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Introduction

This paper concerns the multiparameter spectral (MPS) theory, which is related to
the attempt to solve boundary value problems by the method of separation of
variables. We identify this MPS problem with a suitable "spectral investigation" on
the operator system

A(M)=(A1(0), ... ,A,(0),
where
Aj(x):'Aj—lejl—...—lnBjn .

Let A j(k) be an operator acting in a Hilbert space H; and depending on.

"multidimensional” parameter A = (A, ... o MR "It will be assumed that A jisan
unbounded (in general) self-adjoint operator and B jk 18 a bounded self-adjoint
operator for j, k e{l,2,...,n} ;

Let H be the Hilbert tensor product of the spaces Hj,...,H, . To each operator A i
and B, we associate the operator
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t
Aj=1,® 81 | ®A;®l;;1® Ol

®---®H,, see [19]. The general method for studying the

t B
and B acting In H=H,
structing the corresponding operators Ag, Ay,.--. A,

system A(A) consists in con

n
which are the (well-defined) determinants of the operator matrix (B;k) and the
i,j=1
matrices obtained from this matrix by replacing the j~th column by that of operators

t t
Aj,....An By definition we have

Ap = ZSOBlc(l) e e ®Bnc(n)’
o

runs through all permutations of (1,2,...,n) and €5 is the

o introduce the other tensor determinants Ay,.... 4, ,
We note that the operator Ag is bounded in H and the

where © = (c(l), ,o(n))
signature of c. We can als

defined by analogy with Ag.
operators Ap,...,Ap admit closures.

We assume that A is positive definite: Ag>>0, i.e. (Agx, x) > alx, x) for some

o>0 and for the arbitrary x eH.
-1 -1 :
tors Ag Ay, ...,Ap Ay is the family associated with

The separating system of opera

the multiparameter system A()), and certain important problems in the MPS theory
have a complete solution just because they can be expressed in terms of this family of

operators.

The precise definitions along with various properties and the interconnection between
the original MPS problems and the corresponding problems for the separating system

of operators can be found in [4], [22], [15}, [16], [13].

The spectrum of a multiparameter system A(M) is defined to be the set ol A()] of all
A eC,, such that each of the operators A()) is not invertible, see [11]. The point
spectrum of A(}) is the set of A €C,, such that each operator A j(X) has a nonzero

kernel. Let us note the following important properties of self-adjoint MPS systems
which are well known from the standard multiparameter theory, see (8], [21], [22],

-1
[12], [14]. The separating system of operators I'j = Ag Aj, j=12,...,0 consists of

essentially self-adjoint operators (i.e., the closure f; is self-adjoint) in the space (H),

S —

PP N N O —
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which is the Hilbert tensor product H);®---®H, with the "weight" inner product

(x,y)= (on,y). The operators ﬁ, ...,I'y are pairwise commuting in the sense that
their spectral measures EF_]"" ,E-r— commute. Let E, denote the standard spectral
n

measure Ef—l ®...®Ey- of the strongly commuting family of self-adjoint operators
n

Fl, ,F_n. Further, we have

dekr=v = e
o[A(-)]= SuppE, = oJ‘(rl,...,r,,).

Here the left hand side is the spectrum of the MPS system A(A) and the right hand

side is the jo-int spectrum of the strongly commuting separating system of self-adjoint
operators.

Then it is natural to call joint spectral measure E , of the separating system Fl, sl

the spectral measure of the self-adjoint MPS problem for the system of
operators A(?L).

This paper deals with the geometrical and analytical structure of the spectrum G[A(-)]

and the construction of the spectral measures “of the self-adjoint MPS problem
beginning with the corresponding measures of the original self-adjoint operators

A j(k), AeR" Further, in addition the operators A,,..., A, are assumed to have

compact resolvents except one. From the point of view of applications in
mathematical physics these requirements can be regarded as natural (one radial and
several angular variables arise by applying the method of separation of variables.)

In the fifties H.O. Cordes published a series of papers on the method of separation of :
variables studied in the Hilbert space. See [9], [10] also [18]. The solution of the
problem for some two-parameter operator systems can be deduced from these works

*
by Cordes (n=2, A=A, is arbitrary and A, = A; has a discrete spectrum,
B +Bpp =1, =By +Bgy = I, B1120, Bj;20, By <0, By 20, A‘6\>'0-
consequently, the operators B;; and B;; commute).

