this cube were colored with 
the same color as the points closest to them.

Figure 8. The midpoint created inside the cube
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In Figure 8, the line segment between points K and L, created with the 
GeoGebra program, is drawn, and the midpoint M is determined.

Step 2. Then, a plane passing through point M and perpendicular to line 
segment KL is drawn, as shown in Figure 9.

Figure 9. Cube and plane passing through the center point

In Figure 9, a plane passing through point M and the line segment 
KL is drawn, and the points where this plane intersects with the cube are 
determined.

Step 3. Then, in Figure 10, a quadrilateral representing the cross-section 
is drawn using the points where the plane intersects with the cube.

Figure 10. Intermediate section dividing the cube
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In Figure 10, the parallelogram BDZH represents the cross-section of the 
cube with the plane. This parallelogram shows the boundary in the process of 
dividing the cube into regions based on the closest point criterion.

Step 4. Finally, the regions close to points K and L are separated, creating 
the two spatial parts shown in Figure 11 below.

Figure 11. The cube divided into two regions

In Figure 11, the cube representing the space is divided into two parts, 
with points K and L marking the division.

Findinngs
The findings of this study, designed in accordance with the mathematical 

modeling method, consist of three main stages. The first stage involves 
geometrically presenting the problem with three pizza branches, the second 
stage involves obtaining the operations to be carried out when there are n 
branches on the plane, and the third stage involves creating an algorithm for 
the applications of the problem in one, two, and three-dimensional spaces.

Constructing the Mathematical Model of the Problem
In this stage, the process of creating the necessary geometric drawings for 

solving the problem using the GeoGebra program is explained step by step. 
This stage, consisting of 4 steps, involves creating drawings and obtaining 
data according to the following sequence.
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a. Constructing the Mathematical Model of the Problem

In this step, the concepts in the original problem are converted into 
mathematical terms, and a mathematical model representing the problem is 
drawn. This model, drawn with the help of GeoGebra, is shown in Figure 12 
below.

Figure 12. The mathematical model of the problem

Figure 12 shows the original problem. Here, the task is to divide the 
rectangle ABCD, representing the city, into 3 regions based on their proximity 
to the points E, F, and G, representing the pizza branches.

b. Drawing lines and determining midpoints 

In this step, to solve the problem, each point was connected with the other 
points using a line segment, and the midpoints of these line segments were 
determined as shown in Figure 13.
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Figure 13. Determination of Midpoints between Points

Figure 13 shows the second step of the drawings made for solving the 
problem. Here, each of the points E, G, and F within the ABCD rectangle 
is connected with the other points excluding itself, and using appropriate 
menus in the GeoGebra program (such as the midpoint finding command), 
midpoints of each line segment are determined.

c. Drawing the Boundaries Using Midpoints 

In this step, perpendicular lines are drawn to the line segments drawn in 
the previous step and their midpoints, as shown in Figure 14.

Figure 14. Drawing the Initial Boundaries Using Midpoints
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Figure 14 shows the perpendicular lines drawn to the midpoints we 
previously determined, with the lines displayed in red.

d. Determination of Regions

In this step, the boundary regions of each point were determined based 
on the drawn perpendicular lines. The region of point E is represented in 
blue, the region of point F in green, and the region of point G in orange, as 
modeled in Figure 15.

Figure 15. Determination of Regions

In Figure 15, the boundaries between points E, F, and G were determined 
using the perpendicular lines drawn in the previous step, and the regions 
formed by each point are modeled with polygons in different colors.

The Different Dimensional Situation of the Problem
In this stage, studies were conducted on how the operations performed 

for n points in a two-dimensional plane can be carried out in different 
dimensions, and a general model was created regarding these operations. 
This model provides a guide on how operations can be performed in different 
dimensions, offering a more comprehensive approach that can be used in 
solving mathematical and geometric problems.

Example 1: When there are three points with known positions in a three-
dimensional space, the division into regions based on proximity to points 
will be as shown in Figure 16 below.
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Figure 16. Division of the cube into three separate regions

In Figure 16, the cube representing the space is divided into regions, with 
the region of point K shown in red, the region of point L shown in blue, and 
the region of point Z shown in green.

