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IMPULSIVE q-STURM-LIOUVILLE PROBLEMS

Bilender P. Allahverdiev, Hamlet A. Isayev and Hüseyin Tuna∗

In this study, impulsive q-Sturm–Liouville problems are considered. First,
symmetry is obtained with the help of boundary conditions. Then, the exis-
tence and uniqueness problem for such equations is discussed. Finally, eigen-
function expansion was obtained with the help of characteristic determinant
and Green’s function.

1. INTRODUCTION

The Sturm–Liouville problems have a long history. Such problems have been
studied for a long time. Sturm–Liouville problems arise, especially if it is desired
to solve partial differential equations modeling various problems encountered in
different fields of science with the Fourier method. For more detailed information
on Sturm–Liouville problems, see ([15]). On the other hand, we encounter impul-
sive Sturm–Liouville problems in geophysics, electromagnetics, elasticity, and other
fields of engineering and physics. For problems of this type see ([4, 5, 16, 6]).

Quantum calculus has recently started to attract a lot of attention. The fact
that some functions that cannot be differentiated in the classical sense can be dif-
ferentiated in the quantum sense makes this subject interesting. Various problems
involving differentiable functions in the quantum sense can be encountered in dif-
ferent fields of mathematics ( [8]). In 2005, Annaby and Mansour applied quantum
calculus to classical Sturm–Liouville problems and investigated q-Sturm–Liouville
problems ([2]). Later on, q-Sturm–Liouville problems were studied by some authors
by putting impulsive boundary conditions. In [7], Çetinkaya studied discontinuous
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q-Sturm–Liouville problems with eigenparameter-dependent boundary conditions.
In [11, 12, 13], Karahan and Mamedov investigated a q-Sturm–Liouville problem
with discontinuity conditions. In [14], the author studied the singular q-Sturm–
Liouville problem with impulsive conditions.

In this paper, we study impulsive q-Sturm–Liouville problems. Firstly, the
fundamental spectral properties of these problems are obtained. Later, the exis-
tence and uniqueness problem for such equations is discussed. Finally, eigenfunc-
tion expansion is obtained with the help of characteristic determinant and Green’s
function.

2. PRELIMINARIES

In this section, the basic concepts of q-calculus that will be used in the article
will be given. For more detailed information, the following sources can be examined,
[10, 3, 8, 9].

Let q ∈ (0, 1) and let A ⊂ R be a q-geometric set, i.e., if qζ ∈ A for all ζ ∈ A.
We begin by defining the operator Dq by

Dqf (ζ) =

{
f(qζ)−f(ζ)

(q−1)ζ , ζ ̸= 0

limn→∞
f(qnξ)−f(0)

qnξ , ζ = 0,

where ζ, ξ ∈ A. When it is required, q will be replaced by q−1. The following facts,
which will be frequently used, can be verified directly from the definition:

Dq−1f(ζ) = (Dqf)(q
−1ζ), (D2

qf)(q
−1ζ) = qDq[Dqf(q

−1ζ)] = Dq−1Dqf(ζ).

Related to this operator there exists a non-symmetric formula for the q-differentation
of a product

Dq[f(ζ)g(ζ)] = g(ζ)Dqf(ζ) + f(qζ)Dqg(ζ).

We define the Jackson q-integration by∫ ζ

0

f (γ) dqγ = ζ (1− q)

∞∑
n=0

qnf (qnζ) (ζ ∈ A),

provided that the series converges, and∫ b

a

f (γ) dqγ =

∫ b

0

f (γ) dqγ −
∫ a

0

f (γ) dqγ,

where a, b ∈ A. Through the remainder of the paper, we deal only with functions
q-regular at zero, i.e, functions satisfying

lim
n→∞

f (ζqn) = f (0) ,

for every ζ ∈ A.
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Let

L2
q(0, a) =

{
f : [0, a] → C :

√∫ a

0

|f (ζ)|2 dqζ < ∞

}
,

L2
q(0, a) is a Hilbert space endowed with the inner product

(f, g) :=

∫ a

0

f (ζ) g (ζ)dqζ, ∥f∥ :=

√∫ a

0

|f (ζ)|2 dqζ.

