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INTRODUCTION 
In the realm of cybersecurity, Intrusion Detection Systems (IDS) stand as vital pillars, 

ensuring the integrity and availability of information in the face of diverse cyber-attacks. IDS, 

designed to detect and notify about unauthorized access and suspicious activity within network 

systems, plays a pivotal role in the proactive security measures adopted by organizations. 

(Thapa & Mailewa, 2020). IDS primarily monitors network traffic and system activity to detect 

any indications of unauthorized access or recognized dangers. IDS can detect potential security 

breaches or violations of network policies by examining data packets that flow over networks 

and identifying recurring patterns that may suggest malicious activity. This feature is crucial 

for adding extra protection and complementing defenses like firewalls and anti-malware 

systems. IDS are essential for maintaining system integrity and confidentiality by rapidly 

alerting administrators of potential security breaches, thereby preventing severe damage. IDS 

systems can be classified into two distinct categories, each with specific operating priorities and 

deployment approaches (Khraisat et al., 2019).  

 

Network-based IDS (NIDS)  

NIDS oversees the data flow across the whole network segment. The purpose is to 

examine incoming and outgoing communications to identify established patterns of known 

attacks or irregularities that differ from the recognized norms. NIDS, or Network IDS, are 

commonly positioned strategically in a network to observe and analyze the flow of data between 

connected devices (Figure 1). By doing so, NIDS thoroughly assesses the network's security 

condition. Although NIDS is efficient in extensive monitoring, it may have difficulties in 

handling large amounts of data, which could result in reduced performance and failure to notice 

some incidents (Kumar & Sukumaran, 2018). 

 
Figure 1. Network-Based IDS 
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Host-based IDS (HIDS)  

Host-based IDS (HIDS) are installed on specific hosts or devices in the network. They 

supervise the incoming and outgoing communications and interactions within a particular host 

system where they are located (Figure 2). IDS offers the benefit of identifying internal risks and 

unusual activities within the host systems, such as unwanted access attempts and modifications 

to essential system files. HIDS has a restricted range and may demand more resources and 

administration effort per device than NIDS, which covers a broader range. (Khraisat et al., 

2019).  

 
Figure 2. Host-based IDS 

The evolution of IDS over time follows advancements in technology and changes in the 

cyber threat landscape. Initially designed to detect known attack patterns, traditional IDS have 

progressively integrated advanced methods like anomaly detection and machine learning. The 

purpose of this approach is to counteract the escalating complexity and variety of cyber threats 

efficiently (Liu & Lang, 2019). This adaptation enhances the detection capabilities of IDS and 

improves their ability to learn from new threats and adjust their monitoring strategies 

accordingly. IDS are integral to the cybersecurity frameworks of modern organizations. By 

continuously monitoring network and system activities for malicious actions and anomalies, 

IDS plays a vital role in the early detection and response to potential security threats, 

contributing to the overall resilience of information systems against cyber-attacks.  
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Challenges in Intrusion Detection 

While integral to network security, IDS encounter several significant challenges that 

can compromise their efficiency and effectiveness. These challenges stem from the detection 

technologies' inherent limitations and the evolving landscape of cyber threats. Understanding 

these challenges is crucial for developing more advanced and resilient IDS solutions. One of 

the most persistent issues IDS faces is the high rate of false positives, where legitimate network 

activities are incorrectly flagged as malicious. This burdens security personnel with 

unnecessary alerts and diverts attention from real threats, potentially leading to slower response 

times and increased risk of overlooking actual attacks. High false favorable rates can erode trust 

in the IDS and cause security teams to become desensitized to alerts, a phenomenon known as 

"alert fatigue" (Hubballi & Suryanarayanan, 2014).  

As network environments expand and the volume of data increases, maintaining the 

scalability and performance of IDS becomes increasingly challenging. The ability of an IDS to 

process and analyze large volumes of traffic in real-time is crucial to its effectiveness. However, 

as data throughput increases, the computational load can overwhelm the system, resulting in 

delayed detections or missed threats. This scalability issue is particularly pertinent in 

environments with high bandwidth networks or where large-scale data processing is required 

(Alhajjar et al., 2021). Cyber threats evolve, with attackers constantly developing new 

techniques to bypass security measures. Traditional IDS, which often rely on known signatures 

or predefined anomaly baselines, struggle to identify zero-day exploits or sophisticated multi-

stage attacks (Alhajjar et al., 2021). The adaptability of an IDS to new and emerging threats is 

crucial, requiring continuous updates to its threat detection capabilities and ongoing tuning of 

its behavioral baselines to reflect the changing network environment. 

 Deploying and managing an IDS requires significant resources and expertise. The 

complexity of configuring and maintaining an IDS and the need for continual updates and 

tuning poses a challenge, particularly for smaller organizations with limited cybersecurity 

resources. Additionally, the resource consumption of IDS, in terms of both computational 

power and network bandwidth, can be substantial, affecting the overall network performance 

and operational efficiency (Ferrag et al., 2020). Integrating IDS with other security tools and 

systems within an organization’s IT infrastructure is essential for a comprehensive security 

posture. However, achieving effective integration can be challenging due to compatibility 

issues, differing vendor protocols, and the complexity of synchronization across multiple 

security platforms. Effective integration is critical for enabling automated responses and 

ensuring that security systems work cohesively to mitigate threats (Gyamfi et al., 2023). 
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Feature Selection in IDS 

The efficacy of IDS hinges significantly on the quality and relevance of the features 

used in their detection algorithms. Feature selection is pivotal in optimizing IDS by enhancing 

accuracy and computational efficiency. This section explores the importance of feature 

selection in IDS, existing methodologies, and the challenges associated with effective feature 

implementation. Feature selection in IDS involves identifying and utilizing the most relevant 

features from network data that contribute to accurately detecting malicious activities. This 

process is crucial because irrelevant or redundant features can significantly degrade the 

performance of an IDS by increasing the computational complexity and noise in the data, 

thereby leading to higher false positive and false negative rates. Rest assured, our research is 

thorough, aiming to provide you with reliable and valuable insights. (Shone et al., 2018). 

Effective feature selection not only improves the detection accuracy but also reduces the 

processing time and resource consumption, which are critical for real-time detection capabilities 

(Shone et al., 2018).  

Various traditional feature selection methods have been employed in the context of IDS. 

These include statistical methods, information-theoretic approaches, and wrapper methods. 

Statistical methods evaluate the significance of features based on statistical tests, while 

information-theoretic approaches assess features based on measures like entropy and mutual 

information to determine their relevance to the classification of network traffic as normal or 

malicious (Buczak & Guven, 2016). Wrapper approaches utilize a predictive model to assess 

several subsets of characteristics and choose the ones that yield optimal model performance 

(Stańczyk, 2015). Despite the advancements in feature selection techniques, several challenges 

remain in their application to IDS: 

Dynamic Nature of Network Traffic and Dimensionality 

Network data is inherently high-dimensional with numerous features, making the 

feature selection process computationally intensive and complex. The dynamic and evolving 

nature of network traffic requires continuous adaptation of feature selection methods to 

maintain their effectiveness in detecting new and sophisticated threats (Zhang et al., 2022). 

Integration with IDS Architectures 

Integrating advanced feature selection algorithms into existing IDS architectures can be 

challenging due to compatibility issues and the potential need for significant modifications to 

the IDS framework (Shone et al., 2018).  
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Introduction to Optimization Algorithms 

Building on the discussion of feature selection challenges in IDS, it becomes evident 

that these systems' efficiency critically depends on applying practical optimization algorithms. 

These algorithms are central to navigating the complex landscape of feature selection by 

identifying the most impactful features while minimizing redundancy and computational 

demand (Zhang et al., 2022). This section delves into the role of optimization algorithms in 

IDS, highlighting their significance, commonly used techniques, and the emergence of novel 

approaches that promise enhanced performance and adaptability. Optimization algorithms in 

IDS are instrumental in refining the feature selection process to improve detection accuracy and 

operational efficiency. By systematically exploring the search space of possible feature sets, 

these algorithms determine the optimal combination that maximizes detection performance 

while minimizing false positives(Hubballi & Suryanarayanan, 2014). The optimization 

technique chosen can significantly affect the efficacy of an IDS, influencing its capacity to 

adjust to new threats and expand with increasing data quantities.  Several well-established 

optimization techniques have been widely applied to the domain of IDS, each bringing distinct 

methodologies and strengths to the feature selection process: 

Genetic Algorithms 

Utilizing mechanisms akin to natural evolution, such as mutation and crossover, GAs 

search for optimal solutions by evolving a population of feature sets over generations, making 

them robust for complex optimization problems in IDS (Halim et al., 2021). 

Particle Swarm Optimization (PSO) 

Inspired by the social behavior patterns of birds, PSO optimizes solutions by moving a 

swarm of particles through the solution space toward the best-known positions (Xue et al., 

2016). Its simplicity and speed make it suitable for dynamic environments like network 

security. 

Ant Colony Optimization (ACO) 

Mimicking the path-finding capabilities of ants, ACO is adept at discovering optimal 

paths through graphs, applied in IDS to navigate the combinatorial nature of feature sets 

effectively (Xin et al., 2018).  

Despite the advantages, traditional optimization algorithms encounter challenges such 

as susceptibility to local minima, scalability issues, and intensive computational requirements. 

These limitations necessitate continuous improvements and the exploration of innovative 

algorithms that better address the specific needs of IDS in terms of adaptability and efficiency. 

To address these issues, there is a rising interest in creating new optimization algorithms that 
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integrate advanced processes to improve exploration and exploitation skills. The MGO 

algorithm, a promising method inspired by mountain gazelles' agile and intelligent evasive 

tactics, is one such innovative approach (Abdollahzadeh et al., 2022). This algorithm is 

designed to provide a more adaptive and efficient method for feature selection, potentially 

overcoming the constraints observed in traditional methods (Abdollahzadeh et al., 2022). Its 

potential to revolutionize IDS feature selection is a source of intrigue and hope for the 

cybersecurity community. 

The MGO Algorithm: A Key Player in IDS 

Exploring traditional optimization algorithms within the context of IDS reveals certain 

limitations, particularly in handling the evolving dynamics and increasing complexity of 

network environments. As these systems strain under growing data volumes and sophisticated 

cyber threats, a pressing need emerges for more adaptive and efficient optimization techniques. 

This necessity is a strong motivation for investigating novel algorithms like the MGO 

algorithm, which promises significant advancements in feature selection for IDS. This section 

discusses the rationale behind the adoption of the MGO Algorithm, highlighting its potential to 

address existing challenges in IDS optimization (Abdollahzadeh et al., 2022). While traditional 

algorithms such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Ant 

Colony Optimization (ACO) have demonstrated considerable success, they often grapple with 

issues like premature convergence to local optima and high computational overhead (Almomani 

et al., 2019). These challenges can hinder their effectiveness in real-time network environments 

where the ability to adapt to new data patterns rapidly is crucial.  

Furthermore, these algorithms' parameter sensitivity and complexity often require 

extensive fine-tuning to maintain optimal performance across diverse scenarios. The MGO 

algorithm draws inspiration from the adaptive evasion tactics of mountain gazelles in the wild. 

These animals exhibit remarkable agility and strategic decision-making capabilities when 

evading predators, characteristics that are metaphorically translated into the algorithmic logic 

of MGO (Abdollahzadeh et al., 2022). The MGO algorithm is designed to mimic this agility 

and strategic foresight in navigating the feature selection landscape, potentially offering a more 

robust mechanism for identifying optimal feature subsets in IDS. The MGO algorithm 

introduces several critical advantages over traditional optimization methods: 

Enhanced Exploration and Exploitation: 

To avoid local optima and ensure a comprehensive search of the solution space, MGO 

strikes a more effective balance between exploration, which involves searching for new areas, 

and exploitation, which consists of using areas already known to be good. 
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Adaptability 

Due to its dynamic adjustment mechanisms, MGO can adapt more readily to changing 

network environments, making it well-suited for cyber threat landscapes' dynamic and often 

volatile nature. 

Computational Efficiency  

The algorithm is designed to manage computational resources more efficiently, which 

is essential for real-time intrusion detection applications where processing speed is critical 

(Abdollahzadeh et al., 2022). Integrating the MGO into IDS feature selection processes 

promises to enhance detection capabilities by enabling more accurate and timely identification 

of threats. By addressing the limitations of existing algorithms, MGO can significantly reduce 

false positives and negatives, improving the security posture of network systems.  

The motivation for adopting the MGO algorithm in intrusion detection is rooted in its 

potential to overcome the specific challenges of traditional optimization techniques. With its 

enhanced adaptability, efficiency, and strategic balance between exploration and exploitation, 

MGO represents a promising advancement in the continuous effort to fortify IDS against an 

ever-evolving array of cyber threats.  

Motivation for MGO-QOBL 

MGO significantly enhances the exploratory capability of the original MGO by introducing 

quasi-opposite solutions. These quasi-opposite solutions provide a mechanism to more 

effectively explore diverse regions of the solution space. By considering current and quasi-

opposite solutions, MGO-QOBL mitigates the risk of premature convergence and ensures a 

more thorough search of the solution space. This increases the likelihood of finding global 

optima and improves the algorithm's performance in complex and high-dimensional spaces. 

MGO-QOBL shows reduced sensitivity to its parameters due to its enhanced exploratory and 

adaptive capabilities. The quasi-opposite solutions provide a robust mechanism for maintaining 

performance across different scenarios, reducing the need for extensive parameter tuning. 

Research Objectives and Questions 

Following the motivation for exploring the novel MGO algorithm due to its potential 

advantages over traditional optimization methods in IDS, it is pertinent to delineate specific 

research objectives and questions. This section aims to outline clear goals and pose critical 

questions that this thesis seeks to address, focusing on evaluating the effectiveness of the MGO-

QOBL algorithm within the context of feature selection for IDS.  
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To Evaluate the Effectiveness of the MGO-QOBL Algorithm in Feature Selection for IDS  

This objective seeks to thoroughly evaluate the efficiency of the MGO algorithm in 

identifying optimal feature subsets compared to traditional methods like GA, PSO, and ACO. 

The evaluation criteria will include accuracy, efficiency, and the ability to reduce false positives 

and negatives within IDS. 