Example 2: When there are 4 points in a 3-dimensional space, the division 
of regions based on proximity to points will be as shown in Figure 17.

Figure 17 shows the cube divided into four separate regions.

The regions are indicated by the colors of the points within the cube: the 
region of point E is shown in black, the region of point F is shown in blue, 
the region of point H is shown in green, and the region of point G is shown 
in red.
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Results and Discussion
The research conducted in this study, based on the pizza shop problem, 

has led to the development of effective algorithms for determining points in 
a space with a certain dimension that are closer to other points. Additionally, 
by focusing on a problem given in two dimensions, the study has examined 
the proximity of any point in different dimensions to the specified points. The 
analyses indicate that the distance to the specified points can be geometrically 
determined, and the partitioning process can be effectively performed using 
the developed algorithm. This situation is similar to the study conducted 
by Taşçı (2016), which examined the classification performance of nearest 
neighbor algorithm parameters using computer programs. The study 
emphasizes that the geometric partitioning performed is understandable and 
has a concrete form.

Another result of this study is the identification of regions in up to three-
dimensional space where points are closer to a specified point than to other 
predetermined points. These findings indicate that as the dimensionality of 
the space increases, the computational complexity also increases, but effective 
algorithms can manage this complexity. In the study, a problem encountered 
in daily life was solved by creating a mathematical model and generalized to 
different dimensions. Mathematical models simplify complex systems, making 
them easier to work with and optimizing the solution process. This feature is 
also emphasized by Sarı (2021), who, in his study discussing people’s views on 
mathematical modeling, states that those who prioritize the modeling process 
can solve complex situations more easily through modeling.

Based on the results of the research conducted using the pizzeria problem 
as a basis, the following recommendations can be made: Further work 
can be done to extend the algorithms used in two-dimensional problems 
to other dimensions. Especially in three-dimensional space, focusing on 
the complexity and efficiency of algorithms would be beneficial. This can 
help create a general solution strategy and effectively solve problems in 
larger dimensions. The research results provide a basis for developing new 
mathematical and algorithmic approaches that can be used in solving similar 
problems. In this regard, it is recommended to explore alternative methods 
for examining the proximity of points and to improve existing methods. 
In future research, focus can be given not only to geometric problems like 
the pizzeria problem but also on how such algorithms and methods can be 
applied in other areas. For example, investigating how these approaches can 
be applied in different disciplines such as data analysis, image processing, or 
robotics could be beneficial.
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CHAPTER 4

ALGORITHM DEVELOPMENT STUDY USING 
MATHEMATICAL GENERALIZATION METHOD 

(EXAMPLE: SUM OF UNIT FRACTIONS)

Phd, Nuh ÖZBEY6

Elifsu TOZLUKLU7

Algorithm Design Using Mathematical 
Generalization Method (Example: Sum of Unit 
Fractions)
Unit fractions are a fundamental concept in mathematics with a significant 

historical development. Since ancient times, many thoughts and studies have 
been conducted on the basic rules and calculations related to unit fractions. 
In this context, it is known that in ancient Egypt in the 3rd millennium BC, 
unit fractions were used to solve mathematical problems related to rational 
numbers and fractions. During those times, the use of fractions was widespread, 
especially for solving practical needs such as construction and trade (Seyhan, 
2021). The use of fractions in daily life by the people of Egypt has formed 
a fundamental tool for practical mathematical calculations. Mathematical 
calculations and the use of fractions in ancient Egypt developed, especially 

6 Gaziantep, Şahinbey BİLSEM, Türkiye, ORCID: 0000-0002-4542-29581
 nuhozbey@gmail.com
7 Gaziantep, Şahinbey BİLSEM, Türkiye, ORCID: 0000-0002-4542-29581
 toelifsu9@gmail.com



Algorithm Development Study Using Mathematical Generalization Method (Example: Sum of Unit Fractions)