The q-trigonometric functions are given by the formulas

cos (z; q) =

∞∑
n=0

(−1)
n qn

2

(z (1− q))
2n

(q; q)2n
,

sin (z; q) =

∞∑
n=0

(−1)
n qn(n+1) (z (1− q))

2n+1

(q; q)2n+1

,

where

(a; q)0 = 1, (a; q)n =

n−1∏
k=0

(
1− aqk

)
(see [2]).

The q-Wronskian of the functions y and z is defined by the formula

Wq (y, z) := yDqz − zDqy.

3. STATEMENT OF THE PROBLEM

Let us consider the following q-Sturm–Liouville equation

(1) Υ(y) :=

[
−1

q
Dq−1Dq + v(ζ)

]
y(ζ) = λy(ζ), ζ ∈ [0, d) ∪ (d, a],

subject to the following conditions

(2) y (0) + k1Dq−1y (0) = 0,

y (d−)− k2y (d+) = 0,(3)

Dq−1y (d−)− k3Dq−1y (d+) = 0,(4)

(5) y (a) + k4Dq−1y (a) = 0,
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where k1, k2, k3, k4 are real numbers and λ is a complex parameter.

Our basic assumption throughout the paper is the following:

(K1) Let q ∈ (0, 1) , k2k3 = α > 0 and v is a real-valued function that is
continuous on [0, d) ∪ (d, q−1a] and has finite limits v(d±).

Let us introduce the following space:

H = L2
q(0, d)

·
+ L2

q(d, a) is a Hilbert space endowed with the following inner
product

⟨f, g⟩H :=

∫ d

0

f (1)g(1)dqζ + α

∫ a

d

f (2)g(2)dqζ,

where

f(ζ) =

{
f (1)(ζ), ζ ∈ [0, d)
f (2)(ζ), ζ ∈ (d, a],

g(ζ) =

{
g(1)(ζ), ζ ∈ [0, d)
g(2)(ζ), ζ ∈ (d, a].

Consider the following sets

Dmax =

y ∈ H :
one-sided limits y (d±) and Dq−1y (d±)
exist and finite, y (d−)− k2y (d+) = 0,

Dq−1y (d−)− k3Dq−1y (d+) = 0, and Υy ∈ H

 ,

Dmin =
{
y ∈ Dmax : y (0) = Dq−1y (0) = y (a) = Dq−1y (a) = 0

}
.

Then the maximal operator Lmax on Dmax is defined by

Lmaxy = Υ(y).

If we restrict the operator Lmax to the set Dmin, then we obtain the minimal
operator Lmin.

Let y, z ∈ Dmax. Then the q-Green formula of these functions is given by∫ a

0

[
(Υy)(x)z(x)− y(x)(Υz)(x)

]
dqx

(6) = [y, z] (a)− [y, z] (c+) + [y, z] (c−)− [y, z] (0) ,

where
[y, z] := y(Dq−1z)− (Dq−1y)z.

Let us consider the operator L with a domain D consisting of vectors y ∈
Dmax, (Ly = Υ(y)) that satisfy the boundary conditions (2) - (5).

Theorem 1. The operator L is symmetric.

Proof. Let y, z ∈ D. Then we have

⟨Ly, z⟩H − ⟨y,Lz⟩H =

∫ d

0

(Υy)(x)z(x)dqx+ α

∫ a

d

(Υy)(x)z(x)dqx



Impulsive q-Sturm-Liouville problems 495

−
∫ d

0

y(x)Υ (z) (x)dqx− α

∫ a

d

y(x)Υ (z) (x)dqx.

From (6), we find

⟨Ly, z⟩H − ⟨y,Lz⟩H = α[y, z] (a)− α[y, z] (c+) + [y, z] (c−)− [y, z] (0) .

By conditions (2) - (5), we see that

(7) ⟨Ly, z⟩H = ⟨y,Lz⟩H ,

i.e., L is the symmetric operator.

Corollary 2. All eigenvalues of the problem (1) - (5) are real.

Proof. Let µ be an eigenvalue with an eigenfunction φ. From (7), we find

(8) ⟨Lφ,φ⟩H = ⟨φ,Lφ⟩H = ⟨φ, µφ⟩H = µ⟨φ,φ⟩H .

On the other hand,

(9) ⟨Lφ,φ⟩H = ⟨µφ, φ⟩H = µ⟨φ,φ⟩H .

Combinig (8) and (9), we see that

µ⟨φ,φ⟩H = µ⟨φ,φ⟩H ,

(µ− µ) ⟨φ,φ⟩H = 0.