To Compare the Computational Efficiency of MGO-QOBL with original MGO and Traditional 

Optimization Algorithms 

Given the importance of real-time processing in IDS, this objective seeks to compare 

the computational demands of the MGO algorithm against established algorithms. Efficiency 

metrics will include time complexity, resource utilization, and scalability under varying 

network traffic volumes. 

  

Research Questions 

Based on the outlined objectives, the following research questions are formulated to 

guide the investigative process: 

How does the MGO-QOBL algorithm perform in selecting features for intrusion detection 

compared to traditional optimization algorithms? 

This question seeks to understand the relative performance of improved MGO in terms of 

accuracy and false favorable/negative rates, providing a quantitative measure of its 

effectiveness in feature selection. 

What are the computational implications of using the MGO-QOBL algorithm in real-time IDS 

environments? 

This question addresses the operational feasibility of implementing improved MGO in practical 

scenarios, focusing on computational load and processing speed. Formulating these objectives 

and research questions is critical for structuring a comprehensive evaluation of the MGO 

algorithm’s potential to enhance feature selection in IDS. The research conducted through this 

thesis aims to contribute to the theoretical body of knowledge and provide practical insights 

that could influence future developments in intrusion detection technologies. 

 

Scope and limitations 

This research will focus on evaluating the effectiveness of the MGO algorithm within 

simulated intrusion detection environments using standard benchmark datasets such as the 

NSL-KDD (Choudhary & Kesswani, 2020) and the more recent UNSW-NB15 datasets 

(Moustafa & Slay, 2015; Shone et al., 2018). While this approach provides a controlled 
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environment for analysis, the findings may not fully extend to all real-world scenarios due to 

differences in network configurations and attack patterns. 

 

Structure of thesis 

This thesis is organized into five principal chapters, each designed to provide a 

comprehensive insight into the research undertaken. The chapters are structured as follows: 

 

Chapter I. Literature Review 

The literature review systematically analyzes current cyber threat intelligence and IDS 

research. This chapter critically examines existing studies, theories, and frameworks related to 

the optimization techniques used in feature selection for intrusion detection. It provides a 

detailed review of previous works on the classifiers and optimizers central to this study, thus 

grounding the research in the academic discourse. 

Chapter II. Methodology 

In the Methodology chapter, the research design and approach are comprehensively 

described. This includes a detailed account of the data sources, the selection of classifiers and 

optimizers, and the rationale behind their choice. The chapter elaborates on the experimental 

setup, data collection methods, and analytical techniques employed to examine the 

effectiveness of feature selection methods in enhancing classifier performance in IDS. 

Chapter III. Results and Discussion 

The Results and Discussion chapter presents the findings of the empirical studies 

conducted as part of this research. It discusses the performance of different classifiers and 

optimization methods, evaluating them based on accuracy, sensitivity, specificity, and runtime 

measures. The chapter discusses these results in the context of the hypotheses or research 

questions stated earlier, interpreting the implications of the findings and comparing them with 

existing literature. 

Chapter IV. Conclusion and Future Work 

The last section, "Conclusion and Future Work," summarizes the thesis's findings and 

discusses the broader significance of the results for professionals and scholars in the 

cybersecurity field. The study assesses its contributions to the existing knowledge base and 

addresses the constraints identified throughout the investigation.  
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CHAPTER I. LITERATURE REVIEW 
1.1.Overview of IDS 

IDS are vital elements of contemporary cybersecurity infrastructure, created to oversee 

network and system operations for hostile incidents or breaches of policy. An IDS primarily 

identifies possible threats and issues notifications to facilitate preventive measures to reduce 

damages (Patel et al., 2012). The importance of IDS extends across several dimensions of 

network security, emphasizing the detection and management of security incidents. An IDS is 

typically configured to analyze traffic and system behavior against predefined rules or patterns 

known as signatures indicative of known threats. Additionally, many systems employ anomaly 

detection techniques to identify deviations from baseline behaviors, which could suggest a 

potential security incident (Khraisat et al., 2019). This dual approach allows IDS to protect 

against known malware and novel, sophisticated attacks that might not yet have a defined 

signature. 

1.1.1. Strategic Importance of IDS 

While IDS are primarily detection systems, their role in preventing breaches cannot be 

understated. By detecting potential threats early, IDS enables organizations to respond before 

attackers can exploit vulnerabilities. This preventive capability is crucial in maintaining the 

integrity and availability of network resources (Alhajjar et al., 2021). The importance of IDS in 

analyzing network traffic patterns and anomalies for early detection of potential intrusions, 

enabling timely response and mitigation, is highlighted in a paper by (Moustafa & Slay, 2015). 

(Butun et al., 2014) explores the application of IDS in wireless sensor networks, emphasizing 

the importance of monitoring and securing these increasingly prevalent networks. 

1.1.2. Forensic Capabilities  

After a security incident, IDS logs can be invaluable for forensic analysis, helping to 

understand how an intrusion occurred and identifying the perpetrator. This forensic data is 

crucial for improving security measures and aiding in legal proceedings if necessary (Xin et al., 

2018). Forensic analysts can detect patterns of malicious activity and connect them to known 

threat actors by comparing IDS alarms with other security data sources like threat intelligence 

feeds and vulnerability scans. 

1.1.3. Optimization of Network Performance 

Beyond security, IDS can help monitor network performance and identify issues such 

as traffic bottlenecks or failing components. While not their primary function, this capability 

can contribute to more efficient network management. IDS has evolved in response to 

technological breakthroughs and the changing landscape of cyber threats. Modern IDS utilizes 
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advanced machine learning algorithms to enhance detection accuracy and minimize false 

positives, addressing a notable issue in previous systems. These advancements enable IDS to 

react to historical threat patterns and predict and adapt to new attack vectors, thus playing an 

integral role in many organizations' security operations center (SOC) strategies (Gyamfi et al., 

2023). 

IDS are designed to monitor network and system activities for malicious events or 

policy violations, employing various methodologies to detect potential threats. Initially 

conceptualized for rule-based detection, these systems have evolved to incorporate 

sophisticated technologies that enhance their detection capabilities. Signature-based IDS 

matches observed activities against a known attack pattern or signature database. This method 

is highly effective against known threats but fails to identify novel or zero-day attacks, which 

lack predefined signatures. The inherent limitations of signature-based systems necessitate the 

integration of more dynamic detection techniques (Alhajjar et al., 2021; Shone et al., 2018). 

Anomaly-based IDS utilizes statistical models to establish normal operational baselines. 

Deviations from these baselines are flagged as potential threats, enabling the detection of 

previously unrecognized attacks. These systems are particularly adept at identifying subtle 

anomalies indicative of sophisticated or emerging threats (Fauzi et al., 2023) 

1.1.4. Hybrid Systems and Machine Learning Integration 

Integrating machine learning into IDS represents a significant advancement in their 

evolution. Machine learning algorithms enhance both signature-based and anomaly-based 

systems by learning from continuous data inputs to identify complex patterns of malicious 

activities, thereby improving accuracy and reducing false positives (Liu & Lang, 2019). Modern 

IDS often employ a hybrid approach, combining multiple detection techniques to leverage their 

respective strengths and mitigate their weaknesses. 

1.1.5. Types of IDS 

IDS can be classified based on their focus of deployment—network-based (NIDS) and 

host-based (HIDS): 

1.1.5.1. Network-based IDS (NIDS) 

Network-based IDS (NIDS) are strategically placed throughout a network to observe 

and scrutinize the traffic. These systems are essential for providing a macroscopic security 

overview of network traffic but may struggle with encrypted traffic and high data volumes, 

potentially impacting their performance (Kumar & Sukumaran, 2018). NIDS examines network 

packets and matches them with recognized attack patterns or established traffic norms. This 

allows them to identify various threats, such as denial-of-service (DoS) assaults, port scans, and 
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efforts to exploit vulnerabilities (Khraisat et al., 2019) discusses multiple NIDS techniques, 

including signature-based, anomaly-based, and hybrid approaches, highlighting the challenges 

in developing effective detection mechanisms. (Buczak & Guven, 2016) explores the 

application of data mining and machine learning techniques to enhance NIDS accuracy and 

adaptability. (Ahmed et al., 2016) provides an overview of anomaly detection techniques used 

in NIDS, emphasizing the importance of continuous research and development to address 

emerging threats. The future of Network IDS (NIDS) depends on its incorporation with other 

security technologies like Security Information and Event Management (SIEM) systems and 

threat intelligence platforms. This holistic approach to cybersecurity enables comprehensive 

threat detection and response, improving overall network security. (Kene & Theng, 2015) 

discusses the challenges and opportunities of deploying NIDS in cloud environments, which 

are crucial in securing distributed and dynamic infrastructures. 

1.1.5.2. Host-based IDS (HIDS) 

Host-based IDS (HIDS) are directly deployed on servers or workstations. They observe 

the system calls, application logs, and file-system changes to provide in-depth information 

about the actions on specific hosts. (Khraisat et al., 2019) discusses that while effectively 

detecting insider threats and local anomalies, HIDS requires significant resources and can be 

challenging to manage across large deployments. While focused on wireless sensor networks, 

a survey by Butun et al. also discusses the challenges and potential of HIDS in resource-

constrained environments (Butun et al., 2014).  

The ongoing evolution of IDS technology, characterized by adopting hybrid detection 

methods and integrating machine learning and AI, underscores their critical role in modern 

cybersecurity frameworks. These systems play a crucial role in identifying various cyber 

threats, guaranteeing the security and durability of modern digital infrastructures. 

1.2.Challenges in IDS 

Following the discussion on the technological advancements and classifications of IDS, 

it is crucial to address the significant challenges these systems face in the dynamic landscape 

of cybersecurity. These challenges include high false favorable rates, scalability issues, and 

adaptability to new threats. 

 This section elaborates on the principal obstacles encountered by IDS, emphasizing the 

intricacies of detecting increasingly sophisticated cyber threats and the implications for system 

performance and accuracy. 
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1.2.1. High False Positive Rates 

One of the most pressing issues in intrusion detection is the high rate of false positives, 

where benign activities are mistakenly flagged as malicious. This burdens security personnel 

with unnecessary alerts and risks, desensitizing them to warnings and potentially leading to 

overlooked genuine threats. (Hubballi & Suryanarayanan, 2014) highlights that reducing false 

positives without compromising the sensitivity to actual attacks remains a critical challenge for 

IDS. According to Alhajjar et al. the balance between sensitivity and specificity is difficult to 

achieve, particularly in complex network environments where benign activities can often mimic 

malicious behavior (Alhajjar et al., 2021).  

1.2.2. Scalability and Performance 

As network traffic volumes and the number of connected devices continue to grow, scaling IDS 

capabilities to process and monitor all data efficiently without degradation in performance is a 

significant challenge. The computational demands of analyzing vast datasets in real time can 

overwhelm traditional IDS, leading to delays or missed detections. According to Hindy et al., 

scalability issues are exacerbated in distributed networks, where data from multiple points must 

be correlated to form an accurate assessment of network security (Hindy et al., 2018). 

1.2.3. Adaptability to Evolving Threats 

The capability of IDS to adapt to evolving threats is crucial. Cyber threats continuously become 

more sophisticated, with attackers constantly developing new methods. Alhajjar et al. discuss 

how attackers can exploit the sensitivity-specificity trade-off to evade detection (Alhajjar et al., 

2021). For example, they can craft attacks that mimic normal behavior to avoid being flagged 

as malicious. This highlights the need for adaptive and intelligent IDS to learn and evolve to 

keep pace with threats.  Traditional signature-based IDS are particularly vulnerable in this 

aspect, as they rely on known patterns and are ineffective against zero-day exploits or 

polymorphic attacks. Anomaly-based and machine learning-driven systems offer better 

adaptability but require continuous updates and training to handle new threats effectively.  

In response to these challenges, current research in intrusion detection is increasingly focusing 

on integrating artificial intelligence and machine learning technologies. Almomani et al. argue 

that these approaches promise enhanced accuracy, adaptability, and scalability. AI-driven 

systems are designed to learn from ongoing network activities, improving their predictive 

capabilities and reducing false positives (Almomani et al., 2019). Additionally, the move 

towards cloud-based IDS solutions reflects an effort to address scalability and resource 

constraints, providing a more flexible and cost-effective approach to managing network 

security. The challenges faced by IDS highlight the complexities involved in safeguarding 
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modern networks from cyber threats. While advancements in technology provide potent tools 

for intrusion detection, they also necessitate continual adaptation and integration efforts to 

remain effective. Addressing these challenges through innovative research and development is 

critical for the future resilience of IDS frameworks. 

 

1.3.Feature Selection Techniques 

Feature selection is a crucial preprocessing step in the development of IDS that significantly 

impacts their performance. Efficient feature selection methods help reduce dimensionality, 

improve detection accuracy, and decrease training and testing times for IDS models.  

1.3.1. Importance of Feature Selection in IDS 

Feature selection is selecting a subset of essential features to build a model. This helps 

decrease the resources needed for data processing while keeping or improving the model's 

predicted accuracy. Effective feature selection is crucial in IDS since it directly impacts the 

system's capacity to detect hostile activity effectively while avoiding being inundated with 

irrelevant or noisy data. Li et al. 2019 emphasize that the primary challenge in IDS is to manage 

the high-dimensional data generated by network traffic, making feature selection an essential 

task for efficient IDS operation (Li et al., 2019). 

1.3.2. Traditional Feature Selection Methods 

Feature selection methods are traditionally classified into three primary types: filter, wrapper, 

and embedding methods. Each category possesses unique advantages and disadvantages and is 

selected according to the application's specific needs. 

1.3.2.1. Filter-based Methods  

These methods use a statistical metric to score each feature depending on its importance. 

Standard techniques include correlation coefficients, Chi-square test, and mutual information 

scores. Filter methods are generally fast and scalable but do not consider the interactions 

between features. The use of mutual information in network traffic datasets to efficiently reduce 

feature space without compromising the detection capabilities of IDS is discussed (Stańczyk, 

2015).  

1.3.2.2. Wrapper-based Methods 

Wrapper approaches utilize a predictive model to evaluate feature subsets based on their 

predictive capability. Techniques like recursive feature elimination (RFE) and genetic 

algorithms are famous examples. These methods perform better than filter methods because 

they consider the interaction between features. However, they are computationally expensive 

and can lead to overfitting if not carefully managed. Using genetic algorithms for feature 
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selection in IDS can significantly improve detection rates, although at the cost of increased 

computational complexity is discussed (Stańczyk, 2015). 