50

to meet practical needs in daily life (Danacı, 2021). Fractions have played 
an important role in fundamental activities such as agriculture, construction, 
and trade in Antic Egyptian society. Especially, fractions were frequently 
used in issues such as the flooding of the Nile River irrigating agricultural 
lands and the sharing of water. Mathematical problems such as measuring 
land and dividing water were solved with the mathematical expressions of 
fractions (Seyhan, 2021). Moreover, the ancient Egyptians also carried out 
large construction projects such as pyramids. It can be thought that fractions 
were used in these types of projects for material calculations, planning 
construction processes, and similar tasks. Similarly, during trade at that time, 
fractions were commonly used in issues such as the distribution of products 
and pricing, and fractions played an important role in solving many problems 
encountered in daily life. Ancient Greek mathematicians also studied 
fractions like the ancient Egyptians and developed many theorems on them. 
In particular, scientists such as Euclid and Archimedes made significant 
contributions to mathematics regarding fractions. Especially Archimedes’ 
work on fractions played an important role in developing methods for finding 
their approximate values (Feyzioğlu, 2019).

At the end of antiquity and especially in the Middle Ages, Muslim 
mathematicians also conducted intensive studies on fractions, and these 
studies played an important role in the history of mathematics. Especially 
during the Golden Age of Islam, between the 8th and 14th centuries, various 
research was conducted on the theoretical and practical applications of unit 
fractions (Yıldız, 2021). Mathematicians of this period developed various 
methods for the generalization of fractions, performing the four operations 
among fractions, calculating the approximate values of fractions, and solving 
algebraic problems. Prominent figures such as Al-Khwarizmi, Al-Battani, 
and Al-Biruni increased the knowledge in this field by writing works on 
fractions. The work of Muslim mathematicians has made significant 
contributions to Western mathematics in the Middle Ages and beyond, 
contributing to a deeper understanding and use of fractions (Göl, 2022). 

Studies on fractions continued during the Middle Ages and the 
Renaissance periods. In medieval Europe, fractions were widely used for 
solving mathematical problems and commercial calculations (Öndin, 
2021). However, some complex problems related to fractions emerged 
during the Middle Ages, especially difficulties related to proportions 
and addition and subtraction of fractions. In the Renaissance period, new 
approaches were developed regarding the representation of fractions in 
decimal form. During this period, various methods emerged for representing 
and calculating fractions in decimal format. This allowed mathematical 
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calculations to be performed more easily and accurately (Okuyucu, 2021).  
Throughout history, the development in mathematical thought and methods 
has not been limited to fractions alone. There have been significant changes 
in the general understanding of mathematics. During the Renaissance period, 
mathematics adopted a more systematic approach, and significant progress 
was made not only in fractions but also in other areas such as algebra, 
geometry, and probability. Mathematicians of this period developed new 
methods for the decimal representation and operations of fractions while also 
approaching mathematical thought from a broader perspective. Especially, 
representing fractions in decimal format to facilitate their practical use has 
increased the accuracy of mathematical calculations in fields such as trade, 
engineering, and science, and accelerated the solution of daily life problems 
(Öndin, 2021). These advancements during this period further solidified the 
use of fractions, which are one of the cornerstones of modern mathematics. 
Even today, the use of fractions in various fields of mathematics and practical 
life carries traces of these developments that began in the Renaissance period. 
The development of unit fractions in the history of mathematics has laid the 
foundation for the use of fractions in modern mathematics. Today, fractions 
are widely used in solving mathematical problems and in various areas of 
daily life.