Hence
µ = µ

since φ ̸= 0.

Corollary 3. If ξ1 and ξ2 are two different eigenvalues of the problem defined by
(1) - (5), then the corresponding eigenfunctions y1 and y2 are orthogonal.

Proof. Let µ1 and µ2 be two different real eigenvalues with corresponding eigen-
functions φ1 and φ2, respectively. By (7), we obtain

⟨Lφ1, φ2⟩H = ⟨φ1,Lφ2⟩H ,

⟨µ1φ1, φ2⟩H = ⟨φ1, µ2φ2⟩H , ,

(µ1 − µ2) ⟨φ1, φ2⟩H = 0.

Hence we see that φ1 and φ2 are orthogonal in H due to µ1 ̸= µ2.
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4. THE EXISTENCE THEOREM

Theorem 4. For any λ ∈ C, Eq. (1) has a solution φ (ζ, λ) satisfying conditions
(2) - (4) which is an entire function of λ for every ζ ∈ [0, d) ∪ (d, a].

Proof. From [2], we conclude that the following problem[
−1

q
Dq−1Dq + v(ζ)

]
y(ζ) = λy(ζ), ζ ∈ [0, d),

y (0) = −k1, Dq−1y (0) = 1,

has a unique solution φ1 (ζ, λ) which is an entire function of λ.

Now let us consider the following problem[
−1

q
Dq−1Dq + v(ζ)

]
y(ζ) = λy(ζ), ζ ∈ (d, a],(10)

y (d+) =
1

k2
φ1 (d−, λ) ,(11)

Dq−1y (d+) =
1

k3
Dq−1φ1 (d−, λ) .(12)

un (ζ, λ) = u0 (ζ, λ)

Let

(13) +q

∫ ζ

d

 sin(
√
λζ;q)√
λ

cos
(√

λqγ; q
)

− cos
(√

λζ; q
)

sin(
√
λqγ;q)√
λ

 v (qγ)un−1 (qγ, λ) dqγ,

where

u0 (ζ, λ) =
1

k2
φ1 (d−, λ) +

1

k3
(ζ − d)Dq−1φ1 (d−, λ) , ζ ∈ (d, a],

and the functions
sin(

√
λζ;q)√
λ

, cos
(√

λqζ; q
)

are the fundamental solutions of the

equation

(14) −1

q
Dq−1Dqy(ζ) = λy(ζ).

It is obvious that the functions un are entire functions.
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Let λ ∈ C be fixed. There exist positive numbers σ (λ) , σ̃ (λ) and A such
that ∣∣∣∣∣∣

 sin(
√
λζ;q)√
λ

cos
(√

λqγ; q
)

− cos
(√

λζ; q
)

sin(
√
λqγ;q)√
λ

∣∣∣∣∣∣ ≤ σ (λ) ,

max
ζ∈(d,a]

|v (ζ)| = A, |u0 (ζ, λ)| ≤ σ̃ (λ), ζ ∈ (d, a].

Then, we have

|u1 (ζ, λ)− u0 (ζ, λ)|

≤

∣∣∣∣∣∣q
∫ ζ

d

 sin(
√
λζ;q)√
λ

cos
(√

λqγ; q
)

− cos
(√

λζ; q
)

sin(
√
λqγ;q)√
λ

 v (qγ)u0 (qγ, λ) dqγ

∣∣∣∣∣∣
≤ qσ (λ)Aσ̃ (λ)

∣∣∣∣∣
∫ ζ

0

dqγ

∣∣∣∣∣ = qσ (λ)Aσ̃ (λ)
ζ (1− q)

(1− q)
.

Similarly, we obtain

|u2 (ζ, λ)− u1 (ζ, λ)| ≤ q2σ̃ (λ)
A2σ2 (λ) ζ2 (1− q)

2

(1− q) (1− q2)
.

It is easy to show that

(15) |un+1 (ζ, λ)− un (ζ, λ)| ≤ qn+1σ̃ (λ)
(Aσ (λ) ζ (1− q))

n

(q; q)n
(n = 1, 2, ...).

Thus, the series

(16) u1 (ζ, λ) +

∞∑
n=1

{un+1 (ζ, λ)− un (ζ, λ)}

is uniformly convergent with respect to variable ζ on (d, a], due to the series

∞∑
n=1

qn+1σ̃ (λ)
(Aσ (λ) ζ (1− q))

n

(q; q)n

is convergent.