For the three-parameter case see [1] and for some general discussion see [2]. We
essentially use the Bishop's ideas (see [7]) concerning the structure of the roots of
analytic functions of several complex variables with values in Banach space and spme
arguments of the geometric theory of functions of several complex variables. To
construct a spectral measure in a general n-parameter problem we essentially use the
Cordes method for the two-parameter case.
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§1. Input Multiparameter Operators
Representation in terms of a Separating
System

Let Bjy be self-adjoint bounded operators and A be a self-adjoint unbounded

operator in a Hilbert space Hj,  j e} v }, and H=H;®...@H,,.
Further, denote

P det(ng) p

and let A; be a tensor determmant operator in H which can be defined in the

usual way, namely by replacing the j-th column of Ay by the column of
operators Aj,...,A;. For example, if n=2, we have

Byy -+ Bin
X L (l)

By -+ Bm

A0=B“®B22-B12®B21 and A| =A]®Bzz-B|2®A2.
By definition we set

D(Aj)= D(Al)?D(A2)®~-®D(An) ;

where ® is the algebraic tensor product. If Ag>>0, then the operators
-1 A :
[= Ag A i j=12,...,n are essentialy self-adjoint operators n a new Hilbert

space (H) with an inner product
<-_- >=(-,A0-) s

Let us introduce the operators
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n
Bix(v)= Y Biafapde), jk=12,.5n (2)

m=1

depending upon the variable v, that is,

(Bi(v) _=(Bj)

X n><n(fj (V))nxn’

where f jk(v’) are some scalar functions to be determined later. Now we
determine '

n

I"j(k,v): Z[ﬁ.~lk)gjk(v), [ Ny GO

k=1

where g jk(v) is a cofactor of the element f jk( v) of the matrix (f jk)n 3 Then
X

A(A) Bpp(v) - Bpp(v)
ol (1 =A1811 + 42812 +... +Ap8in —
An(x) Bn2(V) Bnn(v)

~Ag(Mg11 +22812 +--- +An81n) = (Ap =AAg)E 1+ -o (AL = 20A0) 810

and hence

Ty(0.v) x 2.
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8
for xeD(A)®...® D(A,). Now multiplying (3i) by
a

Btlj(v) =B;j(V)®; ®...®l, and summing up we obtain
Bn(v) - Bz.(V)\
)

nZ(V) e Bnn("

ZBU (VA v)x = {BIJ(V)AOI
j=1
AT _1B21(V) By(v) - Bya(V)
B)2()A0 el eant U

Bnl(V) Bn3(\') Bnn(")

- _1B21(V) BZ,n—l(V) :
+H{(=1)""Bin(v)A0 A (M)x+
. Bnl(V) Bnn—l(v)
| 2 < Iaplil et |
+{-311(V)A0 B32(V) B3n(V)+BIZ(V)A0

Bu(\’) Bys(v) -
1B32(v) an(\') o +( n" Bln(V)Ao

By(v) - By n1(V) .
Byi(v) - B3n1(\') }Az(V)H s -

{ ()_1 Bjp(v) - Bp(V) |
+ Bil v)Ag e

Bn-l,2(V) Bn-l,n(")

gt 2 Bylv) - Bypalv) ;
+-1) Bln(V)AO' }An(l)x. @)

Bn—l,l(\’) Bn—l,n-l(v)

Itisex

Acc
[14

(let
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Let us assume that

det(fjk (V)) =1.

nxn
It is easy to show that

By(v)

Bln(")
AO — .

) Bl

Then the expression in the first bracket on the mright hand side of (4) equals to 1
and the others equal to 0. Thus, by analogy for the other sums

Z BkJ T'j(A,v) we obtain the relations

AL d S ROy

m=1

- xeD(A))®...®D(A,).

In particular, if A = (0, ...,0) and fi(v)=...=f(v)=1, fjk(v) =0, for
j#k, we obtain

Ajx= ZB jTicx., x eD(A)®...®D(A,). ),

k=1

According to the MPS theory of self-adjomt operators (see [8], [23], [12],
[14], [22]), we have

(T v)) = ﬁD(A}(x)), AeR',
i=1

=l

(let us recall that the operator A;(v) is closed by definition).
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Let x eﬂ’D(I’j).Then there exists the sequence
j
Y cD(A1)®...®D(An) such that x, — x and
a

Atjxn - Atix R ES

A‘l\+...+\'.‘ is determined
)x, then we have

o] o

2+2( (xn—x),(A;\+...0-‘A‘.\}x.—x)).

e is commutative, so the last term

) that is why, the operator

T fact,D(A;) & D(\A‘j

in D Atl n...mD(A;). If x, —x and

-yt
.
Yoo

i
Aj

t t t t
Ayl+...+|An Al+...+|An

t
+...+An

t t
Apl+... + Ay

{

The family of the operators

An

of this sum is a non-negative number. Hence

Atl (xp— x) = 0.

We have
t
Aaksns x) — 0.