Unit fractions, which form the basis of fractions, are simple fractions 
with a numerator of 1 and hold a more special position compared to other 
types of fractions. This characteristic becomes more pronounced with their 
fixed numerators and their immutability. In this section, considering the 
mentioned qualities of unit fractions, unit fractions have been selected as the 
focus of the study. This choice has laid the foundation for the development 
of methods to obtain new unit fractions from unit fractions and for a deeper 
investigation into their relationship with the addition operation. This 
approach will lead to a better understanding of the mathematical properties 
of unit fractions and contribute to increasing the knowledge that will lead to 
new discoveries in this field. Unit fractions not only underpin mathematical 
thinking but also open the door to understanding more complex fraction 
structures. Therefore, research on unit fractions offers an important 
opportunity to deepen and expand mathematical thinking. Such research 
can play a key role in advancing mathematical theory and shedding light on 
new mathematical discoveries in the future. Thus, research on the properties 
and uses of unit fractions has the potential to contribute to the development 
of mathematical knowledge.
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Method
In this study, the method employed is the mathematical generalization 

method, focusing on how unit fractions can be expressed as the sum of two 
unit fractions. Mathematical generalization involves expressing a specific 
mathematical knowledge or situation under a more general rule or model 
to make it applicable. This method allows for a broader understanding of a 
particular situation and the evaluation of its applicability in similar contexts. 
Consequently, mathematical generalization contributes to understanding 
relationships between specific cases and further exploring mathematical 
knowledge in depth. This process begins with the examination and analysis of 
specific examples, followed by the use of mathematical expressions to express 
the findings in a more general framework. The created mathematical model 
forms a structure that clearly expresses the characteristics and relationships 
of the examined situation. This model aims to generalize the results obtained 
from examples and make them applicable in a broader context. Finally, 
the created mathematical model is examined using various mathematical 
techniques to test its general validity under specific conditions. In this 
research, which is based on the method of mathematical generalization, the 
studies were conducted in four steps according to the method. The first step 
is the use of expanded fractions, the second is the examination of different 
notations, the third is the generalization of different notations, and the fourth 
is the proof of generalization and writing of the algorithm.

The Use of Expanded Fractions
In this stage, first, the properties of unit fractions and existing knowledge 

related to the topic were examined in detail. Then, the focus was on the 
properties identified to initiate the process of mathematical generalization. 
Initially, examples were worked on using the sampling method, and unit 
fractions were expanded with counting numbers from 1 to 20, focusing on the 
sums that give this form of the fraction. The results obtained were organized 
in tables, some of which are included in Table 1, to facilitate the review.
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Table 1. Expanded Forms and Sums of 1/4 Fraction

Expanded 
Number

Expanded Fraction Representation as Sum of Unit Fractions

1 1/4 Notation N/A
2 2/8 1/8 + 1/8
3 3/12 2/12 + 1/12 or 1/6 + 1/12
4 4/16 Notation N/A
5 5/20 4/20 + 1/20 or 1/5 + 1/20
6 6/24 4/24 + 2/24 or 1/6 + 1/12

In Table 1, the expanded form of the selected 1/4 fraction with the 
designated numbers and the ways in which these forms are obtained as 
the sum of 2 unit fractions are presented. Different unit fraction examples 
expanded with counting numbers up to 20 were developed separately in the 
research process. The first column of these tables contains the number at 
which the unit fraction is expanded, the second column contains its expanded 
form, and the third column contains the ways in which the designated unit 
fraction is obtained under desired conditions. These tables, used as a regular 
source of information gathering, have also contributed to the emergence 
of two problems encountered during the process. The first problem is the 
occurrence of the same sums representing the selected unit fraction multiple 
times. The second problem is the absence of a specific limit for the number 
to be used in the expansion process. Despite these problems, data obtained in 
this phase were used to obtain data suitable for generalization in the second 
phase.

Examination of Different Notational Practices
In the second stage of the research, using the data from the previous stage, 

examples were made to determine how many different ways unit fractions 
from 1/2 to 1/20 can be written as the sum of two unit fractions. For this 
purpose, the possible ways of expressing each unit fraction as the sum of two 
unit fractions were investigated, starting from 1/2 to 1/20. The results of this 
sampling were organized in a table format, as shown in Table 2 below.
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Table 2. The number of times a unit fraction is obtained under the desired 
conditions

Desired 
Denominator

Number of 
Different 
Combinations

Desired 
Denominator

Number of 
Different 
Combinations

1 1 11 2

2 2 12 8

3 2 13 2

4 3 14 5

5 2 15 5

6 5 16 5

7 2 17 2

8 4 18 7

9 3 19 2

10 5 20 7

Table 2 contains data on the number of different ways unit fractions from 
1/2 to 1/20 can be obtained as the sum of two unit fractions. After producing 
this table, sample examinations were conducted. In these examinations, it 
was observed that unit fractions with prime denominators could be written in 
different ways. For example, the unit fraction 1/5 can be written as the sum 
of unit fractions in 2 different ways: 1/10 + 1/10 and 1/6 + 1/30.