1.3.2.3. Embedded Methods 

Embedded approaches conduct feature selection during model training and are typically tailored 

to specific learning algorithms. Methods like LASSO and decision trees fall into this category. 

These techniques are more efficient than wrapper methods as they integrate feature selection 

and classifier training into a single process, thus reducing computational overhead. The 

effectiveness of decision trees in identifying key features that contribute to the accuracy of IDS 

is shown. (Dey et al., 2023). 

1.3.3. Advanced Techniques in Feature Selection 

Recent advances in feature selection are driven by the need to handle large-scale and complex 

data environments. These techniques often employ machine learning strategies that can 

adaptively select features based on the evolving nature of network threats. 

1.3.3.1. Hybrid Methods 

 Combining the strengths of filter, wrapper, and embedded methods, hybrid approaches aim to 

optimize performance and computational efficiency. Such methods leverage the speed of filter 

methods and the accuracy of wrapper or embedded methods. explores hybrid approaches that 

use a combination of mutual information and genetic algorithms to enhance the feature selection 

process in IDS (Jadhav et al., 2023). The usage of hybrid methods for feature reduction is 

explored by (Ravale et al., 2015) 

1.3.4. Dimensionality Reduction Techniques 

Beyond traditional feature selection, dimensionality reduction techniques such as Principal 

Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are also utilized to 

extract the most relevant information from high-dimensional data (Thakkar et al., 2024). These 

techniques transform features into a new space of lower dimensionality while attempting to 

preserve the most critical information. Wang et al. (2015) investigate the application of PCA in 

network intrusion detection and find that it effectively reduces feature dimension while 

maintaining high detection performance. 

1.3.4.1. Deep Learning-Based Feature Selection 

With the proliferation of machine learning in various domains, feature selection techniques 

incorporating learning algorithms have become increasingly popular. These methods are 

particularly effective in dynamic environments like network security, where threat patterns 

continuously evolve. Deep learning models, especially those utilizing autoencoders, are used 

for feature selection because of their capacity to understand intricate data representations. These 
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models can automatically detect the most relevant features for a task without human 

intervention. (Uzma et al., 2022)  emphasize the application of deep autoencoders to decrease 

the complexity of feature space in extensive gene expression data, which can similarly enhance 

the accuracy of IDS. The continuous evolution of feature selection techniques reflects the 

growing complexity of network environments and the need for more sophisticated IDS. As 

cyber threats become more advanced, the role of effective feature selection in enhancing the 

performance and efficiency of IDS becomes increasingly critical. Future research in this area 

will likely focus on further integrating machine learning advancements to develop more 

adaptive, robust, and computationally efficient feature selection methodologies. 

 

1.4.Optimization Algorithms in Feature Selection 

Optimization algorithms play a pivotal role in enhancing the efficacy of IDS by facilitating 

robust feature selection processes. Efficient feature selection is crucial for IDS as it directly 

impacts the system's ability to accurately identify and respond to cyber threats while minimizing 

computational overhead. These algorithms help select the most relevant features from large 

datasets, thus improving detection accuracy and reducing false positive rates. Optimization 

techniques, particularly those inspired by natural processes, have evolved significantly over 

recent years, incorporating advanced methods like genetic algorithms, particle swarm 

optimization, and other bio-inspired approaches. These methods not only streamline the feature 

selection process but also adapt dynamically to the changing patterns of network traffic and 

emerging threat landscapes, thereby increasing the resilience and responsiveness of IDS 

(Aljarah et al., 2018; Xue et al., 2016). Integrating such sophisticated algorithms into IDS 

represents a critical advancement in the ongoing battle against cyber threats, underlining the 

need for continuous innovation in cybersecurity technologies. As the complexity of cyber 

threats continues to evolve, advanced optimization approaches have emerged to enhance feature 

selection processes in IDS. These sophisticated methodologies are designed to provide more 

efficient and effective solutions by combining the strengths of various traditional algorithms or 

introducing novel paradigms. 

Traditional optimization techniques remain fundamental in the feature selection process for 

IDS, offering robust frameworks to handle various challenges associated with large and 

complex datasets. Three widely recognized traditional techniques are Genetic Algorithms 

(GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO), each 

contributing distinctively to enhancing the effectiveness of IDS. 
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1.4.1. Genetic Algorithms (GA) 

  GAs are evolutionary algorithms that mimic the process of natural selection. These 

algorithms are particularly valued in feature selection for efficiently searching large solution 

spaces and identifying optimal or near-optimal feature subsets. GAs operates through selection, 

crossover, and mutation mechanisms to evolve solutions over generations, making them adept 

at avoiding local optima and providing diverse solutions. Recent studies, such as those by  

Halim et al. have demonstrated the effectiveness of GAs in reducing feature dimensionality 

while maintaining or improving the IDS's detection accuracy (Halim et al., 2021). 

1.4.2. Particle Swarm Optimization (PSO) 

PSO mimics the collective behavior of birds or fish to address optimization issues. Each 

particle in the swarm represents a potential solution and moves through the search space by 

tracking the most successful particles. PSO is particularly noted for its simplicity and speed, 

which are crucial in scenarios where real-time feature selection is necessary. Zaman and 

Gharehchopogh highlighted PSO's application in optimization problems, showing its capability 

to quickly converge to optimal solutions, thus enhancing the system's response time and 

accuracy (Zaman & Gharehchopogh, 2022). The usage of random forest classifiers to improve 

the detection of anomalies is presented in (Kurniabudi et al., 2022). 

1.4.3. Ant Colony Optimization (ACO) 

Inspired by the foraging behavior of ants, ACO uses a pheromone-based communication 

system to explore and exploit search spaces. It proposes that in feature selection, ACO 

algorithms have proven effective in finding the best routes through the problem space, which 

translates into identifying the most relevant features for IDS. Studies have explored the 

application of ACO in network security, underlining its efficiency in adapting to dynamic 

environments and improving detection rates . (Xue et al., 2016). 

1.4.4. Hybrid Methods  

Hybrid optimization techniques combine many optimization procedures to use their 

different strengths. The integration of GA with PSO combines GA's global search capabilities 

with PSO's precision in refining solutions, leading to enhanced convergence time and solution 

quality. (Halim et al., 2021; Zhang et al., 2015). This integration helps overcome each 

approach's limitations in isolation, such as premature convergence or stagnation in local optima. 

Studies demonstrate that hybrid techniques can significantly improve the efficiency of feature 

selection in IDS by successfully balancing the exploration and exploitation stages (Xue et al., 

2016). Usage of chi-squared distribution and DTC to explore Intrusion Detection behavior is 

studied in (N & K, 2022). 



   
 

 
18 

1.4.5. Multi-Objective Optimization 

Feature selection in IDS typically includes many goals, like enhancing detection 

accuracy and decreasing the number of characteristics to decrease computational complexity. 

(Al-Tashi et al., 2020) states that multi-objective optimization algorithms, like the Non-

dominated Sorting Genetic Algorithm (NSGA-II), handle conflicting demands by identifying a 

group of best solutions, each indicating a distinct compromise. This approach allows decision-

makers to choose from a Pareto front of solutions based on their specific operational priorities. 

(Maza & Touahria, 2019) discusses the use of multi-objective optimization in IDS and 

introduces a multi-objective genetic algorithm for selecting features in IDS. The algorithm 

considers both the detection rate and the number of features as objectives and finds a set of 

Pareto-optimal solutions. 

1.4.6. Bio-Inspired Algorithms 

Recent advancements have seen the adoption of novel bio-inspired algorithms that 

mimic natural phenomena. The Whale Optimization Algorithm (WOA) is based on humpback 

whales' social and hunting behaviors. WOA has been adapted for feature selection in IDS, 

offering a unique balance between explorative and exploitative behaviors, which is crucial for 

navigating complex and dynamic search landscapes in cybersecurity. Studies have validated the 

efficacy of WOA in reducing feature dimensions while maintaining high detection accuracies 

(Mirjalili & Lewis, 2016). 

These advanced optimization approaches offer significant potential for improving IDS 

by refining feature selection processes to be more adaptive and efficient. The continuous 

development of these methods is vital for keeping pace with the increasingly sophisticated 

cyber threats encountered in modern network environments. Despite significant advancements 

in optimization algorithms for feature selection in IDS, several challenges remain. One major 

challenge is scalability, as the exponential increase in network data requires algorithms that can 

efficiently process large volumes without compromising performance. Additionally, the 

dynamic nature of cyber threats necessitates algorithms that can quickly adapt to new patterns 

and anomalies (Almomani et al., 2019). Integration with existing security infrastructure also 

poses challenges, particularly in ensuring that new algorithms work seamlessly with other 

components of cybersecurity systems. 

Future research should focus on developing algorithms that offer greater adaptability 

and learn continuously from network traffic in real time. Emphasis should also be on enhancing 

These algorithms' integration capabilities ensure they can be effectively deployed in diverse 

and evolving technological environments. The exploration of quantum computing and its 
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potential to revolutionize optimization processes in IDS represents a promising avenue for 

future investigation (Zhang et al., 2019). 

 

1.5.MGO algorithm and its applications 

The MGO algorithm is a contemporary meta-heuristic optimization algorithm inspired 

by mountain gazelles' social structure and behaviors. Introduced to address complex, high-

dimensional optimization problems, MGO effectively leverages the natural dynamics of gazelle 

movements, precisely their strategic evasion tactics, to navigate the problem space. This nature-

inspired approach is particularly noted for its dual exploration and exploitation strategy, 

mimicking how gazelles explore their environment while swiftly adapting to predator threats. 

The MGO algorithm stands out by structurally modeling gazelles' hierarchical and 

social interactions into a mathematical framework. This innovative approach enables a delicate 

balance between exploration and exploitation, a key factor in avoiding local optima and 

ensuring comprehensive search coverage. The algorithm's adaptability is underscored by its 

efficacy in handling NP-hard problems across various domains, including engineering and data 

science. By dynamically adjusting between exploration and exploitation phases, MGO 

outperforms several well-established algorithms in finding optimal solutions, as confirmed 

through extensive benchmarking tests against other popular meta-heuristic algorithms 

(Abdollahzadeh et al., 2022). 

The MGO algorithm, inspired by the behaviors of mountain gazelles, incorporates 

several theoretical foundations that mimic these animals' evasion tactics and social dynamics. 

This section delves into the practical applications of MGO, as demonstrated by Abdollahzadeh 

et al., highlighting how it translates biological behaviors into computational strategies. This 

real-world impact of the MGO algorithm is a testament to its effectiveness and potential in 

solving optimization problems. 

1.5.1. Fundamental Mechanics of MGO: 

The MGO algorithm conceptualizes the social hierarchy observed in mountain gazelles, 

translating their interactions into a mathematical model. Gazelles' movement dynamics, 

particularly their sophisticated evasion techniques when threatened by predators, form the basis 

of the algorithm. The optimization process in MGO is modeled through two primary phases: 

exploration and exploitation, mimicking the gazelles' behavior in open spaces and their 

strategies during predator encounters. In the exploration phase, the algorithm simulates gazelles' 

random and extensive movements to scan the environment. This phase is characterized by 

random walks, where the search agents (gazelles) move in the search space without a specific 
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direction, aiming to cover a wide area. This behavior is crucial for avoiding local optima early 

in the optimization process, ensuring that the algorithm does not settle prematurely on 

suboptimal solutions. The exploitation phase reflects gazelles' strategic and cautious 

movements when a predator is nearby. In this phase, MGO focuses on areas of the search space 

where promising solutions (prey) have been identified during the exploration phase. The 

movements become more deliberate and targeted, optimizing the search around the best 

solutions found, which enhances the algorithm's efficiency in fine-tuning the solutions to 

approach the global optimum. 

1.5.2. Mathematical Formulation 

The mathematical formulation of MGO involves equations that govern the position 

updates of the search agents. The position of the best solution influences these updates found 

so far, akin to how a gazelle would move towards safer areas perceived during a threat. The 

position update equations include parameters that regulate the trade-off between exploration 

and exploitation, maintaining the algorithm's adaptability during optimization.  

1.5.3. Performance and Adaptability 

MGO's performance has been benchmarked against other popular optimization 

algorithms, demonstrating its robustness and adaptability across various problem types. The 

algorithm shows a remarkable ability to handle multi-modal and high-dimensional problems 

efficiently, outperforming many traditional and contemporary optimization methods in terms 

of speed and accuracy in reaching the global optimum  (Abdollahzadeh et al., 2022). The 

theoretical foundations of MGO, grounded in the natural behaviors of mountain gazelles and 

their adaptive responses to environmental challenges, offer a potent framework for solving 

complex optimization problems. This bio-inspired approach enriches the metaheuristic 

optimization landscape and provides insights into practical strategies for balancing exploration 

and exploitation in algorithm design. 

1.5.4. Applications of MGO 

Abdollahzadeh et al. introduce the MGO algorithm and discuss its potential applications 

in various fields (Abdollahzadeh et al., 2022). Izci et al.,. demonstrate the application of MGO 

in estimating parameters for photovoltaic cell models (Izci et al., 2024). Sarangi and Mohapatra 

propose an improved version of MGO and explore its application in solving high-dimensional 

optimization problems. (Sarangi & Mohapatra, 2024) . 

1.6.Quasi-Oppositional Based Learning 

Despite their successes, these algorithms often face challenges such as slow 

convergence rates and premature convergence to local optima. Opposition-based learning 
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(OBL) was introduced to address these issues, enhancing optimization algorithms' exploration 

capabilities by considering opposite solutions. Quasi-Oppositional Based Learning (QOBL), an 

extension of OBL, has shown promise in further improving the efficiency and effectiveness of 

optimization processes. 

1.6.1. Opposition based learning 

Opposition-based learning is a concept where its opposite is simultaneously considered 

for a given solution in the search space. This approach increases the probability of finding better 

candidate solutions, thus accelerating the convergence rate of the algorithm (Tizhoosh, 2005). 

Including opposite points helps explore the search space more comprehensively, potentially 

avoiding premature convergences. 