Thus, Atj Ky~ Atjx MR
Taking A;-(X) instead of Atj we obtain the same proof for Atj(l) =]....n

and A eR".
Further, from Atj (AM)xp— Atj(}.) x it follows that
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Aj()»,v)xn —-)K}(?»',v)x,‘ il 55n,

where A j(X, v) is obtained from A by replacing A ; by A j(K) and By by

e e =15
B jx (v) Taking into account that A is 2 bounded operator we obtain

i(A,v)xp > Ti(A, V)%, j=12,...,0.

for each element

J

% eﬂD(A}(x)) = ﬂD(A}).

This proves the following proposition:
Lemma.1 Let A and Bjy be self-adjoint operators and Ag >>0 and

By(v)= ZBjmfjk(v) , jk=12,...,n, where fj;(v) are some scalar functions
m

such that

det( fjk (V)) =1

nxn

then the following relation |

ASM)x =T B (W v)x, j=12,....n {5)
K ]

n
holds for each x € ﬂD(A;)
=1
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§2. n-1 Discrete Problems Structure with n-
Parameters

Let Aj,Ag,---» A, be operators with a discrete spectrum (that is, their resolvents
are compact operators) and the following conditions be satisfied:

5jk-Bjk>>0, j=1,2,...,n—1, kelid. P forsome63k=j:l, (6)

B,y - Bik-l Brespaii™ Bin
A o o S a5 vt >>0 (7)
Ba-t1 - Bithet Bp_1k+l *° Bn-ln

for some set of sign factors &, =l

We note at once that the formulas (6) and (7) do not impose essential restrictions on

the operators B jk in the sense of following propositions:

Lemma 2. 1f Ag>>0, then the operators Bk can be replaced
mbinations such that these new operators satisfy the conditions 6)

by their non-

degenerate linear €O

and (7).
Proof: Let xg eH,,, such that (Bmxz)l ,xg} #0. Then ‘
By Bin :

n n
- : g i (Bnkxo,xo}Bjn
I B..xq.%0 |-det| Bix —
Bp-1,1 Bn-in ( nn”0> 0) ® ik n n
nein n n BnnXOaxO)
BX0.%X0 | | BmnX0,X0

(n-1)x(n-1)

Assume that (B mxg,xg) > 0 for the sake of simplicity. Then Bji can be replaced by

Bk » where

B =B

amd we hav

For every §

see [5].
We set
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'(Bnkx('; X0 ) P
B:ik =Bjk—“"‘"‘—nTBjn, B_’in= jns j=1,2,.. i Lo k=1,2,. ,N
(Bnnxo:xo)
and we have
n 3
® det (B&k) { 50,
k=1
For every set of sign factors €. =%1, r=1,2,...,n-1 there is a non-zero vector
-1 '
a(e).eRn such that
n-1 |
gr 9. 0g(e)Bjs >>0, dafbey s )
s=1
see [5].
We set
: n-1
=2 ag(DBjs, I=(1,1,..,1)
s=1
Bik =Bj +(Bj; ,j=12,...,n; k=12,...,n~1,
. n i
where ¢ is a large enough number. Taking B +cZBj’k, instead of By, where c is
’ : k=1

a large enough number we get the formulas (6) and (7).
This proves lemma 2. g
Now, let us consider another two-parameter operator

A(r1,A;) = A-AyB; —-1,B,,

self-adjoint bounded operators, moreover,

Bl >>0, B2 S50

where A is an arbitrary self-adjoint operator with a discrete spectrum and B, B, are
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Lemma 3. The real spectrum of the operator A(Ay,A7) consists of eigenvalues only
and we have

o[AO]AR’ =6, [A0]R’ = Ura,

n=1

5

where v, is the analytic curve in -R . Moreover, the points of intersection do not
2 :

accumulate in the finite part of R and if y, = {7\.: Ay = (pn(ll)}, then we have

d(pn( 0 0) (Byu,u)
Aiiky == 4
d)"l s (Bzu,U)

0 0,0
for an arbitrary u = Ker(A(M,?&g )), provided (M,kz) €Yn" Yy, (n=n’).
: R o B 2 0.0 -1 '
Proof. 1t is clear that if (7&1,?»2) ecnR , then (M,M) eo[B2 A()] Since the

=1 . =1 0
operator By A has a discrete spectrum, the same is true for the operator B, A -1,
According to the well-known theorem of the perturbation theory (see [17], theorem

g : . 0.0
VIL.1.8 and I1.1.10) the spectrum in some neighbourhood of the point (xl,xz)
5 0.0
consists of the analytic curves vy}, k=1,2,...,m’ passing through (Xl,lz) and for

every curve y{ we have

doy ( 1 ) (Bju,u)
—% =-{B; Bjuu| = § 8
d)‘l ()‘2’;"(;) R Bj (BZUaU) ®

where u = Ker[B; lA(h(i,koz )] and (x,)’)32 =(x,B,y) (the formula (8) is proved by
Rellich, see [20]). |