If we define the function φ2 (ζ, λ) by the formula

φ2 (ζ, λ) = u1 (ζ, λ) +

∞∑
n=1

{un+1 (ζ, λ)− un (ζ, λ)} ,

then we have
lim
n→∞

un (ζ, λ) = φ2 (ζ, λ) .
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From (13), we get

Dqun+1 (ζ, λ)−Dqun (ζ, λ)

= q

∫ ζ

d

 Dq
sin(

√
λζ;q)√
λ

cos
(√

λqγ; q
)

−Dq cos
(√

λζ; q
)

sin(
√
λqγ;q)√
λ

×

× v (qγ)

[
un (qγ, λ)

−un−1 (qγ, λ)

]
dqγ,

and

− 1

q
Dq−1Dqun+1 (ζ, λ) +

1

q
Dq−1Dqun (ζ, λ)

= q

∫ ζ

d

 − 1
qDq−1Dq

sin(
√
λζ;q)√
λ

cos
(√

λqγ; q
)

+ 1
qDq−1Dq cos

(√
λζ; q

)
sin(

√
λqγ;q)√
λ

×

× v (qγ)

[
un (qγ, λ)

−un−1 (qγ, λ)

]
dqγ

− v (ζ) [un (ζ, λ)− un−1 (ζ, λ)] .

By (15), the series
∞∑

n=1

(Dqun+1 (ζ, λ)−Dqun (ζ, λ))

and
∞∑

n=1

(
−1

q
Dq−1Dqun+1 (ζ, λ) +

1

q
Dq−1Dqun (ζ, λ)

)
are uniformly convergent on (d, a] with respect to variable ζ for every λ ∈ C. Hence,
by (14), we obtain

− 1

q
Dq−1Dqφ2 (ζ, λ)

=

∞∑
n=1

(
−1

q
Dq−1Dqun+1 (ζ, λ) +

1

q
Dq−1Dqun (ζ, λ)

)

= (λ− v (ζ))

∞∑
n=1

(un (ζ, λ)− un−1 (ζ, λ)) = (λ− v (ζ))φ2 (ζ, λ) .
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It is easy to see that φ2 satisfies (11) - (12). Therefore, we conclude that the
function

(17) φ (ζ, λ) =

{
φ1 (ζ, λ) , ζ ∈ [0, d)
φ2 (ζ, λ) , ζ ∈ (d, a]

satisfies the problem (1) - (4).

Similarly, one can obtain the following theorem.

Theorem 5. For any λ ∈ C, Eq. (1) has a solution

(18) χ (ζ, λ) =

{
χ1 (ζ, λ) , ζ ∈ [0, d)
χ2 (ζ, λ) , ζ ∈ (d, a]

satisfying conditions (3) - (5) which is an entire function of λ for every ζ ∈ [0, d)∪
(d, a].

5. THE CHARACTERISTIC FUNCTION

Now, we can define the following entire functions

ω1 (λ) = Wq (φ1, χ1) (ζ) , ω2 (λ) = Wq (φ2, χ2) (ζ) ,

due to these Wronskians are independent of ζ for ζ ∈ [0, d) and ζ ∈ (d, a], respec-
tively. By (3) - (4), we see that

ω1 (λ) = αω2 (λ) .

Thus, the characteristic function of problem (1) - (5) is defined by the formula

ω (λ) := ω1 (λ) = αω2 (λ) .

Lemma 6. Let

∆(λ) :=

∣∣∣∣∣∣∣∣
Υ1φ1 Υ1χ1 Υ1φ2 Υ1χ2

Υ2φ1 Υ2χ1 Υ2φ2 Υ2χ2

Υ3φ1 Υ3χ1 Υ3φ2 Υ3χ2

Υ4φ1 Υ4χ1 Υ4φ2 Υ4χ2

∣∣∣∣∣∣∣∣ ,
where

Υ1y := y (0) + k1Dq−1y (0) ,

Υ2y := y (a) + k4Dq−1y (a) ,

Υ3y := y (d−)− k2y (d+) ,

Υ4y := Dq−1y (d−)− k3Dq−1y (d+) .
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Then, for every λ ∈ C, we obtain

∆(λ) = − 1

α
ω3 (λ) .