Generalization of Different Writing Numbers
In this stage, based on the data obtained in the previous step and 

observations made regarding non-prime numbers similar to prime numbers, 
it was decided to organize the data according to different writing numbers for 
unit fractions as the sum of two unit fractions. As a result of this organization, 
Table 3 below was obtained.
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Table 3. Unit fractions, the denominators, and the number of different ways

Number of Different 
Combinations

Denominators

1 1

2 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47

3 4, 9, 25, 49

4 8, 27

5 6, 10, 14, 15, 16, 21, 22, 26, 33, 34, 35, 38, 39, 46

6 32

7 18,24

8 12, 28, 44, 45, 50

In Table 3, the right column shows the denominators of the unit fractions 
under investigation. The left column indicates the number of different ways 
these fractions can be written as the sum of two unit fractions. For example, 
the fraction 1/3 can be written in 2 different ways, while 1/4 can be written in 
3 ways, and 1/27 can be written in 3 ways as well. Based on the data presented 
in this table, it has been determined that the number of different ways a unit 
fraction can be expressed as the sum of two unit fractions is related to the 
prime factors of the denominator of that fraction. This relationship will be 
detailed in the Findings section as a result of the study.

Proving the Generalization and Writing the Algorithm
After the examination and determination of the characteristics, efforts 

were made to prove the generalization regarding the number of ways a unit 
fraction can be written as the sum of two unit fractions. Algebraic expressions 
were used for this purpose, and instead of the previously tried fractions, the 
fractions 1/a and 1/b were considered as the sum of two unit fractions, and 
the correctness of the generalization was proven. This proof will be detailed 
in the findings section. After determining the number of ways of writing, 
studies were conducted on what these writings are, and an algorithm was 
developed to find the ways a unit fraction can be written as the sum of two 
unit fractions. This algorithm will be presented in detail in the findings 
section.
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Findings
In this part of the study, the data obtained throughout the process will be 

presented. This presentation will be carried out in stages, following the order 
in the methodology section. The first stage will include the generalization 
regarding how many different ways a selected unit fraction can be written 
as the sum of two unit fractions, the proof of this generalization, and the 
algorithm developed to apply the general rule more quickly. In the second 
stage, a general rule regarding in which ways selected unit fractions can be 
written as the sum of two unit fractions will be presented, along with an 
algorithm to assist in applying this rule.

The number of ways a unit fraction can be written as 
the sum of two unit fractions
In this stage, a generalization will be presented based on the data obtained 

using the data tables mentioned in the methodology section. 

Generalization: A unit fraction can be written as the sum of two unit 
fractions in a number of ways equal to half of one more than the positive 
divisors of the square of the number in the denominator. This can be expressed 
mathematically as;

The number of ways to express 1/k as the sum of two unit fractions can 
be found using the formula (C(k^2) + 1) / 2, where C(k) is the number of 
positive divisors of k.

Proof: Let a, b, and k be natural numbers such that the sum of the unit 
fractions 1/a and 1/b equals 1/k. We have:

1/a + 1/b = 1/k. Multiplying both sides by ab yields:

b/ab + a/ab = 1/k. Combining the fractions:

(a + b)/ab = 1/k, Which simplifies to:

(a + b) = ab/k. Rearranging terms gives:

ak + bk = ab. Isolating ak:

ak = ab - bk. Now, isolate b in terms of a and k:

ak = b(a - k). Dividing both sides by (a - k) gives:

b = ak/(a - k). 

b = k(k^2)/(a - k). This expression can also be written as a sum:

b = k + k^2/(a - k).
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Here, a and k are natural numbers. For b to be a natural number, k^2 must 
be divisible by (a-k). Therefore, the number of values that can be substituted 
for (a-k) should be equal to the number of factors of k^2. However, since a 
and b can be interchangeable, to avoid repeating the same sums, only half of 
the factors should be used.