; pel .
Since B, Bj is a strongly positive operator on Hp, , we have

doy
== b,
.



e |

|
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where a and b are some negatlve numbers. '
- Then each of the function ¢ is continued along the whole R analyt:cally
Indeed, if :

v ={aa, =.<p-(ll)}_,

and A} = a(pro;qy’) is a boundary point of projection of the curve Y’ on the

axis @A, then the function ¢ is continued through A} into some of its
neighbourhood, because all spectrum points in some neighbourhood of

. (7» ¥ 2.2) €0y’ consist of a finite number of analytic curves and it is clear that

one of them is a continuation of @. Similarly, if
K =Sup A.], p.i =inf l; £

where Sup and inf are taken with respect to the set of those A, in which ¢ is
continued, then ¢ is continued through i into some of its nenghbourhood
Thus, we have py =, p;=-o and lemma 3 i is proved.

Lemma 4. The set o[ A ( A.)]mRn consists of at most countable number of the
analytic surfaces

& Bpedhasky = gn(hs. s dg 1))

il

( @, is the analytic function in R" ).Only a finite number of surfaces can pass
through each point A eR"

Proof. 1t is known that O'[A 1(?»)] is the complex analytic set (see [7]). Assume that

0
A eo[A 1 ]mRn There exist non-zero functions Fm(ll, A--hy), holomorphic

=

in some complex neighbourhood U of the point x such that common zeros of these
functions coincide with

! c[Al(A.)]mU, m=12,....r
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First of all, let us consider a zero-set (the set of all roots) of the function F;. We
denote A = (Ay,-..,Ap_1)-Suppose that Fl(ko, ln) # 0 (this condition can always be
obtained by the linear combination of the variables). Then by the Weierstrass theorem

g 0
(see [21], §8, VI) in some neighbourhood of A (without loss of the generality in U)
the function F; can be represented in the form:

TR (B IR (WS RS  B

where Cm are holomorphic in fj = {()"l" o kn—l) . (ll,..-,kn) € U} » Cm(io) i

and (po(k) #0 for A eU.
Thus, zeros of F; are given by the equation

P(A) = (x,, & x‘L)k +c1(i)(xn —A‘L)k-l + vl o

This equation has k number of roots with respect to A :

x(:l) =gnih); Nelaaal;

1 G e
where the function gy are locally holomorphic in U everywhere except the set 4;, in

s =0 for the

n
A efJ\lﬂl and it is sufficient to apply the implicit function theorem.In a similar manner

which the equation has at least one multiple root.Indeed, we have

zeros of each function F, are given by the locally holomorphic functions g:; of the

1
type g,
Assume that (ul,uz,...,un) ec[Al(X)]mRnand

ey
(TRRTESMNTINEY 1) $\R U

m=1

X o - m
where 4, is the analytic set, where the function gy may

T S—

be
Th

De

Tk

re|

Mo Q

=

]
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be of non-holomorphic character. o
Then there exists some neighbourhood U(ul, W, s un_l) such that all the

. k ;
functions g,, are holomorphic.
Denote

sl k
I\'],k:{}": KEU(Ulal’lZa---,Un—l)a xnng()"la---’xn—l)}-

Then the part of the set o[Al(X).]r\Rn which is in the neighbourhood U, can be
represented as a union of all the various intersections

(0’1\},‘( M. ..r\(})ﬁ,k) AU, N R".

We shall prove that

oA (M]AR" A U, = U(m,;k 1 mR“), ©)
Nk

that is, the unit of some surfaces (which corresponds to zeros of the only function F;)

coincides with the spectrum in the neighbourhood U, R".

To prove it, let us consider the simple case.
Let the number of analytic functions F; be equal to 2 and let each of the function

Fj;j=12 have two cofresponding different surfaces in R, namely ¢ and #, for Fy,

also Q and Q, for F,. Then (9) means that the set c[Al(x)]mRn nU, coincides

with one of #, & or A Uf,. Indeed, let and Q; be determined correspondingly
in terms of the functions

7\.n = Pj (7\.1,7\.2...,)\“_1) and 7\.n =(]j(7\.1,... a)"n—l)'

Let us investigate three cases:
1°.If P; # Q, for all j, k=1,2, then

o[A|(M)]AR" U, = 'k{c(@j ka) .
)
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- 4 N
It is clear that #; ~Q is a curvein R .

We recall that the curve y R" satisfies the following condition:

-1
in the neighbourhood of each point (ll,...,ln_l) eR"" there IS a point (ﬁl,...,én_l)
such that (&1,..7,&,,1_1,&,,) gy forall £, eR.