Proof. From (17) and (18), we get

∆ (λ)

=

∣∣∣∣∣∣∣∣
0 ω1 (λ) 0 0
0 0 −ω2 (λ) 0

φ1 (d−, λ) χ1 (d−, λ) −k2φ2 (d+, λ) −k2χ2 (d+, λ)
Dq−1φ1 (d−, λ) Dq−1χ1 (d−, λ) −k3Dq−1φ2 (d+, λ) −k3Dq−1χ2 (d+, λ)

∣∣∣∣∣∣∣∣
= ω1 (λ)

∣∣∣∣∣∣
0 −ω2 (λ) 0

φ1 (d−, λ) −k2φ2 (d+, λ) −k2χ2 (d+, λ)
Dq−1φ1 (d−, λ) −k3Dq−1φ2 (d+, λ) −k3Dq−1χ2 (d+, λ)

∣∣∣∣∣∣
= ω1 (λ)ω2 (λ)

∣∣∣∣ φ1 (d−, λ) −k2χ2 (d+, λ)
Dq−1φ1 (d−, λ) −k3Dq−1χ2 (d+, λ)

∣∣∣∣
= −ω1 (λ)ω2 (λ)

∣∣∣∣ φ1 (d−, λ) χ1 (d−, λ)
Dq−1φ1 (d−, λ) Dq−1χ1 (d−, λ)

∣∣∣∣
= −ω2

1 (λ)ω2 (λ) = − 1

k2k3
ω3 (λ) .

Theorem 7. The eigenvalues of (1) - (5) same as the zeros of the entire function
ω (λ) . Hence the eigenvalues of (1) - (5) form a finite or infinite sequence without
a finite accumulation point.

Proof. Let λ(0) be a zero of ω (λ) . Then ω2

(
λ(0)

)
= Wq (φ2, χ2) = 0, i.e., φ2 = ξχ2

for some ξ ̸= 0. Thus φ2 satisfies (5). Therefore the function

φ
(
ζ, λ(0)

)
=

{
φ1

(
ζ, λ(0)

)
, ζ ∈ [0, d)

φ2

(
ζ, λ(0)

)
. ζ ∈ (d, a]

satisfies (1) - (5), i.e., λ(0) is an eigenvalue.

Let λ(0) be an eigenvalue and η
(
ζ, λ(0)

)
be any corresponding eigenfunction.

We want to show that ω
(
λ(0)

)
= 0. Assume that ω

(
λ(0)

)
̸= 0. Then we see that
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ω1

(
λ(0)

)
̸= 0 and ω2

(
λ(0)

)
̸= 0. Thus there exist constants ξi, i = 1, 2, 3, 4, at least

one of which is not zero, such that

η
(
ζ, λ(0)

)
=

{
ξ1φ1

(
ζ, λ(0)

)
+ ξ2χ1

(
ζ, λ(0)

)
, ζ ∈ [0, d)

ξ3φ2

(
ζ, λ(0)

)
+ ξ4χ2

(
ζ, λ(0)

)
, ζ ∈ (d, a].

Consequently,

Υiη
(
ζ, λ(0)

)
= 0, i = 1, 2, 3, 4,

due to η
(
ζ, λ(0)

)
is the eigenfunction. So, we obtain

det
(
Υiη

(
ζ, λ(0)

))
= ∆(λ) = 0,

because at least one of the constants ζi, i = 1, 2, 3, 4 is not zero. But, by Lemma
6, we see that ∆ (λ) ̸= 0, a contradiction.

6. GREEN’S FUNCTION

Let us consider the following problem[
−1

q
Dq−1Dq + {−λ+ v(ζ)}

]
y(ζ)

(19) = f(ζ), ζ ∈ [0, d) ∪ (d, a], λ ∈ C, f ∈ H,

which satisfies (2) - (5).