Considering that the number of factors of a perfect square is always 
odd, the number of solutions should be half of one more than the number of 
factors of k^2.

Algorithm 1. It was proven in the previous section that a unit fraction can 
be written in different ways as the sum of two unit fractions, where the number 
of ways is half of the positive divisors of the number in the denominator plus 
one. The generalization obtained at this stage has been transformed into the 
algorithm presented in Figure 1 to provide a practical application.

Figure 1. Flowchart of the algorithm used to find the total count

 
Figure 1 depicts the algorithm for finding the number of different ways a 
unit fraction can be written as the sum of two unit fractions. Following the 
development of this algorithm, a computer code in Python was generated, as 
shown in Figure 2, to quickly provide the result for larger numbers, aiming 
to facilitate usage.
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Figure 2. Python code that provides the total count

The code in Figure 2, in general, takes a number from the user and 
calculates its square. Then, it computes the divisors of this square (list) and 
the values obtained by adding the square to the number (list1). For example, 
if the user enters 3, the square of this number will be 9, and list will contain 1 
and 9, while list1 will contain 4 and 12. Next, it takes the length of list1 (a), 
adds one to this length (a+1), and divides it by 2 ((a+1)/2). It then prints the 
resulting value, b, to the screen.

Expressing a Unit Fraction as the Sum of Two Other 
Unit Fractions
In this stage, an algorithm developed to express selected unit fractions 

as the sum of two other unit fractions, along with examples of these sums 
obtained using the algorithm, will be presented. 

Code 2. The ways in which a unit fraction can be written as the sum of 
two unit fractions were explained in the previous section. The generalization 
obtained at this stage has been transformed into the code presented in Figure 
3 to provide a practical application.
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Figure 3. Python code used to find the total list

The code in Figure 3 starts by taking an integer input from the user. It 
then calculates the square of the number entered by the user. It computes the 
divisors of the square number and the paired versions of these divisors. Two 
lists are used for this operation: one stores the divisors (list), and the other 
stores the sum of the divisors with the number taken from the user (list1). 
The lists containing the divisors and the sums of the divisors are printed 
to the screen. Next, for each element in the list1 list, the code iteratively 
takes an element from the beginning and the end of the list to create a paired 
couple, which is then added to a list named “paired_pairs.” This process 
continues until all elements in the list1 list are consumed. Finally, the last 
element in the list1 list is paired with itself, and this pair is also added to the 
“paired_pairs” list.

Example 

Let’s express the unit fraction 1/2 as the sum of two other unit fractions.

For this, we’ll use the generalization mentioned in the first stage to find 
the number of different sums that can be written.
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Since our denominator is 2, the number of different sums that can be 
obtained is:

Number of different sums = (〖C(2)〗^2+1)/2. Here 〖C(2)〗^2= C(4)=3, 
{1,2,4} (3+1)/2=2. So, there should be 2 different sums. Now let’s find these 
sums. We will use the 2nd algorithm developed for this purpose. Our number 
to create the denominator is: 2 Square of our number: 4 Factors of 4: {1,2,4} 
Increased by 2 for each factor: {3,4,6}

Pairs matched using the rainbow method from smallest to largest: (3,6) 
and (4,4). Let’s use these pairs as the denominator. In this case, the unit 
fraction sums that give 1/2 are: 1/2=1/4+1/4 and 1/2=1/3+1/6

Example 2. Let’s write unit fractions from 1/3 to 1/10 as the sum of two 
unit fractions using the developed algorithm. 