Let prove that the point & ec[Al(X)]n R" MU, does not satisfy the last condition.
First we consider the following two-parameter operator with respectto A, _;, A,

0 0
Aj(Ap_yAp) = (Al —E1Bii- Ep ol )‘ AgBig_1 — 4B,

0 0
Then (é n_l,...,én) belongs to the last operator spectrum. According to Lemma 3

: 0 0
some analytic curve A, = o(A,_;) passing through (5 n_l,...,én) also belongs to this

one and the equation
| S |
(Bl,n—lu »U )

=
(kn-l,;"n) (Bl,nu ,u )

A,
dAp—y

1 0 0

holds, where u eKer(Al B PR B A—1Bin-1 —XnBln).
l l ~ ~
Assume that (kl,...,kml) €U’, where U’ is a small enough neighbourhood of the
Pk e T |
point (&1,“‘,§n—1)-
0 0 0
Denote l_[= {7\., ln—l = An__l}, Yo = {137\.1 :él ,...,Kn_z = én_z,ln = (p(?\.n_l)}
0 0 1 1

and HmyZ =A"= (&1 ,...,én_z,ln_l,(p(}»n_l)).

Assume that our proposition holds for n-l parameters.  Let

0 0 1 1 1 =1 1
(“l:---’un—l) ec[Al—llB“—...—Xn_lBl’n_l]r\Rn , where A is self-adjoint

1 : o ;
and Bj, are bounded, strongly positive or negative operators. For each point

If

fol

or

2%
If
col

30

Thi
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J 0 0 )
(nl,...,nn_z) from a small enough neighbourhood of (p.l,...,p.n_l) there exists
My-1 €R such that

1 1 1 .n—1
(m ,---,Tln-l) EG[Al ~AMByp - - A‘n-lBl,n—l:lﬁR -
We can apply this argument for the operator

gt 1 1 1
(Al -= xn—lBl,n—l) =MBiy— ... =Ap 2By —A Bpy.

0 0 1 :
If (2‘,1,...,&,,_2,(;)(7..,,_1)) belongs to the last operator-functions spectrum, then it

: 1 1 s 1
follows that for the point (7\, e n—2) there exists A,, €R such that

2 8 1 1 1 1 1
(7»1, SRR ln) EG[AI “ABy - A oBin g = A By g - lnBl,n]

or
1 1 1 1 1
(7»1,...,7\.“_2,xn__1, ln) EG[AI(K)] .
2°.A =Q and P =Q,

If #"Q, A, then by repeating the previous arguments we shall have a -
contradiction.

3°. If A = Q, and P, = Q,, then we obtain

o[Al(?L)]r\Uu =AU,

i 1 1
Thus, cs[Al(?»)]r\U}l consists of some surfaces # U...Uf,, where we denote

1 1
A =Ny -1,k =1,...,£ for simplicity.
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1 . ; i
For each surface M there exists some analytic function gx such that we have

1
Ay =gk(7»1,...,7tn_l) for the points A e@. Let us prove that gy has the analytic
=1
continuation on all R"~ |

(1)

1 1
If A" €0 \A| (let us recall that the analytic set is closed and does not divide any

1
domain), then l( ) eo[Al(k)] (as the spectrum is closed). By repeating the previous

I
arguments for A’ we obtain that in some its neighbourhood all points of the spectrum
belong to some analytic surfaces Q:n, m=12,...". Each surface Q'ln is given by the
equation A, = qp(Aq, ... ,An_1), where Qm 1S an analytic function.

1 1
Let Pr(kl,...,ln_l)Pk denote the projection of # on the hyperplane (ll,...,Kn_l).

g
It is clear that (P,(Xl,...,ln_l)ﬂ’k)mUl iS an open set. If

1
gk(ll,...,kn_l);tqm(kl,...,kn_]) for all m=12,..¢ and

1 1
(7»1,...,7\.“_1)6 P(A R MUy, then the whole set B ~U; cannot be
1 |

covered by the union U ((Pkl N ern) (see the above mentioned arguments). So we have
k,m

gk(kl,...,kn_l):qm(?»l,...,kn_l) for some m and for all
17 %,
(}\.1,...,}\,"_1) E[Pr(xl, v}"n—-l)ﬂ(]mUl-
1
Then the function gy is analytically continued through the points K( ) €3 (according

to the definition of the analytic continuation).

oy O Sl s g iy - . '
Assume that LX 1,...,%_,} €U \A) By definition of the analytic set there exists the

A(1)

180 A A1)~
curve A A cU\Ay, and if X(z) :(X(l)kl)ma[Pr(ll,...,7»,1_1)031(1 leln}, then there

2 A(2) A
exists k(z) e@(&]kl mern) such that K( ):(l( ),?»2,1), see[21].

: 20 s

Thus, the function gy is continued through A ) In a similar manner.Let M be the set of
~(1)~1 : . b e

those points of ?\.( )}» , on which the function gy, is continued in this way.