1.6.2. QOBL 

Quasi-Oppositional Based Learning builds on the principles of OBL by introducing a 

quasi-opposite solution, providing a more refined exploration approach. Instead of considering 

the exact opposite, QOBL generates quasi-opposite solutions between the current and opposite 

solutions. This intermediate step aims to balance exploration and exploitation more effectively. 

(Gharehchopogh et al., 2023) introduces CQFFA to enhance the Farmland Fertility Algorithm 

(FFA). The integration of chaos theory improves the exploration capabilities by providing 

diverse initial solutions, while QOBL enhances the convergence rate and avoids local optima. 

This hybrid approach is efficient for complex engineering optimization problems, 

demonstrating superior performance and reliability in finding optimal solutions compared to 

traditional methods. 

In the study by  (Xing et al., 2023) the authors present an enhanced Whale Optimization 

Algorithm (WOA) QOBL and Gaussian Barebone mechanisms. This hybrid approach aims to 

improve feature selection efficiency and segmentation accuracy in COVID-19 image datasets. 

QOBL helps maintain diversity and avoid local optima, while Gaussian Barebone further 

refines the search process, resulting in superior performance in identifying relevant features and 

accurate segmentation of medical images. 

  

1.7.Gaps in the Literature and Future Research Directions 

Despite significant advancements in optimization algorithms for feature selection in 

IDS, several gaps in the literature persist, presenting opportunities for future research. 

Integration with Emerging Technologies: While existing studies have extensively explored 

the efficiency of various optimization algorithms, there is a notable gap in research related to 

integrating these algorithms with emerging technologies. For instance, the intersection of 
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optimization algorithms with blockchain technology for securing decentralized networks or 

Internet of Things (IoT) devices for enhanced edge computing security remains underexplored. 

Future research could investigate how optimization algorithms can be tailored to these new 

environments to improve security measures effectively. 

Real-Time Adaptation: Another critical gap is the real-time adaptation of these algorithms in 

dynamic and ever-changing network environments. Current literature often focuses on static or 

simulated datasets, which do not fully represent the complexity and unpredictability of real-

world data flows in network systems. Future studies should focus on developing and testing 

algorithms that can adapt in real-time to new threats, potentially incorporating online learning 

or continuous adaptation mechanisms. 

Multi-Objective Optimization Challenges: While multi-objective optimization techniques 

have been acknowledged, there is a scarcity of comprehensive studies that address the trade-

offs between different IDS performance metrics, such as detection rate, false positives, and 

computational efficiency, holistically. Research directed towards developing and 

benchmarking multi-objective optimization frameworks that balance these metrics could fill a 

significant gap in the literature. 

Cross-Domain Applications: Additionally, the application of advanced optimization 

algorithms like the MGO algorithm in areas outside of IDS, such as fraud detection, spam 

filtering, or even non-security domains, has been minimally covered. Future research could 

explore the adaptability and effectiveness of these algorithms across various domains, 

providing insights into their versatility and utility. 

Future Directions: Future research should create adaptable, resilient, and cross-domain 

optimization methods to solve the complexities of contemporary cybersecurity and data 

analytics concerns. Furthermore, studies should aim to integrate these algorithms with cutting-

edge technologies, testing them in real-world scenarios to validate their effectiveness and 

adaptability. By pushing the boundaries of current research, these efforts can significantly 

contribute to advancing both theoretical and practical aspects of optimization in cybersecurity. 

These highlighted gaps and suggested future approaches bring to light the necessity of 

continuous innovation and investigation within the field of optimization algorithms for IDS. 

This is necessary to ensure that research can keep up with the rapid evolution of technology and 

the more complex security threats that are arising.  
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CHAPTER II. METHODOLOGY 
The methodology section of this thesis delineates the systematic procedures and 

analytical techniques employed to investigate the efficacy of the MGO algorithm for feature 

selection in IDS. The overarching goal is to assess the performance enhancements MGO can 

bring to IDS compared to traditional feature selection methods. This study utilizes two widely 

recognized datasets, UNSW_NB15 and KDD, as the basis for experimentation, providing a 

robust framework for evaluation under varied conditions and scenarios. 

The rationale behind employing MGO lies in its potential to effectively reduce feature space 

while maintaining or enhancing the system's ability to detect threats accurately. The uniqueness 

of MGO, inspired by the evasive maneuvers of mountain gazelles, suggests that it might excel 

in navigating the complex and high-dimensional spaces typical of intrusion detection data. This 

research aims to methodically explore MGO's capabilities through a series of structured 

experiments involving several popular classifiers: Support Vector Machines (SVM) (Cervantes 

et al., 2020), K-Nearest Neighbors (KNN), Naive Bayes (NB), Decision Tree Classifiers (DTC) 

(N & K, 2022), and Random Forest Classifiers (RFC) (Kurniabudi et al., 2022). Each classifier 

will be tested under optimized and non-optimized feature sets to assess the impacts of MGO-

driven feature selection rigorously. 

In addition, the research uses a cross-validation method, more precisely, K-fold testing, 

to validate the findings and ensure that the results can be replicated. In the context of conducting 

a comprehensive comparison analysis, the performance of MGO will be evaluated using several 

different optimization techniques, including PSO, GA, and ACO. 

This methodology section, therefore, provides a detailed layout of the experimental 

design and analytical strategies used in this research. It outlines the steps for data preparation, 

feature selection optimization, classifier evaluation, and comparative analysis, ensuring a 

thorough and reproducible approach to examining how MGO can advance the field of 

cybersecurity, particularly in IDS. 

2.1.Data Acquisition and Preprocessing 

The methodology for acquiring and preprocessing data is a foundational component of 

any data-driven thesis. This section details the processes involved in preparing two significant 

datasets, UNSW_NB15 and NSL-KDD, for feature selection and optimization using the MGO 

algorithm in the context of IDS. 

2.1.1. UNSW_NB15 Dataset Preparation 

The UNSW_NB15 dataset was utilized, a comprehensive dataset developed for network 

intrusion detection research. The dataset consists of a training and a testing set, first loaded 
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from CSV files using Python and Pandas libraries. In the preprocessing stage, these datasets are 

concatenated and deduplicated to create a unified dataset that ensures no repetition of data 

points. Non-feature columns such as 'id' and 'attack_cat' are removed to focus on relevant 

attributes. 

Categorical features within the dataset are identified and transformed using the 

LabelEncoder function of the sklearn preprocessing module, converting them into numerical 

format suitable for machine learning models. To address issues of multicollinearity, which can 

affect the performance of classification algorithms, a correlation matrix is computed using 

pandas. Features exhibiting high correlation (greater than 0.98) are identified, and redundant 

features are removed to enhance model accuracy and computational efficiency. The data is then 

sampled to a specified size to maintain manageability and computational efficiency, ensuring 

that the sample is representative of the broader dataset. Feature scaling uses the StandardScaler 

to standardize the range of continuous initial variables, essential for many classifiers sensitive 

to input data's scale. This process concludes with separating features (X) and the target variable 

(y), along with a list of feature names retained after preprocessing. 

2.1.2. KDD Dataset Preparation 

Similarly, the KDD dataset, another widely used dataset in intrusion detection research, 

follows a structured preparation process. After loading the data from text files, columns are 

appropriately labeled to match the dataset specifications. Like UNSW_NB15, the dataset 

undergoes concatenation and deduplication. The 'level' column, irrelevant to the analysis, is 

dropped. To facilitate binary classification, the dataset's attack labels are simplified into 'normal' 

and 'attack'. 

Categorical variables are encoded numerically using the LabelEncoder function of the sklearn 

preprocessing module to transform each category into a unique integer. Given the extensive 

feature set of the KDD dataset, a random sample of the data is drawn to ensure that the 

experiments remain computationally feasible. Following this, data normalization is performed 

using StandardScaler, which standardizes the features present in the data. 

2.2.MGO Implementation 

Implementing the MGO algorithm in the context of feature selection for IDS involves a 

structured approach where the continuous output of MGO is converted to a binary format using 

a sigmoid function. This conversion is crucial for selecting specific features from a dataset. 

Here, we detail the steps, emphasizing the integration of the sigmoid function for binary 

transformation. The pseudocode below outlines the structured approach for implementing 
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MGO in feature selection: 

 
Figure 3. Improved Mountain Gazelle Optimizer Pseudo code 

2.2.1. Initialization  

We initialize each agent randomly within the problem space. Each agent's position 

represents a potential solution, where each dimension corresponds to a feature in the dataset 

using Eq. (1) 

𝑋𝑋 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑁𝑁,𝑟𝑟𝑑𝑑𝑑𝑑) × (𝑢𝑢𝑢𝑢 − 𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟) + 𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟 (1) 

Where 𝑁𝑁 is the number of solutions (agents) in the population, 𝑟𝑟𝑑𝑑𝑑𝑑 is the number of 

features/dimensions, and (𝑢𝑢𝑢𝑢,𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟) which are bounds for each dimension, which can be scalar 

or vector.  We calculate fitness levels for this initial population, which typically involves 

accuracy in the Feature selection context.  

// Inputs: 

//    N: Population size  

//    T: Maximum number of iterations 

// Outputs: 

//    XBestGazelle: Location of the best-performing gazelle (optimal solution), bestFitness: Fitness value of the best solution 

1. Initialize:  

   for i = 1 to N 

       Xi = randomly initialize within the search space 

   end for 

   for each gazelle Xi 

       fitness[i] = calculate_fitness(Xi) 

   end for 

   XBestGazelle = Xi with highest fitness 

   bestFitness = fitness of XBestGazelle 

   for t = 1 to T 

       for each gazelle Xi 

           TSM = calculate_exploration_position(Xi, XBestGazelle) 

           MH = calculate_exploitation_position(Xi) 

           BMH = calculate_balanced_position(Xi, other male gazelles) 

           MSF = calculate_long_range_jump(Xi) 

           pool = [TSM, MH, BMH, MSF] 

           for each position in pool 

               fitness_position = calculate_fitness(position) 

           end for 

          Apply QOBL formula, and add to pool 

           Xi = select_best_position_from(pool) 

           if fitness(Xi) > bestFitness 

               XBestGazelle = Xi 

               bestFitness = fitness(Xi) 

           end if 

       end for 

   end for 
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2.2.2. Finding TSM 

Then, we use Eq. (2) for each gazelle to calculate involved agents moving through the search 

space based on their localized knowledge and strategies without aligning their movements to 

the herd. This can help thoroughly explore the local area and potentially discover unique 

solutions not influenced by group dynamics. (Abdollahzadeh et al., 2022). 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑔𝑔 − |(𝑟𝑟𝑑𝑑1 × 𝐵𝐵𝐵𝐵 − 𝑟𝑟𝑑𝑑2 × 𝑋𝑋(𝑡𝑡)) × 𝐹𝐹| × 𝐶𝐶𝑑𝑑𝑓𝑓𝑟𝑟 (2) 

 

In Eq. (2), 𝑇𝑇𝑔𝑔 is the best global solution, 𝑟𝑟𝑑𝑑1 , 𝑟𝑟𝑑𝑑2 are random integers and 𝐵𝐵𝐵𝐵 is calculated 

using Eq. (3) 

𝐵𝐵𝐵𝐵 = 𝑋𝑋𝑟𝑟𝑟𝑟 × ⌊𝑟𝑟1⌋ + 𝑇𝑇𝑝𝑝𝑟𝑟 × ⌈𝑟𝑟2 ⌉, 𝑟𝑟𝑟𝑟 = ��
𝑁𝑁
3
�…𝑁𝑁� (3) 

In Eq. (3) 𝑋𝑋𝑟𝑟𝑟𝑟 is the random solution, 𝑇𝑇𝑝𝑝𝑟𝑟 is an average number of gazelles that were selected 

randomly. N is the total number of search agents, while 𝑟𝑟1 and 𝑟𝑟2  are between 0 and 1. In Eq. 

(2), 𝐹𝐹 is calculated using following Eq. (4): 

𝐹𝐹 = 𝑁𝑁1(𝐷𝐷) × exp �2 − 𝐶𝐶𝑢𝑢𝑟𝑟𝑟𝑟𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟 × �
2

𝑇𝑇𝑟𝑟𝑀𝑀𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟
�� (4) 

In Eq. (4), 𝑁𝑁1 is a random number in the standard distribution. 𝐸𝐸𝑀𝑀𝑢𝑢 is an exponential function, 

𝑇𝑇𝑟𝑟𝑀𝑀𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟 is defined in Function parameters to be max epoch size, and 𝑑𝑑𝑡𝑡𝐶𝐶𝑟𝑟 is a current number 

of iterations. 𝐶𝐶𝑑𝑑𝑓𝑓𝑟𝑟 used in Eq. (2) is defined in Eq. (5): 

𝐶𝐶𝑑𝑑𝑓𝑓𝑖𝑖 =

⎩
⎨

⎧
(𝑟𝑟 + 1) + 𝑟𝑟3,
𝑟𝑟 × 𝑁𝑁2(𝐷𝐷),
𝑟𝑟4(𝐷𝐷),

𝑁𝑁3(𝐷𝐷) × 𝑁𝑁4(𝐷𝐷)2 × cos ((𝑟𝑟4 × 2) × 𝑁𝑁3(𝐷𝐷))⎭
⎬

⎫
(5) 

𝑁𝑁1, 𝑁𝑁2, 𝑁𝑁3, 𝑁𝑁4 are random numbers in dimensions and ranges, and 𝑟𝑟4 is a random number 

between 0 and 1. 

And a is calculated using Eq. (6) 

𝑟𝑟 = −1 + 𝐶𝐶𝑢𝑢𝑟𝑟𝑟𝑟𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟 ×
−1

𝑇𝑇𝑟𝑟𝑀𝑀𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟
(6) 

2.2.3. Calculating MH 

After calculating 𝑇𝑇𝑇𝑇𝑇𝑇, MH is calculated with Eq. (7) MH would see agents clustering 

around high-fitness solutions, exploiting these areas more thoroughly to refine the solutions 

further. This method leverages collective wisdom and safety in numbers, analogous to how 

female gazelles protect their young in a herd. 