1/3 can be written as 1/6 + 1/6 and 1/3 can also be written as 1/4 + 1/9 
(can be written in 2 ways)

1/4 can be written as 1/8 + 1/8, 1/4 can also be written as 1/5 + 1/20, and 
1/4 can also be written as 1/6 + 1/12 (can be written in 3 ways)

1/5 can be written as 1/10 + 1/10 and 1/5 can also be written as 1/6 + 1/30 
(can be written in 2 ways)

1/6 can be written as 1/12 + 1/12, 1/6 can also be written as 1/10 + 1/15, 
1/6 can also be written as 1/9 + 1/18, 1/6 can also be written as 1/8 + 1/24, 
and 1/6 can also be written as 1/7 + 1/42 (can be written in 5 ways)

1/7 can be written as 1/14 + 1/14 and 1/7 can also be written as 1/8 + 1/56 
(can be written in 2 ways)

1/8 can be written as 1/16 + 1/16, 1/8 can also be written as 1/12 + 1/24, 
1/8 can also be written as 1/10 + 1/40, and 1/8 can also be written as 1/9 + 
1/70 (can be written in 4 ways)

1/9 can be written as 1/18 + 1/18, 1/9 can also be written as 1/12 + 1/36, 
and 1/9 can also be written as 1/10 + 1/90 (can be written in 3 ways)

1/10 can be written as 1/20 + 1/20, 1/10 can also be written as 1/15 + 1/30, 
1/10 can also be written as 1/14 + 1/35, 1/10 can also be written as 1/12 + 
1/60, and 1/10 can also be written as 1/11 + 1/110 (can be written in 5 ways)

Results and Discussion
The first result of our project on unit fractions is that a unit fraction can be 

written in as many different ways as half the number of positive divisors plus 
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one of its denominator. This generalization was reached in the study and its 
mathematical proof was provided. Furthermore, for practical purposes, this 
generalization was formulated as an algorithm. The second result obtained 
from the research is the development of an algorithm showing how a unit 
fraction can be written as the sum of two unit fractions. With this algorithm, 
desired sums can be easily found. One of the application areas of the 
algorithms proposed for the sum of unit fractions is decorations made with 
regular polygons. For example, in all decorations that can be created using 
three regular polygons, the following condition must be met: In decorations 
created with regular polygons having “a” and “b” sides, and another polygon 
having “e” sides, it is necessary to determine how many different ways a 
fraction can be written as the sum of 3 or more unit fractions.

The sum of unit fractions can be used in various fields, including algorithm 
analysis and designing data structures in computer science. Especially when 
analyzing the complexity of data structures and algorithms, metrics related to 
the sum of unit fractions, such as time and space complexity, are important. 
These metrics are used to evaluate the performance of an algorithm or data 
structure and make decisions. This aligns with the findings of Gökoğlu’s 
(2017) metaphor study on algorithm perception in programming education. 
In other words, the use of the sum of unit fractions in this field helps in 
developing efficient and effective computer programs.

Another application area of developed algorithms is in engineering 
and industrial design. Particularly in areas such as material cutting, part 
assembly, and product design, the sum of fractions is important for precise 
measurements. In these areas, calculating the sum of unit fractions is 
necessary for correctly assembling materials and parts and ensuring the 
suitability of products. This aligns with the findings of Demir’s (2022) study 
on examining the reflection process of mathematical modeling on life. The 
use of the sum of unit fractions is a fundamental element in engineering and 
industrial design.

Another area where the project can be applied is in architecture and art, 
particularly in ornamental and decorative processes for aesthetic purposes. 
According to Aktaş (2022), in his study on the varieties of symmetry in 
decorative art, decorations are generally created by arranging geometric 
shapes, and mathematical calculations related to unit fractions play an 
important role in the design of structures. In this respect, this study can be 
considered as a significant contribution to the field.

The focus of this project is to investigate and develop new methods that 
can be used in solving mathematical problems. Researchers interested in 
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gaining a deeper understanding of the methods used for adding fractions can 
focus on the advantages of these methods. Determining how many different 
ways a unit fraction can be written as the sum of two unit fractions has 
been an important point in the project. It would be appropriate to examine 
and develop this diversity with different methods. The developed rule in 
the project has been explained in detail, including how it was obtained. 
Additionally, it will be important to conduct studies on how the accuracy of 
this rule was tested and how it can be used in real-world applications.
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