— A . s

e P A e e s 8
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3 . $0. 1, ~(1)21
It is easy to see that M is at the same time closed and open,that is, M=7\.( )l . Indeed,

the spectrum is closed and the function is continued from the neighbourhood into the
neighbourhood.

Thus, gy is continued into the whole U\ Janalytically.

According-to the well-known theorem of the theory of several complex variables
~ (see[21], theorem 3, §10) if the function is holomorphic in some domain, except some

analytic set of the co-dimension one and locally bounded in A, then it is continued
holomorphically onto the whole domain.

N o8 ; i ' -1
Thus, gy is holomorphic in U. Let us consider the restriction of gx on R For each
point of the boundary of the domain by repeating the previous arguments similarly to

s : : ) < ~1
Lemma 3, it is easy to establish that gy is continued holomorphically onto i
Now let us prove that the number of surfaces is at most countable. In fact, for each

surface £ there exists the point A such that only the finite number of surfaces passes
through it.

Let r),13,...,1Ty41 be rational numbers such that

I(rl""’rn+l)_)"| <yl

and, moreover, such that the other surfaces of G[Al(l)] do not pass through the
neighbourhood

|K~(rl,...,rn+l)|<rn+l.

Thus, we get the one-to-one correspondence

{@],,ﬂk} —)(l’ 1,...,I'n+l).

It means that the number of the surfaces is at most countable.
Lemma 4 is proved.

~ Lemma 5. The set G[AI(A)]m mo[An_l(l)]mRn consists of at most countable
number of the curves y,, with the following properties:

k k
Dy = {l 1A = (pgn)(kl)} , where (pfn) is the analytic function.

2) These curves intersect at most countable number of the points and the intersection
. s o n :
points do not accumulate in the finite part of R .
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Proof. Let ¢,,...,¢,_ be the spectrum-surfaces of the first, s r
problems, correspondingly

= b .
& T et
‘Pj2{7"37"n=Pj(7‘lamsxn-—l)}; J=L2..a-b
g T._ﬁ-‘ B 3
Denote o R -
: i e R P
q)j(xl:---sxn-—l)=xn—pj(xl,---,xn—l); .i:M_*‘!-"
: £ o
The Jacobian of this system is sl
A s
oAy oAy ik 1
o | ; : :
0Pp-1 ., OPp
oA P,

0

0 0
A=A, e Ay = Ang, then 0(Ag_1)=p1{2A,..,A% ,.A_ ) =0 for some

v s N sl
function Ap_; = ®(Aq_1).
It follows that

R ]
B ._u,u)
oD, _ 99, (l’"l

An1 Mgy (Bl n_lul’ul)’

1 1 1
where u eKerA (1), u # 0 (see lemma 3).
For the other functions p; and the points A j we have

(Brou' ') L .
o 3 : : 5
(B";l,zun—l’“n—l) (Bn—l,n—lun_l,un_l) 1
(Bn—l.nun—l . un—l) : TB'n—l,nu“"l, ‘u""y




’

1 = =
u ®...®un 1,u1®...®un i

Bn-12 - Bpoin
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n-1 S ;
k k : ’
= H(Bknu Ul )-det((BjeuJ,uJ)), forall j=1,2,...,n—-1,£=2,3,...,n
k=1 ;
According to the formulas (6) and (7) we obtain that J=0.
Then in each small enough neighbourhood of the intersection point #,...,#,_; the
system of the equations
{(DjZO, j=1,2,...,n—1}
~ has the unique solution
Ay =01(A)
Ao =@n-1(Ay)
and for this curve points we have the formulas, like
Biy - Bin
- A . 1 = -
-%%lz— ’ 3 C e ®...®u" l,ul®...®un :
1
Bn~l,l Bn—l,n
(10).
b=y :
Bz - Byn
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24 AFGAN ASLANOV AND HAMLET ISAYEV

§3. The Approximation of the Joint Spectral
Measure of the Multiparameter Problem