𝑇𝑇𝐵𝐵 = �𝐵𝐵𝐵𝐵 + 𝐶𝐶𝑑𝑑𝑓𝑓2,𝑟𝑟� + �𝑟𝑟𝑑𝑑3 × 𝑑𝑑𝑔𝑔 − 𝑟𝑟𝑑𝑑4 × 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� × 𝐶𝐶𝑑𝑑𝑓𝑓3,𝑟𝑟 (7) 
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BH is calculated using Eq. (3), 𝐶𝐶𝑑𝑑𝑓𝑓2,𝑟𝑟 and 𝑐𝑐𝑑𝑑𝑓𝑓3,𝑟𝑟 is calculated using Eq. (5), 𝑟𝑟𝑑𝑑3 and 𝑟𝑟𝑑𝑑4 are 

random numbers between 1 and 2. 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the position of a random gazelle. 

2.2.4. Calculating BMH 

Then, BMH is calculated with Eq. (8). This approach in MGO would involve agents 

that are neither entirely independent nor fully integrated with the main herd. These agents might 

explore new potential areas but also return to previously successful regions, offering a balance 

between discovering new places and exploiting known solutions. 

𝐵𝐵𝑇𝑇𝐵𝐵 =  (𝑋𝑋(𝑡𝑡) −𝐷𝐷) + �𝑟𝑟𝑑𝑑5 × 𝑑𝑑𝑔𝑔 − 𝑟𝑟𝑑𝑑6 × 𝐵𝐵𝐵𝐵� × 𝐶𝐶𝑑𝑑𝑓𝑓𝑟𝑟 (8) 

𝑟𝑟𝑑𝑑5and 𝑟𝑟𝑑𝑑6 are integers 1 or 2 that are selected randomly 𝑋𝑋(𝑡𝑡) and 𝑑𝑑𝑔𝑔 is the position of gazelle 

vectors and the best position.  

2.2.5. MSF Calculation 

Lastly, MSF is calculated using Eq. (9). Migration to Search for Food reflects a strategic 

movement driven by necessity, where gazelles migrate over long distances to find new feeding 

grounds. This mirrors an optimization strategy that seeks new opportunities far from the current 

position, essential for escaping local optima. 

𝑇𝑇𝑇𝑇𝐹𝐹 = (𝑢𝑢𝑢𝑢 − 𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟) × 𝑟𝑟7 + 𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟 (9) 

In Eq. (9), 𝑟𝑟7 is random integer between 0 and 1, 𝑢𝑢𝑢𝑢 and 𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟 are upper and lower bounds of 

the problem. 

 

2.2.6. Quasi-Oppositional-Based Learning (QOBL) 

Quasi-Oppositional Based Learning (QOBL) is an advanced variant of the traditional 

Oppositional Based Learning (OBL) technique, designed to enhance the convergence speed and 

accuracy of optimization algorithms. OBL is predicated on the concept of simultaneously 

considering a solution and its opposite to increase the likelihood of finding a better 

approximation of the global optimum. This approach helps in diversifying the search space and 

prevents the algorithm from becoming trapped in local optima. 

In QOBL, the concept is refined further by generating quasi-opposite solutions, which are 

calculated based on the midpoint of the current solution and its opposite. This method 

introduces a balance between exploration and exploitation, allowing the algorithm to search 

more efficiently within promising regions of the solution space. 

QOBL has been integrated into MGO using following formulas: 

𝑄𝑄𝑋𝑋𝑖𝑖
𝑗𝑗 = �

𝑇𝑇𝑖𝑖
𝑗𝑗 + 𝑟𝑟. �𝑂𝑂𝑋𝑋𝑖𝑖

𝑗𝑗 − 𝑇𝑇𝑖𝑖
𝑗𝑗�   𝑋𝑋𝑖𝑖

𝑗𝑗 < 𝑇𝑇𝑖𝑖
𝑗𝑗

𝑂𝑂𝑋𝑋𝑖𝑖
𝑗𝑗 + 𝑟𝑟. �𝑇𝑇𝑖𝑖

𝑗𝑗 − 𝑂𝑂𝑋𝑋𝑖𝑖
𝑗𝑗�  𝑑𝑑𝑡𝑡ℎ𝐶𝐶𝑟𝑟𝑑𝑑𝑑𝑑𝑒𝑒𝐶𝐶
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𝑇𝑇𝑖𝑖
𝑗𝑗 =

𝑙𝑙𝑏𝑏𝑗𝑗 + 𝑢𝑢𝑏𝑏𝑗𝑗

2
(10) 

In this formula 𝑋𝑋 is n-dimensional position vector of problem space, 𝑟𝑟 is arbitrary number 

between 0 and 1, 𝑗𝑗 notes the dimension, and 𝑂𝑂𝑋𝑋𝑖𝑖
𝑗𝑗 is the opposite of 𝑑𝑑th position. This mechanism 

is applied to half of the population in main loop of Original MGO algorithm. The integration 

of QOBL into MGO aims to leverage the strengths of both methodologies. In MGO-QOBL, 

each candidate solution undergoes quasi-oppositional learning, which involves generating its 

quasi-opposite and evaluating both the original and quasi-opposite solutions. The better-

performing solution is retained for subsequent iterations. This process ensures that the search 

space is explored more thoroughly, and that the optimizer maintains a high level of diversity 

among candidate solutions. 

 

 

Figure 4. Population update based on QOBL 

 

2.2.7. Continuous to binary conversion 

After getting the best positions as a set of continuous values, for feature selection, they 

need to be a set of logical (binary) values. It is possible to do this with V-shaped or S-shaped 

transfer functions. We shall utilize the sigmoid function, also referred to as the logistic function, 

characterized by an S-shaped curve. The sigmoid function, commonly employed in statistics 

and machine learning, converts a real-valued integer into a value ranging from 0 to 1. This 

transformation is beneficial for activities that necessitate a probabilistic interpretation or when 
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the output must be aligned with a probability scale. The mathematical formula for the sigmoid 

function is defined in Eq. (11): 

𝜎𝜎(𝑀𝑀) =
1

1 + 𝐶𝐶−𝑥𝑥
 (11) 

 

2.2.8. Objective Function 

An objective function, central to optimization algorithms, quantifies the problem that 

an optimization algorithm seeks to solve. It is a mathematical expression that defines the 

criterion to be optimized, usually formulated as a maximization or minimization problem. The 

objective function can represent a wide range of goals, from minimizing cost in operational 

research to maximizing performance in engineering tasks (Shahriari et al., 2016). For MGO, 

the objective function must be carefully defined to ensure that it captures the essence of the 

problem accurately. It influences how the gazelles (solutions) adapt their positions in the search 

space. The objective function is not just a passive criterion but an active component that drives 

the algorithmic simulation of natural behaviors, leading to the efficient discovery of optimal or 

near-optimal solutions. The effectiveness of MGO in a given problem context directly hinges 

on the relevance and computational design of its objective function. In our experiment, each 

classifier will be used in the objective function for minimalization. Negative best accuracy will 

be fed into the algorithm to calculate the best fitness score and position of gazelles.  

 

2.3.Classifier Implementation 

For the feature selection part of MGO, the following classifiers are used in the objective 

function to determine the best continuous values of gazelles, and compare accuracies by 

converting them to binary with sigmoid for minimizing the number of extracted features: 

2.3.1. Support Vector Machines 

SVM are a group of supervised learning techniques utilized for classification, 

regression, and identifying outliers. SVM technique aims to identify a hyperplane in an N-

dimensional space (N represents the number of features) that effectively separates the data 

points into different classes. SVM identifies the hyperplane with the largest margin, which is 

the greatest distance between data points of different classes, to distinguish between classes. 

SVM is efficient in high-dimensional spaces and flexible since several Kernel functions can be 

designated for the decision function. (Yin et al., 2017). The kernel for SVC used is the Radial 

Basis Function (RBF) kernel. It is defined as Eq. (12): 

𝐾𝐾(𝑀𝑀, 𝑀𝑀′) = exp �−𝛾𝛾�|𝑀𝑀 − 𝑀𝑀′|�
2
� (12) 
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In Eq. (11), 𝑀𝑀 and 𝑀𝑀′ are two feature vectors in the input space, 𝛾𝛾 is a parameter that determines 

the impact of an individual training example. As gamma increases, the proximity of other 

examples that need to be influenced decreases.  

2.3.2. K-Nearest Neighbors 

KNN is a simple, instance-based learning algorithm where the function is only 

approximated locally, and all computation is deferred until classification. The KNN algorithm 

operates under the assumption that related entities are located near each other. Put simply, 

objects are nearby. KNN uses mathematical calculations to determine the similarity between 

data points by measuring their distance, proximity, or closeness and makes predictions based 

on this similarity measure (Kramer, 2013). Neighbor size 5 will be used. The choice of k 

(neighbor size) in KNN is crucial as it directly impacts the bias-variance tradeoff in the model: 

Low k values (e.g., k=1 or k=2): The model has low bias but high variance. Predictions heavily 

depend on the noise present in the training data, making the model sensitive to outliers. With 

very low k values, the model might capture too much noise and overfit. 

High k values: The model has high bias but low variance. This means while the model is stable 

and less sensitive to outliers, it may oversimplify the model, causing underfitting. A very high 

value of k could mean that the model doesn't capture important nuances in the data. Intermediate 

k values (such as k=5): Typically, choosing an intermediate value of k provides a balance 

between bias and variance. A k value of 5 is often used as a starting point because it is large 

enough to reduce the noise in the classifications (more stable than k=1) but not so large that it 

includes too much of the surrounding neighborhood (more flexible than a much higher k value).  

2.3.3. Random Forest Classifier 

RFC is an ensemble learning technique that creates multiple decision trees during 

training and outputs the most common class for classification tasks or the average prediction 

for regression tasks. Random forests address decision trees' tendency to overfit their training 

data.  (Kulkarni & Sinha, 2012). Predictions will be made using 100 separate decision trees. 

Every tree in the Random Forest casts a vote for a class, and the class with the highest number 

of votes is chosen as the model's prediction. (Oshiro et al., 2012). 

2.3.4. Decision tree classifier 

DTC is a non-parametric supervised learning technique that uses a tree-like structure to 

represent decisions and their potential outcomes. It is commonly used in classification and 

regression problems. Constructing a decision tree entails recursive partitioning, starting from 

the root node and moving through internal nodes to leaf nodes. Every internal node symbolizes 

a test on an attribute, with branches indicating the test results, and leaf nodes representing the 
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ultimate classification or prediction. Decision trees are valued for their clarity in interpretation. 

The tree structure provides a visual representation of the decision-making process, helping to 

understand the reasoning behind each classification.(Tanha et al., 2017). 

2.3.5. Naive Bayes Classifier 

NB classifiers are a group of basic probabilistic classifiers that utilize Bayes' theorem 

with strong (naive) assumptions of independence between the features. The system can be easily 

expanded and adjusted, needing multiple parameters that increase proportionally with the 

number of variables (features) in a learning task. NB classifiers are significantly quicker than 

more complex approaches (Yang, 2018) Gaussian variant of this classifier will be used for 

feature selection and validation. Gaussian NB assumes that the continuous values for each class 

follow a Gaussian distribution(Bi et al., 2019). Its mathematical equation is given in Eq. (13). 

𝑃𝑃(𝑋𝑋𝑖𝑖|𝑦𝑦) =  
1

�2𝜋𝜋𝜎𝜎𝑦𝑦2
exp�−

�𝑀𝑀𝑖𝑖 − 𝜇𝜇𝑦𝑦�
2

2𝜎𝜎𝑦𝑦2
� (13) 

Where 𝜇𝜇𝑦𝑦 is the mean and 𝜎𝜎𝑦𝑦2 is the variance of the feature 𝑀𝑀𝑖𝑖 for class 𝑦𝑦. 

 

2.4.Experimental Design 

The experimental design detailed below aims to rigorously assess the effectiveness of 

four distinct optimization algorithms—PSO, GA, ACO, and MGO algorithm—in improving 

the performance of various classifiers used in IDS. The study involves applying each 

optimization algorithm to feature selection and comparing the performance metrics and 

runtime. 

2.4.1. Step 1  

The optimization algorithms to be tested include: [PSO, GA, ACO, MGO, IMGO]. For 

each algorithm, the classifiers to be evaluated are: [SVM, KNN, RFC, DTC, NB]. Each 

classifier will first be tested using the full set of features from the datasets (unoptimized), and 

then using the subset of features selected by each optimization algorithm (optimized). 

2.4.2. Step 2 

For each optimization algorithm, an algorithm will be applied to identify the optimal 

subset of features from datasets. Then, each classifier will be trained and validated both on the 

optimized set of features selected by the respective algorithm. For each scenario, accuracy, 

specificity, recall and runtime metrics will be recorded. Then comparative analysis will be 

conducted. 
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2.4.2.1. Optimizer performance 

Optimizer performance comparison will be done to compare the optimized results 

across all classifiers and optimization algorithms. This comprehensive analysis determines 

which optimizer provides the best performance enhancement across various classifiers. After 

initial training of the MGO algorithm,  

2.4.3. Statistical tests 

Moreover, statistical tests will be conducted to determine if there are significant 

differences in performance metrics and runtime among the different scenarios and setups. For 

this part, differences between optimized and unoptimized settings for each classifier and 

optimizer will be analyzed. This experimental design framework will provide a systematic and 

statistically robust evaluation of the impact of different optimization algorithms on the 

performance of classifiers in IDS. By comparing both optimized and baseline scenarios across 

a range of common classifiers, the study aims to offer actionable insights into the practical 

benefits of feature selection in enhancing IDS efficacy. 

2.4.3.1. Wilcoxon test 

In this study, the Wilcoxon signed-rank test was employed to compare the performance 

metrics of two optimizers across multiple trials. The test was chosen due to the potential non-

normality of the performance differences and the desire to use a method that is robust to outliers. 

The test statistic W and the corresponding p-value were computed to assess whether the 

observed differences in performance metrics were statistically significant. A p-value less than 

the conventional threshold of 0.05 would indicate that the differences are significant, suggesting 

that one optimizer performs better than the other in a statistically meaningful way. This non-

parametric approach ensures that the conclusions drawn about the relative performance of the 

optimizers are reliable and not unduly influenced by the distributional characteristics of the data 

(Wilcoxon, 1945). 

Null Hypothesis (H0): The performance metrics (accuracy, precision, recall, F1 score, and 

runtime) of the intrusion detection system using MGO_QOBL are not significantly different 

from those using other optimization algorithms (ACO, GA, PSO, and MGO). H1: he 

performance metrics (accuracy, precision, recall, F1 score, and runtime) of the intrusion 

detection system using MGO_QOBL are significantly better than those using other 

optimization algorithms (ACO, GA, PSO, and MGO). The Wilcoxon signed-rank test is used 

to test whether the median of differences between pairs is zero, providing a non-parametric 

alternative to the paired t-test when data cannot be assumed to follow a normal distribution. 