By applying a q-analogue of the methods of variation of the constants, the
general solution of (19) can be given by

η (ζ, λ) =

 ξ1 (ζ, λ)φ1 (ζ, λ) + ξ2 (ζ, λ)χ1 (ζ, λ) , ζ ∈ [0, d)

ξ3 (ζ, λ)φ2 (ζ, λ) + ξ4 (ζ, λ)χ2 (ζ, λ) , ζ ∈ (d, a],

where

Dqξ1 (ζ, λ) =
q

ω (λ)
f(qζ)χ1 (qζ, λ) , ζ ∈ [0, d),(20)

Dqξ2 (ζ, λ) = − q

ω (λ)
f(qζ)φ1 (qζ, λ) , ζ ∈ [0, d),(21)

Dqξ3 (ζ, λ) =
q

ω (λ)
f(qζ)χ2 (qζ, λ) , ζ ∈ (d, a],(22)

Dqξ4 (ζ, λ) = − q

ω (λ)
f(qζ)φ2 (qζ, λ) , ζ ∈ (d, a].(23)
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From (20) - (23), we obtain

ξ1 (ζ, λ) =
q

ω (λ)

∫ d

ζ

f(qγ)χ1 (qγ, λ) dqγ + ξ1, ζ ∈ [0, d),

ξ2 (ζ, λ) =
q

ω (λ)

∫ ζ

0

f(qγ)φ1 (qγ, λ) dqγ + ξ2, ζ ∈ [0, d),

ξ3 (ζ, λ) =
q

ω (λ)

∫ a

ζ

f(qγ)χ2 (qγ, λ) dqγ + ξ3, ζ ∈ (d, a],

ξ4 (ζ, λ) =
q

ω (λ)

∫ ζ

d

f(qγ)χ2 (qγ, λ) dqγ + ξ4, ζ ∈ (d, a],

where ζi (i = 1, 2, 3, 4) is an arbitrary constant. Thus we get

(24) η (ζ, λ) =



ξ1φ1 (ζ, λ) + ξ2χ1 (ζ, λ)

+ q
ω(λ)χ1 (ζ, λ)

∫ ζ

0
f(qγ)φ1 (qγ, λ) dqγ

+ q
ω(λ)φ1 (ζ, λ)

∫ d

ζ
f(qγ)χ1 (qγ, λ) dqγ, ζ ∈ [0, d)

ξ3φ2 (ζ, λ) + ξ4χ2 (ζ, λ)

+ q
ω(λ)φ2 (ζ, λ)

∫ a

ζ
f(qγ)χ2 (qγ, λ) dqγ

+ q
ω(λ)χ2 (ζ, λ)

∫ ζ

d
f(qγ)φ2 (qγ, λ) dqγ, ζ ∈ (d, a],

where ζi (i = 1, 2, 3, 4) is an arbitrary constant. From (24), we have

Dq−1η (ζ, λ) =



ξ1Dq−1φ1 (ζ, λ) + ξ2Dq−1χ1 (ζ, λ)

+ q
ω(λ)Dq−1χ1 (ζ, λ)

∫ ζ

0
f(qγ)φ1 (qγ, λ) dqγ

+ q
ω(λ)Dq−1φ1 (ζ, λ)

∫ d

ζ
f(qγ)χ1 (qγ, λ) dqγ, ζ ∈ [0, d)

ξ3Dq−1φ2 (ζ, λ) + ξ4Dq−1χ2 (ζ, λ)

+ q
ω(λ)Dq−1φ2 (ζ, λ)

∫ a

ζ
f(qγ)χ2 (qγ, λ) dqγ

+ q
ω(λ)Dq−1χ2 (ζ, λ)

∫ ζ

d
f(qγ)φ2 (qγ, λ) dqγ, ζ ∈ (d, a].
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Hence
Υ1η = η (0) + k1Dq−1η (0) = ξ1

[
φ1 (0, λ)+k1Dq−1φ1 (0, λ)

]
+ ξ2

[
χ1 (0, λ) + k1χ1Dq−1 (0, λ)

]

+
q

ω (λ)

[
φ1 (0, λ) + k1Dq−1φ1 (0, λ)

] ∫ d

0

f(qγ)χ1 (qγ, λ) dqγ,

Since
φ1 (0, λ) + k1Dq−1φ1 (0, λ) = 0

and
χ1 (0, λ) + k1χ1Dq−1 (0, λ) = ω (λ) ̸= 0

we conclude that
ξ2 = 0.