In this section we approximate the joint spectral measure of the self-adjoint operators -

s -1
Ij=A4Ap Aj,jzl,...,n by means of the spectral measures of operators

n
Ak(l); k=1... 04 &R
Let o be some analytic curve consisting of the points

A eo[Al(k)]m... mc[An(l)]mRn,

and d be some arc in this curve such that d does not intersect other spectral curves,

d= A. u where 7» and u are the ends of the arc d, moreover, l gd, u ed and

0
A’l <”’l‘

- < 0 0
Let A denote the midpoint of the line segment [k U ] Furthermore, let vj be the

angle
A

-
vj= Pr(kl,kj)[ko,uo] OAl, j=2,...,n, and

B, =tgvy By, +...+tgvyBy + By

And if we denote by v; the angle between the projection of the tangent to the curve

at A ed and the axis OA|, then from the results of the previous section (see (10)) it

follows that
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tgv; =(—1)k X

By B Bigar i 5 B
x| det] : : : Ve vt ue.. . eu!|x
Bu-1,1 Ba-1k-1 Bo-1k+1"* Bp-1n-1
o

By By :

= : i 1 n-2 1 -1
x|det| : : U®.®u “u®..®u . (a1

Bn—1,2 Bn—l,n

1 *
where u’ eKerAj(X ), j= L2 =1 .

= n
It is easy to prove, that for each x eH, we have

o & : n n
((than+...+th2Bn2 +Bn1)x ,X )

=1
By -t Bia

3.

. ; v 1 n-1 1 n-1
= det : : : u®..®u ,u ®...Qu =
Bn—l,2 Bn—l,n

1 n—1

u

n

1 il 1 31 A
‘=(A0u ®...0u" ®xn,u ®..Qu" ®xn)2cu Ax [ (c>0).

* e
It is clear that tgv, ~tgv, for small arcs d, consequently B; >> 0.
Let (Hn)v be a Hilbert space consisting of H, with the scalar product

(-3 -)v = (-, B:,) We denote the orthogonal projection operators on the kernel of the
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26 AFGAN ASLANOV AND HAMLET ISAYEV
P con
operators Aj(k ) j=1L...,n-1 considered as operators in H; ®...®H,_; ®(Hn)V nur
J
by E"».
. i A
; -1 :
We also denote by E;(l, v) the spectral family of the operator [Bv AL k)]
wi
considered as the operator in H|®...®H,_, ®(Hn)v Fu
Furthermore, we set
S 1 tgvy -+ tgvy
a :Mtgvn 1 o thn—2+m
s T (h
tgvy  tgvy - 1 L
tgvy tgvy --tgvp  tgv,
0 0 1 ceet t
+(_1)n—l “-n s }"n thZ gVn—Z gvn—l =
4 PR . b Ll
tgvy tgvs Z| tgvy a
€
(
0, 0.1/ Mg 0 .0
HE—A) 1y —2Ay e !
2 2 2 !
tgvq 1 o 18vpp |
tgvy tgvs 1
Then
1 g - tavy
0 .0
R MY 1 ety
Qg = ;
S R L it §

According to the formula (1 1) we can see that t

gv; becomes small enough if ‘we
multiply Bj; by a small enough number €. With

out changing the notations let us



‘we
us
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. * .
consider that the condition is satisfied, i. e., the absolute value of tgvy is small enough
number. Then we have &

0 .0
g = (l-ll 5 M)c,

where ¢> 0.
Furthermore, we set

E[“xo Kk EL (R,v)-E_q,(%.V)

= 0.0
(here A is a midpoint of the line segment [k ] ] )

Let us also determine the operator

1 n-1 n
WL B <5 Bk R 12)
2 e g [xo,uo] (12)

acting on the space H;®...® H; ®(H,) , Now we shall construct the projector

equivalent to the previous one which projects onto the range of values of the operator
G4 with respect to metrics (-,) ={-, A¢ )

Lemma 6. The projector in the space (H),which is equivalent to the projector Gy,
can be represented in the form ‘

-1 ¢ \7
@4 =Cg,Gd4|Bv | Ao,
where Cg, is defined from the equation
t
(u,BV,CGdV) = (u,on)
for arbitrary elements

u,v eR(Gd).

To prove the lemma see [10], lemma 9.
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28 | AFGAN ASLANOV AND HAMLET ISAYEV

We wish to show that for the small arcs d the Operator @ represents some Suitable
approximation of the operator

where E’ is the spectral family of the operator
-1
Fj-‘IAO Aj, je{l,z,...n}.

Let dcacom, amomv =0, m#m and contain both ends and J be the

parallelepiped which is parallel to the coordinate axis, moreover, d ]
Now we set

fii(v) =1 fi2(v) = tgvy - finlv)= tgvy,
f21(\’) = tgvyq fzz(\’) =1 fzn(\’) =18vy_
fnl(V) = tgv, f‘nZ(V) = [BVy < fnn(\’) =1.