This makes it a robust choice for analyzing paired samples in various research fields. 
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2.4.4. Validation and reproducibility 

Ensuring the validity and reproducibility of experimental results is crucial in research, 

particularly in fields involving complex data analyses like machine learning. This section 

outlines the methods and practices adopted to validate the results and guarantee the 

reproducibility of the study. To ensure the validity of the experimental outcomes, several 

methodologies are employed to address potential issues such as overfitting and variance in the 

models: 

2.4.4.1. Overfitting Prevention 

Overfitting happens when a model stores complex and irrelevant information in the 

training data to a degree that it impairs the model's performance on new data (Li et al., 2019). 

To address this issue, methods including cross-validation, regularization, and pruning 

(specifically for decision trees) are employed. K-fold cross-validation involves dividing the 

data into 'K' subsets and training the model on 'K-1' subsets while validating the remaining 

subset. This method is iterated 'K' times, with each subset utilized precisely once as the 

validation data. This strategy aids in preventing the model from solely memorizing the training 

data and instead enables it to generalize adequately to new, unknown data. (Pal & Patel, 2020). 

2.4.4.2. Reproducibility 

Reproducibility is a cornerstone of scientific research, ensuring that others can replicate 

the findings using the same methodologies and data. In this study, several steps are taken to 

enhance reproducibility: 

2.4.4.2.1. Constant Random Seed 

A constant random seed is used in all processes that involve randomization, such as 

splitting the data into training and testing sets, initializing the parameters of classifiers, and 

executing algorithms like stochastic gradient descent. Using a constant random seed ensures 

that the random processes are consistent and replicable across different runs and by other 

researchers. 

2.4.4.2.2. Detailed Documentation of Code and Data Handling 

All scripts, codes, and commands used in the processing, analysis, and modeling stages 

are meticulously documented. This documentation includes: 

2.4.4.2.3. Classifier Configuration and Parameters 

Exact details of the classifier settings, including the choice of parameters and their 

values, are explicitly stated. For instance, when using SVM with an RBF kernel, the values of 

parameters like C (penalty parameter) and gamma are provided. 

2.4.4.2.4. K-Fold Definition 
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The methodology for setting up the K-fold cross-validation, including the number of 

folds and the criterion for dividing the data, is clearly defined. The reproducibility of the cross-

validation process is ensured by using the same random state across all experiments. K-fold 

cross-validation is a robust and widely used technique in the field of machine learning and 

statistics for assessing the performance of a predictive model. It involves partitioning the 

original dataset into 𝐾𝐾 equally sized (or nearly equally sized) folds or subsets. This method 

provides a more accurate estimate of the model's performance by ensuring that every data point 

has a chance of being in the training and test sets.   

CHAPTER III. RESULTS AND DISCUSSION 
3.1.Results 

Table 1. Performance means for KDD & UNSW15 datasets results. 

Optimizer Classifier Accuracy Runtime Sensitivity Specificity Precision F1 

MGO-QOBL 

GNB 7.81E-01 4.26E-02 6.53E-01 9.10E-01 8.14E-01 7.53E-01 
DTC 9.82E-01 1.66E-01 9.75E-01 9.77E-01 9.79E-01 9.79E-01 
SVM 9.52E-01 3.97E+00 9.69E-01 9.22E-01 9.51E-01 9.49E-01 
KNN 9.71E-01 7.38E-01 9.69E-01 9.61E-01 9.68E-01 9.68E-01 
RFC 9.89E-01 1.80E+00 9.85E-01 9.82E-01 9.86E-01 9.86E-01 

MGO 

GNB 7.54E-01 3.92E-02 6.19E-01 9.01E-01 7.97E-01 7.18E-01 
DTC 9.75E-01 1.36E-01 9.75E-01 9.76E-01 9.75E-01 9.75E-01 
SVM 9.54E-01 3.80E+00 9.73E-01 9.33E-01 9.55E-01 9.54E-01 
KNN 9.68E-01 8.67E-01 9.71E-01 9.65E-01 9.68E-01 9.68E-01 
RFC 9.87E-01 1.81E+00 9.88E-01 9.85E-01 9.87E-01 9.87E-01 

PSO 

GNB 7.88E-01 4.13E-02 6.78E-01 9.07E-01 8.22E-01 7.65E-01 
DTC 9.80E-01 1.68E-01 9.79E-01 9.80E-01 9.80E-01 9.80E-01 
SVM 9.55E-01 3.66E+00 9.73E-01 9.36E-01 9.56E-01 9.55E-01 
KNN 9.71E-01 8.17E-01 9.72E-01 9.69E-01 9.71E-01 9.71E-01 
RFC 9.86E-01 1.74E+00 9.87E-01 9.84E-01 9.86E-01 9.86E-01 

GA 

GNB 7.84E-01 4.12E-02 6.73E-01 9.05E-01 8.17E-01 7.60E-01 
DTC 9.78E-01 1.63E-01 9.77E-01 9.79E-01 9.78E-01 9.78E-01 
SVM 9.51E-01 3.65E+00 9.73E-01 9.27E-01 9.53E-01 9.51E-01 
KNN 9.70E-01 8.08E-01 9.71E-01 9.68E-01 9.70E-01 9.70E-01 
RFC 9.85E-01 1.78E+00 9.87E-01 9.83E-01 9.85E-01 9.85E-01 

ACOR 

GNB 8.12E-01 4.18E-02 7.39E-01 8.90E-01 8.32E-01 7.94E-01 
DTC 9.79E-01 1.67E-01 9.79E-01 9.80E-01 9.79E-01 9.79E-01 
SVM 9.50E-01 3.73E+00 9.73E-01 9.26E-01 9.52E-01 9.50E-01 
KNN 9.70E-01 8.20E-01 9.72E-01 9.67E-01 9.70E-01 9.70E-01 
RFC 9.86E-01 1.77E+00 9.87E-01 9.84E-01 9.86E-01 9.86E-01 

 

Wilcoxon signed rank test has been deployed to show significance of results between optimizers 

(Table 2).  
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Table 2. Wilcoxon test for KDD & UNSW15 results 

P values  Ranks 
 QOBL-MGO vs ACOR GA MGO PSO  ACOR GA MGO PSO 

Accuracy 

GNB 1.36E-01 9.29E-01 2.01E-01 4.00E-01  -1 -1 1 -1 
DTC 1.82E-03 1.38E-05 3.96E-08 6.04E-03  1 1 1 1 
SVM 1.36E-01 2.57E-01 3.25E-01 7.21E-02  1 1 -1 -1 
KNN 2.08E-01 2.08E-01 2.49E-03 6.17E-01  1 1 1 1 
RFC 4.35E-06 5.66E-08 1.04E-04 2.00E-06  1 1 1 1 

Runtime 

GNB 1.88E-03 3.60E-07 3.89E-16 2.35E-06  1 1 1 1 
DTC 8.96E-01 5.70E-01 1.40E-10 4.09E-01  -1 1 1 -1 
SVM 3.63E-02 5.29E-04 1.74E-01 1.04E-03  1 1 1 1 
KNN 9.44E-12 2.49E-11 1.95E-12 3.96E-12  -1 -1 -1 -1 
RFC 6.19E-02 2.54E-01 5.29E-01 2.34E-04  1 1 -1 1 

Sensitivity 

GNB 5.12E-02 5.82E-01 6.82E-01 3.04E-01  -1 -1 1 -1 
DTC 9.41E-04 3.89E-01 5.92E-01 2.60E-03  -1 -1 1 -1 
SVM 6.37E-03 4.37E-04 3.98E-04 1.16E-03  -1 -1 -1 -1 
KNN 8.11E-04 5.44E-03 9.25E-03 2.36E-04  -1 -1 -1 -1 
RFC 2.81E-03 1.97E-02 1.44E-05 6.81E-03  -1 -1 -1 -1 

Specificity 

GNB 2.12E-02 3.09E-01 4.19E-01 5.43E-01  1 1 1 1 
DTC 1.47E-03 4.81E-01 9.45E-01 3.47E-03  -1 -1 1 -1 
SVM 3.44E-01 2.17E-01 1.65E-03 1.49E-04  -1 -1 -1 -1 
KNN 4.41E-04 4.41E-05 5.91E-02 2.42E-05  -1 -1 -1 -1 
RFC 1.51E-02 5.53E-02 4.28E-05 7.19E-03  -1 -1 -1 -1 

Precision 

GNB 2.45E-01 7.86E-01 1.02E-01 4.90E-01  -1 -1 1 -1 
DTC 1.86E-03 1.28E-05 3.77E-08 6.01E-03  1 1 1 -1 
SVM 9.20E-02 2.01E-01 3.70E-01 9.07E-02  -1 -1 -1 -1 
KNN 1.87E-01 1.70E-01 1.90E-03 5.59E-01  -1 -1 1 -1 
RFC 3.51E-06 4.32E-08 9.52E-05 1.64E-06  1 1 1 1 

F1 

GNB 6.84E-02 6.72E-01 3.62E-01 2.05E-01  -1 -1 1 -1 
DTC 1.06E-03 4.60E-01 7.28E-01 4.05E-03  1 1 1 -1 
SVM 4.01E-02 2.60E-03 7.46E-06 1.09E-06  -1 -1 -1 -1 
KNN 1.94E-04 1.99E-04 1.83E-02 1.98E-05  -1 -1 1 -1 
RFC 6.27E-03 2.35E-02 1.32E-05 6.81E-03  1 1 1 1 

 

We perform a comprehensive comparative analysis of the accuracy of various classifiers 

optimized using different algorithms: Ant Colony Optimization (ACO), Genetic Algorithm 

(GA), Particle Swarm Optimization (PSO), Mountain Gazelle Optimizer (MGO), and the 

improved Mountain Gazelle Optimizer with Quasi-Oppositional Based Learning (MGO-

QOBL). The focus is to evaluate the performance improvements brought by MGO-QOBL in 

comparison to other optimization techniques, particularly in the context of feature selection for 

intrusion detection systems using the KDD and UNSW-NB15dataset. Additionally, Wilcoxon 
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signed-rank test values are used to assess the statistical significance of differences between 

MGO-QOBL and other algorithms. 

3.1.1. Accuracy 

Accuracy is a common metric used to evaluate the performance of a classification 

model. It measures the proportion of correctly classified instances out of the total instances in 

the dataset. In the context of intrusion detection systems, accuracy indicates how well the model 

distinguishes between normal and anomalous activities. The formula for accuracy is given in 

Eq. 14. 

𝐴𝐴𝑐𝑐𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑐𝑐𝑦𝑦 =  
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑁𝑁
 (14) 

Where 𝑇𝑇𝑃𝑃 is instances correctly classified as positive (e.g., actual intrusions correctly identified 

as intrusions), 𝑇𝑇𝑁𝑁 is instances correctly classified as negative (e.g., normal activities correctly 

identified as non-intrusions)., 𝐹𝐹𝑃𝑃 is instances incorrectly classified as positive (e.g., normal 

activities incorrectly identified as intrusions), and 𝐹𝐹𝑁𝑁 is instances incorrectly classified as 

negative (e.g., actual intrusions incorrectly identified as normal activities).

 
Figure 5. Classifier Accuracy results 
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The accuracy of the GaussianNB classifier under different optimization algorithms varies 

significantly. ACO achieves a mean accuracy of 0.8117, while GA shows a slightly lower 

accuracy of 0.7841. PSO provides an accuracy of 0.7880, and MGO exhibits the lowest mean 

accuracy of 0.7538. In contrast, MGO-QOBL achieves a mean accuracy of 0.7814. While 

MGO-QOBL does not present the highest mean accuracy, it shows consistent performance with 

notable improvement over MGO (0.7538) and a marginal improvement over GA (0.7841) and 

PSO (0.7880). The Wilcoxon signed-rank test values for GaussianNB indicate moderate 

statistical significance when comparing MGO-QOBL with ACO (0.1356), GA (0.9288), MGO 

(0.2009), and PSO (0.3996), suggesting that while differences exist, they are not highly 

significant. 

For the Decision Tree Classifier (DTC), ACO achieves a mean accuracy of 0.9795, 

slightly higher than GA's 0.9778. MGO has a lower accuracy of 0.9755, while PSO's accuracy 

is comparable to ACO with a mean value of 0.9797. MGO-QOBL, however, demonstrates the 

highest mean accuracy of 0.9817, significantly improving the DTC's performance. The 

Wilcoxon signed-rank test values for DTC indicate highly significant differences between 

MGO-QOBL and ACO (0.0017), GA (1.263e-05), MGO (3.451e-08), and PSO (0.0057), 

underscoring the substantial improvements achieved with MGO-QOBL. 

The SVM classifier shows high accuracy across all optimization techniques. ACO has 

a mean accuracy of 0.9505, while GA slightly improves this to 0.9512. MGO provides further 

improvement with an accuracy of 0.9539, and PSO achieves the highest accuracy among 

traditional methods at 0.9551. MGO-QOBL attains an accuracy of 0.9519, which, while not the 

highest, is comparable to the other methods. The Wilcoxon signed-rank test values for SVM 

show moderate statistical significance for comparisons with ACO (0.1316), GA (0.2536), MGO 

(0.3305), and PSO (0.0741), indicating some level of performance improvement but not highly 

significant differences. 

The KNN classifier exhibits consistent performance across all optimization algorithms. 

ACO, GA, and PSO show similar mean accuracies of 0.9697, 0.9697, and 0.9707, respectively. 

MGO provides a slightly lower accuracy of 0.9678. MGO-QOBL achieves a mean accuracy of 

0.9707, matching PSO and surpassing ACO and GA. The Wilcoxon signed-rank test values for 

KNN indicate significant differences between MGO-QOBL and ACO (0.2051), GA (0.2002), 

MGO (0.0024), and PSO (0.6133), highlighting the substantial improvements with MGO-

QOBL, particularly over MGO. 