Similarly, we get

Υ2η = η (a) + k4Dq−1η (a) = ξ3
[
φ2 (a, λ) + k4Dq−1φ2 (a, λ)

]
+ξ4

[
χ2 (a, λ) + k4Dq−1χ2 (a, λ)

]
+

q

ω (λ)

[
χ2 (a, λ) + k4Dq−1χ2 (a, λ)

] ∫ a

d

f(qγ)φ2 (qγ, λ) dqγ

By using the following relations

χ2 (a, λ) + k4Dq−1χ2 (a, λ) = 0

φ2 (a, λ) + k4Dq−1φ2 (a, λ) = ω (λ) ̸= 0

we obtain
ξ3 = 0.

Similarly, we have
Υ3η = η (d−)− k2η (d+)

= ξ1φ1 (d−, λ)− k2ξ4χ2 (d+, λ)

+
q

ω (λ)
χ1 (d−, λ)

∫ d

0

f(qγ)φ1 (qγ, λ) dqγ

− k2
q

ω (λ)
φ2 (d+, λ)

∫ a

d

f(qγ)χ2 (qγ, λ) dqγ

and
Υ4η = Dq−1η (d−)− k3Dq−1η (d+) = ξ1Dq−1φ1 (d−, λ)
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+
q

ω (λ)
Dq−1χ1 (d−, λ)

∫ d

0

f(qγ)φ1 (qγ, λ) dqγ − k3ξ4Dq−1χ2 (d+, λ)

−k3
q

ω (λ)
Dq−1φ2 (d+, λ)

∫ a

d

f(qγ)χ2 (qγ, λ) dqγ.

By virtue of (3) and (4), we have

(25)



ξ1φ1 (d−, λ)− k2ξ4χ2 (d+, λ)

= k2
q

ω(λ)φ2 (d+, λ)
∫ a

d
f(qγ)χ2 (qγ, λ) dqγ

− q
ω(λ)χ1 (d−, λ)

∫ d

0
f(qγ)φ1 (qγ, λ) dqγ

ξ1Dq−1φ1 (d−, λ)− k3ξ4Dq−1χ2 (d+, λ)

= k3
q

ω(λ)Dq−1φ2 (d+, λ)
∫ a

d
f(qγ)χ2 (qγ, λ) dqγ

− q
ω(λ)Dq−1χ1 (d−, λ)

∫ d

0
f(qγ)φ1 (qγ, λ) dqγ.

From (25), we deduce that

ξ1 =
q

ω (λ)

∫ a

d

f(qγ)χ2 (qγ, λ) dqγ

and

ξ4 =
q

ω (λ)

∫ d

0

f(qγ)φ1 (qγ, λ) dqγ.

Finally, we obtain

η (ζ, λ) =
1

ω (λ)
χ (ζ, λ)

∫ ζ

0

f(γ)φ (γ, λ) dqγ

+
1

ω (λ)
φ (ζ, λ)

∫ a

ζ

f(γ)χ (γ, λ) dqγ,

i.e.,

η (ζ, λ) =

∫ a

0

G (ζ, γ, λ) f(γ)dqγ,

where G (ζ, γ, λ) is the Green’s function defined by

(26) G (ζ, γ, λ) =


1

ω(λ)χ (ζ, λ)φ (γ, λ) , 0 ≤ γ ≤ ζ ≤ a, ζ ̸= d, γ ̸= d,

1
ω(λ)χ (γ, λ)φ (ζ, λ) , 0 ≤ ζ ≤ γ ≤ a, ζ ̸= d, γ ̸= d.
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7. EIGENFUNCTION EXPANSION

Theorem 8. Suppose that λ = 0 is not an eigenvalue of (1)-(5). G(ζ, γ) (λ = 0)
defined as (26) is a q-Hilbert–Schmidt kernel, i.e.,∫ d

0

∫ d

0

|G(ζ, γ)|2dqζdqγ < +∞,

∫ d

a

∫ d

a

|G(ζ, γ)|2dqζdqγ < +∞.

Proof. By (26), we deduce that∫ d

0

dqζ

∫ d

0

|G(ζ, γ)|2dqγ < +∞,

∫ a

d

dqζ

∫ a

d

|G(ζ, γ)|2dqγ < +∞,

due to χ (., λ) , φ (., λ) ∈ H. Therefore, we get

(27)

∫ d

0

∫ d

0

|G(ζ, γ)|2dqζdqγ < +∞,

∫ d

a

∫ d

a

|G(ζ, γ)|2dqζdqγ < +∞.