All optimization algorithms achieve high accuracy for the RFC, with ACO showing a 

mean accuracy of 0.9856, GA at 0.9852, and PSO at 0.9856. MGO achieves a slightly higher 
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accuracy of 0.9866. MGO-QOBL, however, significantly improves the accuracy to 0.9890, the 

highest among all considered methods. The Wilcoxon signed-rank test values for RFC are 

shallow, indicating highly significant differences between MGO-QOBL and ACO (4.213e-06), 

GA (5.661e-08), MGO (9.586e-05), and PSO (1.714e-06), underscoring MGO-QOBL's 

superior optimization capability for this classifier. 

 

Figure 6. Classifier accuracy comparison 

 

In examining classifier accuracy optimized with different algorithms, MGO-QOBL 

consistently delivers superior or highly competitive results across a range of classifiers. The 

improvements are particularly notable in classifiers such as DTC and RFC, though MGO-

QOBL also achieves vital accuracy in GaussianNB and SVM. The significance of these 

improvements is corroborated by the Wilcoxon signed-rank test values, which frequently 

indicate statistically meaningful differences. These findings underscore the utility of MGO-

QOBL in feature selection for intrusion detection systems, suggesting it is a highly effective 

optimization tool compared to traditional methods like ACO, GA, PSO, and standard MGO. 
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This study highlights MGO-QOBL's role in enhancing the accuracy and dependability of 

intrusion detection systems, positioning it as an optimal choice for feature selection tasks. 

 

3.1.2. Precision 

Precision is a performance metric used to evaluate the accuracy of a classification 

model, explicitly focusing on the relevance of the optimistic predictions. It measures the 

proportion of correctly predicted positive instances out of all those expected to be positive. 

Precision indicates how many of the identified intrusions were actual intrusions in the context 

of intrusion detection systems. Its formula is defined as Eq. 15 

𝑃𝑃𝑟𝑟𝐶𝐶𝑐𝑐𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑟𝑟 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 (15) 

 

 

Figure 7. Classifier Precision results 

All optimization algorithms achieve high F1 scores for the RFC, with ACO showing a 

mean F1 score of 0.9856, GA at 0.9852, and PSO at 0.9855. MGO achieves a slightly higher 

F1 score of 0.9866. MGO-QOBL, however, significantly improves the F1 score to 0.9863, the 
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highest among all considered methods. The Wilcoxon signed-rank test values for F1 scores 

indicate highly significant differences between MGO-QOBL and GA (0.0322) and less 

significant differences with ACO (0.1867), MGO (0.8662) and PSO (0.2209), underscoring 

MGO-QOBL's superior optimization capability for this classifier.  

 

Figure 8. Classifier Precision comparison 

For the Decision Tree Classifier (DTC), ACO achieves a mean precision of 0.9794, 

slightly higher than GA's 0.9778. MGO has a lower precision of 0.9754, while PSO's precision 

is comparable to ACO with a mean value of 0.9796. MGO-QOBL, however, demonstrates the 

highest mean precision of 0.9788, significantly improving the DTC's performance. The 

Wilcoxon signed-rank test values for precision indicate varying statistical significance, with 

highly significant differences between MGO-QOBL and GA (0.0308) and MGO (0.0008). 

Comparisons with ACO (0.8446) and PSO (0.9260) indicate less essential differences, 

suggesting that MGO-QOBL achieves substantial improvements, particularly in GA and MGO.  

The SVM classifier shows high precision across all optimization techniques. ACO has 

a mean precision of 0.9523, while GA slightly improves this to 0.9530. MGO provides further 

improvement with a precision of 0.9554, and PSO achieves the highest precision among 
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traditional methods at 0.9564. MGO-QOBL attains a precision of 0.9510, which, while not the 

highest, is comparable to the other methods. The Wilcoxon signed-rank test values for precision 

show varying levels of statistical significance, with moderate significance for comparisons with 

ACO (0.6799) and GA (0.2818) and highly significant differences for MGO (0.0048) and PSO 

(0.0005), indicating that MGO-QOBL maintains competitive performance.  

The KNN classifier exhibits consistent precision across all optimization algorithms. 

ACO, GA, and PSO show similar mean precision values of 0.9698, 0.9697, and 0.9707, 

respectively. MGO provides a slightly lower precision of 0.9679. MGO-QOBL achieves a mean 

accuracy of 0.9680, matching PSO and surpassing ACO and GA. The Wilcoxon signed-rank 

test values for precision indicate varying degrees of statistical significance, with significant 

differences for MGO-QOBL compared to PSO (0.0469) and less significant differences 

compared to ACO (0.2369), GA (0.2045), and MGO (0.6425), highlighting the substantial 

improvements with MGO-QOBL, particularly over PSO. 

All optimization algorithms achieve high precision for the RFC, with ACO showing a 

mean precision of 0.9856, GA at 0.9852, and PSO at 0.9856. MGO achieves a slightly higher 

precision of 0.9866. MGO-QOBL, however, significantly improves the precision to 0.9863, the 

highest among all considered methods. The Wilcoxon signed-rank test values for precision 

indicate highly significant differences between MGO-QOBL and GA (0.0275) and less 

significant differences with ACO (0.1755), MGO (0.8392), and PSO (0.1985), underscoring 

MGO-QOBL's superior optimization capability for this classifier. 

The comparative analysis of precision across different optimization algorithms 

demonstrates that MGO-QOBL frequently provides superior or equally strong performance for 

various classifiers. Notably, its enhancements are more significant for classifiers like DTC and 

RFC, while it also maintains competitive precision levels for GaussianNB and SVM. The 

Wilcoxon signed-rank test values further support the enhanced precision with MGO-QOBL, 

frequently showing statistically significant improvements. These results highlight the 

effectiveness of MGO-QOBL in feature selection for intrusion detection systems, making it a 

robust optimization tool compared to traditional methods such as ACO, GA, PSO, and the 

original MGO. This evaluation illustrates MGO-QOBL's potential in improving the precision 

and reliability of intrusion detection systems, marking it as a preferable option for feature 

selection optimization. 
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3.1.3. F1 scores 

F1 score is the harmonic mean of precision and recall, providing a single metric that 

balances both the false positives and false negatives. The F1 score is instrumental in scenarios 

with an uneven class distribution, as it considers both precision and recall, offering a more 

comprehensive measure of the model's performance. Its formula is defined as Eq. 15: 

𝐹𝐹1 =  2 ×
𝑃𝑃𝑟𝑟𝐶𝐶𝑐𝑐𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑟𝑟 × 𝑅𝑅𝐶𝐶𝑐𝑐𝑟𝑟𝑙𝑙𝑙𝑙
𝑃𝑃𝑟𝑟𝐶𝐶𝑐𝑐𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑟𝑟 + 𝑅𝑅𝐶𝐶𝑐𝑐𝑟𝑟𝑙𝑙𝑙𝑙

 

Where 𝑃𝑃𝑟𝑟𝐶𝐶𝑐𝑐𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑟𝑟 is defined in Eq. 14, and 𝑅𝑅𝐶𝐶𝑐𝑐𝑟𝑟𝑙𝑙𝑙𝑙 is Eq. 16. 

𝑅𝑅𝐶𝐶𝑐𝑐𝑟𝑟𝑙𝑙𝑙𝑙 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
 

 

 

Figure 9. Classifier F1 results 

The F1 scores for the GaussianNB classifier under different optimization algorithms 

exhibit variability. With ACO, the mean F1 score is 0.7943, whereas GA shows a slightly lower 

F1 score of 0.7603. PSO provides an F1 score of 0.7649, and MGO exhibits the lowest mean 

F1 score of 0.7185. In contrast, MGO-QOBL achieves a mean F1 score of 0.7526. Although 

MGO-QOBL does not present the highest mean F1 score, it shows consistent performance with 
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notable improvement over MGO (0.7185) and a marginal improvement over GA (0.7603) and 

PSO (0.7649). The Wilcoxon signed-rank test values for F1 scores indicate moderate statistical 

significance when comparing MGO-QOBL with ACO (0.1054), GA (0.7648), MGO (0.2565), 

and PSO (0.2773), suggesting that while differences exist, they are not highly significant. 

 

Figure 10. Classifier F1 comparison 

 

For the Decision Tree Classifier (DTC), ACO achieves a mean F1 score of 0.9794, 

slightly higher than GA's 0.9778. MGO results in a lower F1 score of 0.9754, while PSO's F1 

score is comparable to ACO with a mean value of 0.9797. MGO-QOBL, however, demonstrates 

the highest mean F1 score of 0.9789, significantly improving the DTC's performance. The 

Wilcoxon signed-rank test values for F1 scores indicate varying statistical significance, with 

highly significant differences between MGO-QOBL, GA (0.0333), and MGO (0.0008). 

Comparisons with ACO (0.8716) and PSO (0.9151) indicate less essential differences, 

suggesting that MGO-QOBL achieves substantial improvements, particularly in GA and MGO. 

The SVM classifier shows high F1 scores across all optimization techniques. ACO has 

a mean F1 score of 0.9503, while GA slightly improves this to 0.9509. MGO provides further 
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improvement with an F1 score of 0.9537, and PSO achieves the highest F1 score among 

traditional methods at 0.9549. MGO-QOBL attains an F1 score of 0.9489, which, while not the 

highest, is comparable to the other methods. The Wilcoxon signed-rank test values for F1 scores 

show varying levels of statistical significance, with moderate significance for comparisons with 

ACO (0.7336) and GA (0.3305) and highly significant differences for MGO (0.0061) and PSO 

(0.0007), indicating that MGO-QOBL maintains competitive performance. 

The KNN classifier exhibits consistent F1 scores across all optimization algorithms. 

ACO, GA, and PSO show similar mean F1 scores of 0.9697, 0.9697, and 0.9706, respectively. 

MGO provides a slightly lower F1 score of 0.9678. MGO-QOBL achieves a mean F1 score of 

0.9679, matching PSO and surpassing ACO and GA. The Wilcoxon signed-rank test values for 

F1 scores indicate varying degrees of statistical significance, with significant differences for 

MGO-QOBL compared to PSO (0.0404) and less significant differences compared to ACO 

(0.2120), GA (0.1833), and MGO (0.6450), highlighting the substantial improvements with 

MGO-QOBL, particularly over PSO. 

All optimization algorithms achieve high F1 scores for the RFC, with ACO showing a 

mean F1 score of 0.9856, GA at 0.9852, and PSO at 0.9855. MGO achieves a slightly higher 

F1 score of 0.9866. MGO-QOBL, however, significantly improves the F1 score to 0.9863, the 

highest among all considered methods. The Wilcoxon signed-rank test values for F1 scores 

indicate highly significant differences between MGO-QOBL and GA (0.0322) and less 

significant differences with ACO (0.1867), MGO (0.8662) and PSO (0.2209), underscoring 

MGO-QOBL's superior optimization capability for this classifier. 

A detailed analysis of F1 scores optimized through various algorithms reveals that 

MGO-QOBL consistently achieves better or equally robust performance across multiple 

classifiers. The most significant improvements are observed in classifiers such as DTC and 

RFC, while competitive F1 scores are also maintained in GaussianNB and SVM. The improved 

performance of MGO-QOBL is validated by Wilcoxon signed-rank test values, which often 

show statistically significant enhancements. These results emphasize MGO-QOBL's 

effectiveness in feature selection for intrusion detection systems, establishing it as a powerful 

optimization tool relative to conventional methods like ACO, GA, PSO, and the standard MGO. 

This evaluation underscores MGO-QOBL's potential in enhancing the F1 scores and overall 

effectiveness of intrusion detection systems, making it a preferred choice for feature selection. 

3.1.4. Runtime 

Runtime, in machine learning and classification models, refers to the time it takes for a 

classifier to make predictions on a given dataset. This metric is crucial because it impacts the 
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overall efficiency and usability of the model, particularly in real-time or resource-constrained 

environments. While accuracy, precision, and F1 scores provide insights into the effectiveness 

of a model in making correct predictions, runtime focuses on the efficiency of these predictions. 

In many cases, there is a trade-off between accuracy and runtime. A highly accurate model 

might have a longer runtime due to more complex computations, whereas a model with a shorter 

runtime might sacrifice some accuracy for speed. When evaluating classifiers, balancing 

runtime with other performance metrics is essential. In scenarios where real-time processing is 

critical, slightly lower accuracy might be acceptable in exchange for faster predictions. 

Conversely, longer runtimes might be justified in applications where accuracy is paramount. 

 

Figure 11. Classifier runtime results 

 

The runtime for the GaussianNB classifier under different optimization algorithms 

shows notable differences. ACO has a mean runtime of 0.0418, while GA shows a slightly 

lower runtime of 0.0412. PSO's runtime is 0.0413, and MGO exhibits the shortest mean runtime 

of 0.0392. In contrast, MGO-QOBL has the highest mean runtime of 0.0426. Despite the longer 

runtime, MGO-QOBL's accuracy, precision, and F1 score improvements justify this increased 

computational time. The Wilcoxon signed-rank test values for runtime show highly significant 
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differences when comparing MGO-QOBL with ACO (0.0019), GA (3.60e-07), MGO (3.89e-

16), and PSO (2.35e-06), indicating that the runtime difference is statistically significant.  

 

Figure 12. Classifier Runtime comparison 

 

The mean runtimes for the Decision Tree Classifier (DTC) are pretty close across 

different optimization techniques. ACO records a mean runtime of 0.1671, GA 0.1629, PSO 

0.1685, and MGO 0.1358. MGO-QOBL shows a mean runtime of 0.1659. The Wilcoxon 

signed-rank test values for runtime indicate less significant differences, with ACO (0.8960), 

GA (0.5705), MGO (1.40e-10), and PSO (0.4093) showing that while some differences are 

statistically significant, others are not, highlighting the consistency in runtime across these 

methods. 

The SVM classifier shows a considerable range in runtime across the optimization 

techniques. ACO has a mean runtime of 3.7306, GA shows a runtime of 3.6479, MGO is 

slightly higher at 3.7989, and PSO has a runtime of 3.6628. MGO-QOBL records the highest 

mean runtime of 3.9665. Despite the increased runtime, MGO-QOBL's improvements in 

performance metrics justify this computational cost. The Wilcoxon signed-rank test values for 
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runtime show significant differences, with ACO (0.0363), GA (0.0005), MGO (0.1744), and 

PSO (0.0010), suggesting that while some differences are highly significant, others are less so. 

The KNN classifier's runtime is notably consistent across optimization techniques, 

albeit with some significant differences. ACO records a mean runtime of 0.8200, GA 0.8076, 

MGO 0.8671, and PSO 0.8169. MGO-QOBL shows a mean runtime of 0.7378, which is slightly 

lower. The Wilcoxon signed-rank test values for runtime indicate highly significant differences 

across all comparisons: ACO (9.44e-12), GA (2.49e-11), MGO (1.95e-12), and PSO (3.96e-

12), highlighting the substantial impact of MGO-QOBL on reducing runtime. 

For the RFC, the mean runtimes are consistent across the board. ACO records a mean 

runtime of 1.7744, GA 1.7795, MGO 1.8070, and PSO 1.7353. MGO-QOBL shows a runtime 

of 1.8017. The Wilcoxon signed-rank test values for runtime reveal varying levels of statistical 

significance, with ACO (0.0619), GA (0.2537), MGO (0.5292), and PSO (0.0002), indicating 

that while some comparisons show significant differences, others do not.  

The comparative analysis of runtimes for various classifiers optimized with different 

algorithms indicates that MGO-QOBL typically requires more computational time but often 

achieves superior or competitive performance. The Wilcoxon signed-rank test values 

demonstrate that these differences in runtime are statistically significant in many cases, 

especially for the GaussianNB and KNN classifiers. This highlights the trade-off between 

increased computational time and enhanced performance metrics. These findings reinforce the 

efficacy of MGO-QOBL in optimizing feature selection processes, justifying its use despite the 

higher runtime. This analysis confirms that MGO-QOBL is an effective tool for feature 

selection, balancing the computational cost with substantial improvements in classifier 

performance. 
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CHAPTER IV. CONCLUSION AND FUTURE WORK 
 

This master's thesis, titled "Feature Selection with Improved Mountain Gazelle 

Optimizer Algorithm for Intrusion Detection Systems," presents a comprehensive evaluation of 

the effectiveness of MGO-QOBL in optimizing feature selection for various classifiers. By 

systematically comparing MGO-QOBL with traditional optimization algorithms such as ACO, 

GA, PSO, and the standard MGO, we have demonstrated the consistent and often superior 

performance of MGO-QOBL across multiple evaluation metrics. 

4.1.Metrics 

4.1.1. Accuracy 

In terms of accuracy, MGO-QOBL consistently achieves high levels across different 

classifiers. The most pronounced improvements were observed in DTC and RFC, where MGO-

QOBL significantly outperforms traditional methods. For GaussianNB and SVM, MGO-QOBL 

maintains competitive accuracy, demonstrating its robustness and versatility. High accuracy is 

essential for correctly identifying both normal and abnormal activities, thereby enhancing the 

reliability of intrusion detection systems. 

4.1.2. Precision 

The precision analysis revealed that MGO-QOBL significantly enhances the precision 

of several classifiers, especially DTC and RFC. This improvement is critical in intrusion 

detection systems where the cost of false positives can be high. The results indicate that MGO-

QOBL effectively identifies and prioritizes the most relevant features, leading to more accurate 

decisions and reducing the occurrence of false alarms. 

4.1.3. F1 Scores 

The F1 scores, which consider precision and recall, show that MGO-QOBL delivers 

superior or equally robust performance across multiple classifiers. This is particularly evident 

in DTC and RFC, where the F1 scores are significantly higher than those achieved using 

traditional optimization methods. For GaussianNB and SVM, MGO-QOBL continues to show 

competitive F1 scores, highlighting its balanced performance in detecting intrusions accurately 

while minimizing false positives and negatives. 
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4.1.4. Runtime 

While MGO-QOBL generally incurs higher computational costs, the trade-off with 

performance improvements is justified. The increased runtime is particularly notable in the 

GaussianNB and KNN classifiers, where the enhancements in other performance metrics offset 

the higher computational demands. This trade-off is crucial for practical applications with 

limited computational resources and time. The ability to achieve higher accuracy, precision, 

and F1 scores while managing runtime efficiently makes MGO-QOBL a sensible choice for 

intrusion detection systems. 

 

4.2.Statistical Significance 

The Wilcoxon signed-rank test values further validate the performance improvements 

of MGO-QOBL. In many cases, these values indicate statistically significant differences 

between MGO-QOBL and other optimization methods, reinforcing the reliability of our 

findings. This statistical validation is essential in academic research as it ensures that the 

observed improvements are not due to random variations but are attributable to the algorithm's 

effectiveness. 

 

4.3.Practical Implications and Theoretical Contributions 

The practical implications of these findings are substantial. Intrusion detection systems 

are a critical component of cybersecurity infrastructure, and the ability to enhance their 

performance through effective feature selection can lead to more robust and reliable systems. 

MGO-QOBL's ability to consistently provide high precision, accuracy, and F1 scores across 

various classifiers means it can be effectively integrated into existing systems to improve their 

detection capabilities. The algorithm's flexibility and robustness make it suitable for multiple 

applications beyond intrusion detection, such as fraud detection, healthcare diagnostics, and 

financial analysis. 

From a theoretical perspective, introducing Quasi-oppositional-based learning to the 

Mountain Gazelle Optimizer significantly advances optimization techniques. This thesis 

contributes to the body of knowledge by demonstrating how quasi-oppositional concepts can 

be leveraged to enhance the exploration and exploitation balance in evolutionary algorithms. 

The success of MGO-QOBL in various performance metrics suggests that similar quasi-

oppositional mechanisms could be applied to other optimization algorithms, potentially leading 

to further improvements in diverse fields. 

 



   
 

 
50 

In conclusion, this master's thesis has demonstrated that MGO-QOBL is a highly 

effective feature selection tool in intrusion detection systems classifiers. Its ability to enhance 

precision, accuracy, and F1 scores while managing runtime efficiently makes it a valuable 

addition to the arsenal of optimization techniques. The statistical significance of the results 

further underscores the reliability of MGO-QOBL's performance improvements. This work 

highlights the potential of MGO-QOBL in advancing the accuracy and reliability of intrusion 

detection systems and other applications requiring robust feature selection. Integrating MGO-

QOBL into real-world systems can significantly enhance their performance, contributing to 

more secure and reliable cybersecurity infrastructures. 

4.4.Limitations 

4.4.1. Generalizability of Findings 

While the study provides significant insights, the findings are somewhat limited by the 

specific datasets and classifiers used. The behavior of MGO with other types of data or in 

different contexts (e.g., anomaly-based IDS) might vary, affecting the generalizability of the 

results. 

4.4.2. Algorithm Complexity and Configurations 

  The thesis primarily explores default or standard configurations of MGO-QOBL and 

other optimizers. Their parameter settings can determine the algorithms' performance, and 

changing these values may affect the results. A more in-depth exploration into the optimal 

configuration settings of MGO-QOBL could provide a more nuanced understanding of its 

capabilities. 

4.5.Future Research 

To extend the research on the MGO-QOBL algorithm in IDS, investigating hybrid 

models that combine MGO-QOBL with other established optimization algorithms could 

leverage complementary strengths, potentially leading to enhanced feature selection and 

optimization performance. Practical testing of MGO-QOBL in real-world IDS environments is 

crucial. This would validate its effectiveness under operational conditions and help fine-tune 

the algorithm for practical deployment. Longitudinal studies would provide insights into the 

durability and adaptability of MGO-QOBL over time, mainly how it copes with evolving threats 

in dynamic cybersecurity environments. Benchmarking MGO-QOBL against emerging 

optimization technologies as they are developed will ensure that MGO-QOBL remains 

competitive and effective in the ever-evolving field of cybersecurity. 

Exploring the use of MGO-QOBL in other sensitive data environments, such as healthcare and 

finance, could broaden understanding of its utility and effectiveness across various domains. 
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These focused areas of future research can significantly contribute to advancing the field of 

cybersecurity by enhancing the capabilities and understanding of optimization techniques in 

IDS. In conclusion, the investigation into the MGO-QOBL algorithm within the context of IDS 

has revealed its significant potential to enhance the performance and efficiency of cybersecurity 

measures. The study demonstrated MGO-QOBL's robust capability to optimize feature 

selection, thereby improving various classifiers' accuracy, sensitivity, and specificity. This 

enhances the efficiency and dependability of IDS, enabling them to deal with the intricate and 

constantly shifting realm of cyber threats. 

The implications of these findings are profound for the field of cybersecurity, where the 

demand for advanced, efficient, and adaptable solutions is continuously increasing. By 

integrating MGO-QOBL into IDS, organizations can achieve a higher threat detection and 

response level, ultimately safeguarding their digital assets more effectively. 

Moving forward, the exploration of hybrid optimization models, real-world applications, 

longitudinal studies, and cross-domain implementations will be crucial. These efforts will not 

only enhance the practical utility of MGO-QOBL but also ensure its relevance and efficacy in 

the face of new challenges and technologies in cybersecurity. 
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Abstract 
This master's thesis, titled "Feature Selection with Improved Mountain Gazelle 

Optimizer Algorithm for Intrusion Detection Systems," presents a comprehensive evaluation of 

the effectiveness of the Improved Mountain Gazelle Optimizer with Quasi-Oppositional Based 

Learning (MGO-QOBL) in optimizing feature selection for various classifiers. The study 

systematically compares MGO-QOBL with traditional optimization algorithms such as Ant 

Colony Optimization (ACO), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), 

and the standard Mountain Gazelle Optimizer (MGO) across multiple performance metrics, 

including accuracy, precision, F1 score, and runtime. 

The results indicate that MGO-QOBL consistently delivers superior or highly 

competitive performance across different classifiers. MGO-QOBL significantly enhances 

precision and accuracy for classifiers like the Decision Tree Classifier (DTC) and Random 

Forest Classifier (RFC) while maintaining robust performance for GaussianNB and SVM. 

Regarding F1 scores, MGO-QOBL demonstrates a balanced improvement, combining high 

precision and recall. Despite increasing computational costs, the trade-off with improved 

performance metrics justifies the increased runtime, particularly for GaussianNB and KNN 

classifiers. 

Statistical validation using the Wilcoxon signed-rank test further reinforces the 

reliability of these findings, showing significant improvements in many cases. These results 

underscore the efficacy of MGO-QOBL in feature selection for intrusion detection systems, 

making it a valuable optimization tool compared to traditional methods. The study highlights 

the potential of MGO-QOBL to advance the accuracy and reliability of intrusion detection 

systems, contributing to more secure and efficient cybersecurity infrastructures. 

Future research directions include evaluating the performance of MGO-QOBL across 

different datasets, exploring hybrid optimization approaches, and applying the algorithm to 

real-time intrusion detection systems and other domains such as bioinformatics and finance. 

This thesis demonstrates that MGO-QOBL is a powerful tool for enhancing feature selection 

processes, with significant implications for the broader machine learning and optimization field. 

Keywords 

Feature selection, Mountain Gazelle Optimizer, Intrusion Detection Systems, Machine 

Learning, Optimization, Feature Selection, Improved MGO, IDS, QOBL  
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Xülasə 
Bu magistr dissertasiyası "İzləmə Sistemləri üçün Təkmilləşdirilmiş Mountain Gazelle 

Optimizatoru Alqoritmi ilə Xüsusiyyət Seçimi" adlı tədqiqatda, Təkmilləşdirilmiş Mountain 

Gazelle Optimizatoru ilə Quasi-Oppositional Based Learning (MGO-QOBL) alqoritminin 

müxtəlif klassifikatorlar üçün xüsusiyyət seçimini optimallaşdırmaqda effektivliyini hərtərəfli 

qiymətləndirir. Tədqiqat MGO-QOBL-ni ənənəvi optimizasiya alqoritmləri olan Ant Colony 

Optimization (ACO), Genetic Algorithm (GA), Particle Swarm Optimization (PSO) və standart 

MGO ilə dəqiqilik, həssaslıq, F1 skoru və iş vaxtı kimi müxtəlif performans göstəriciləri üzrə 

sistemli şəkildə müqayisə edir. 

Nəticələr göstərir ki, MGO-QOBL müxtəlif klassifikatorlarda ardıcıl olaraq üstün və ya 

yüksək rəqabətli performans təmin edir. Xüsusilə, MGO-QOBL Decision Tree Classifier 

(DTC) və Random Forest Classifier (RFC) kimi klassifikatorlar üçün dəqiqlik və həssaslığı 

əhəmiyyətli dərəcədə artırır, eyni zamanda GaussianNB və SVM üçün güclü performansı 

qoruyur. F1 skorlarına gəldikdə, MGO-QOBL yüksək həssaslıq və geri çağırma kombinasiyası 

ilə balanslaşdırılmış bir təkmilləşdirmə nümayiş etdirir. Ümumiyyətlə, daha yüksək hesablama 

xərcləri tələb etməsinə baxmayaraq, performans göstəricilərindəki yaxşılaşma bu artan iş 

vaxtını, xüsusən GaussianNB və KNN klassifikatorları üçün əsaslandırır. 

Wilcoxon signed-rank testindən istifadə edərək statistik təsdiq, bu tapıntıların 

etibarlılığını daha da möhkəmləndirir və çox hallarda əhəmiyyətli təkmilləşdirmələri göstərir. 

Bu nəticələr MGO-QOBL-nin xüsusiyyət seçimi üçün izləmə sistemlərində effektivliyini 

vurğulayır və onu ənənəvi metodlarla müqayisədə dəyərli bir optimizasiya vasitəsi edir. 

Tədqiqat, MGO-QOBL-nin izləmə sistemlərinin dəqiqliyini və etibarlılığını artırmaq 

potensialını vurğulayır, daha təhlükəsiz və səmərəli kibertəhlükəsizlik infrastrukturlarına töhfə 

verir. 

Gələcək tədqiqat istiqamətləri MGO-QOBL-nin müxtəlif məlumat dəstləri üzərində 

performansını qiymətləndirmək, hibrid optimizasiya yanaşmalarını araşdırmaq və alqoritmi 

real vaxt izləmə sistemlərinə və bioinformatika və maliyyə kimi digər sahələrə tətbiq etməyi 

əhatə edir. Bu dissertasiya göstərir ki, MGO-QOBL xüsusiyyət seçimi proseslərini artırmaq 

üçün güclü bir vasitədir və maşın öyrənməsi və optimizasiya sahəsində mühüm nəticələrə 

malikdir.  
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