Theorem 9 ([17]). Let

A {ti} = {xi} , i ∈ N := {1, 2, 3, ...},

where

(28) xi =

∞∑
k=1

ηiktk, i, k ∈ N.

If

(29)

∞∑
i,k=1

|ηik|2 < +∞,

then the operator A is compact in l2.

Theorem 10. Let T be the integral operator T : H → H,

f(ζ) =

{
f (1)(ζ), ζ ∈ [0, d)
f (2)(ζ), ζ ∈ (d, a],

(T f)(ζ) =


∫ d

0
G (ζ, γ) f (1)(γ)dqγ, ζ ∈ [0, d)∫ a

d
G (ζ, γ) f (2)(γ)dqγ, ζ ∈ (d, a].

Then T is a self-adjoint and compact operator in space H.
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Proof. Let

ϕi = ϕi (ζ) =

{
ϕ
(1)
i (ζ), ζ ∈ [0, d)

ϕ
(2)
i (ζ), ζ ∈ (d, a]

(i ∈ N)

be a complete, orthonormal basis of H. Let i, k ∈ N. If we set

ti = ⟨f, ϕi⟩H =

∫ d

0

f (1) (ζ)ϕ
(1)
i (ζ)dqζ

+ α

∫ a

d

f (2) (ζ)ϕ
(2)
i (ζ)dqζ,

xi = ⟨g, ϕi⟩H =

∫ d

0

g(1) (ζ)ϕ
(1)
i (ζ)dqζ

+ α

∫ a

d

g(2) (ζ)ϕ
(2)
i (ζ)dqζ,

ηik =

∫ d

0

∫ d

0

G (ζ, γ)ϕ
(1)
i (ζ)ϕ

(1)
k (γ)dqζdqγ

+ α

∫ a

d

∫ a

d

G (ζ, γ)ϕ
(2)
i (ζ)ϕ

(2)
k (γ)dqζdqγ,

then H is mapped isometrically on to l2. By this mapping, T transforms into the
operator A defined by (28) in l2 and (27) is translated into (29). It follows from
Theorems 8 and 9 that A and T is compact.
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Let h, g ∈ H. Then we have

⟨T h, g⟩H =

∫ d

0

(T h(1))(ζ)g(1)(ζ)dqζ + α

∫ a

d

(T h(2))(ζ)g(2)(ζ)dqζ

=

∫ d

0

∫ d

0

G (ζ, γ)h(1)(γ)dqγg(1)(ζ)dqζ

+ α

∫ a

d

∫ a

d

G (ζ, γ)h(2)(γ)dqγg(2)(ζ)dqζ

=

∫ d

0

h(1)(γ)

(∫ d

0

G (γ, ζ) g(1)(ζ)dqζ

)
dqγ

+ α

∫ a

d

h(2)(γ)

(∫ a

d

G (γ, ζ) g(2)(ζ)dqζ

)
dqγ = ⟨h, T g⟩H .

since G(ζ, γ) is a symmetric function.

Without loss of generality, we can assume that λ = 0 is not an eigenvalue.
Then, kerL = {0} and T = L−1.

Theorem 11. The operator L has an infinite countable set {λn}n∈N of real eigen-
values which can be ordered as

|λ1| < |λ2| < ... < |λn| < ..., |λn| → ∞ as n→∞.

The set of all normalized eigenfunctions of L forms an orthonormal basis for the
space H and for z ∈ H, T z = h, Lh = z, Lχn = λnχn (n ∈ N) the eigenfunction
expansion formula

Lh =

∞∑
n=1

λn⟨h, χn⟩Hχn

is valid.

Proof. From the Hilbert–Schmidt theorem and the above theorem, we deduce that
T has an infinite sequence of non-zero real eigenvalues {ξn}∞n=1 with

lim
n→∞

ξn = 0.

Hence

|λn| =
1

|ξn|
→ ∞, n → ∞.
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Let {χn}∞n=1 denote an orthonormal set of eigenfunctions corresponding to {ξn}∞n=1 .
Then, for z ∈ H, we have T z = h, Lh = z, Lχn = λnχn (n ∈ N) and

Lh = z =

∞∑
n=1

⟨z, χn⟩Hχn =

∞∑
n=1

⟨Lh, χn⟩Hχn

=

∞∑
n=1

⟨h,Lχn⟩Hχn =

∞∑
n=1

λn⟨h, χn⟩Hχn.
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