Let t jk( v) be the cofactor of the element £ jk(v) of the matrix (f jk( v))nxn.
It is easy to see that if lz(kl,...,Kn) is not joint eigenvalue of the operators
Ii....,T,, then I1(,v) is invertible. In fact, if Ty(A,v)x =0, x#0, then F{A}x0.
Now it follows from [11] (see VI §5) that there exists ye(H) such that

Iyy= Ajy,i=12,....n. Butitis a contradiction.

0 o
Theorem 1 . Let both ends A, 1 .ofthe arc d not be joint eigenvalues of the

operators I,...T, and denote
0 0
(i)

where o, is determined according to the formulas (11) and d is inside of a small
enough arc d .

Then for each g e(H), fe D(WJ) and for 0<y < % we have the estimation-

-1
2
Wa =ay




itable

the

Or's
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(e.(Fa - @a)Fie) | (r.5){ () «wg F“f>>+

+{(®qg)) [((f))+<<w§ f>>]} (15)

: o { ~
where the constant C (y,J) does not depend on the location of dson dand 0<q<l

Corollary 1. it f, — f and W;{fn —)W}f for some 0 <y s% and
£, £ éD(w}),then- o

(Fg - @4)Fsf, —5(Fy - Dg)F5f .

Corolla_py 2. If the points F,(n), n(n) are not joint eigenvalues of the operators
Ty,...I, and |

- E,(“) = lim n(")

n—»oo n—»oo -

b

t\liiana(“’ m(n)] ol ¢[§(n) m(n)] ¥
on the dense set :

UD(W} ) c(H).

¢

Proo[. We set

a'={xp;{l(xi—x,)tu(m...+‘(‘§'i§- At}
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@ =m0~ 2)taa (V) + -+ (=g g (W)}

It is clear that

o' {(Faf)) < ({ry(a, VIE4f)) < a”{(Fyf)) (16)

Now, we shall represent the difference (F, - Dy )Fj
estimate all of them separately.
Let a be a length of the arc d which is less than 1 and also ag €(0,1).

as a sum of several terms and

: 0 0 :
We draw parallel hyperplanes through the line [l L ] with the distances between

I-¢ s ; . ; :
them equal to oo % and denote their points of intersection with the curve Om Od by

Let us choose the natural number r such that the following relation

1-¢

1- 2 1-
(r—l)oco oz(() “o0)/ ST

v 5
holds. If & is chosen to be small enough then the whole arc lrur can be put into the
parallelepiped

o

n n
Jz{l:ai <Ap<a),...,a <Ay <a2},

such that the distance 2 from the boundary of this parallelepiped is more than
1- 2 e

Cy -a(() “o)/ and the other points of the curve Omoutof].

Denote

then

Letu
Weh
1)@

and

Ac

il



(16)

ms and

‘ ‘the
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(Fg —®q)F; =(1-@4)Fy —q’d(Fj —F,)—

n d amn
kZd’d(Fd;g +Fd1'<)‘q)d(de +Fd1’()'
=7 v

Let us estimate all four terms separately:
We have

1) ®4G4 = Gy, therefore,
(1-@g)Fy =(1- 0¢ )(1-Gq)Fy

and

((1- @) Eyf)) < V2{((1- Gq)Faf)) s V2 <<(I-—E; : +E;. -

n—-

1 1 -1 1 1 1 -1
BES R SE VR s E S\Eh HBis%iE « Brio o1l
5 % % {ud). =ik Buld % DUR S [x m ]

! -1 1
S\/E<<(I—E11)Fdf>>+"-+\/5 Elt---Ent I-Er gio Faf
A A A [k X1 ] »

According to lemma 1

(e e

Lok ey ® ' T
(I—Ex-)-ZBjk(v)l"k(X . - (18)
& v : ’

v it is clear that
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32 AFGAN ASLANOV AND HAMLET ISAYEV

<<Fk(;f, v)pdf>> <cao((Fyf)), j=12,...n-1 (19)

(for k=1 it follows immediatel
same arguments).
Hence

y from (16),and for the other k it is true too due to the

<<(I—-Ei- )Fdf>> < C3ao<<Fdf» e £ L2,...,n-1, ; (20)

Furthermore, according to lemma 1 we have

& L
I—E[lko 0] [Bv’An(x)] FyWyf =
M

n n 1)1 t et e |
=3 I—E[ko “o] (Bv) Bk (v)-Tk (%, v)W,Eyf

21

( by definition B, (v)= B,).
By denoting the operators



(20)
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M Pz{[B;lAn(x)]‘}"‘ -50,0)

1

Yzi{[B;lAn(X)]‘}_ I—'EEO 0] .(Bt,)_lItB:‘k(v)-‘I—;'vk(X,\’:)WdFdf

k___2 )\. N

we obtain the following operator equation

X-PXQ=V. ® (22)

Recall the following proposition from [10]

Lemma 7 Let H, be a Hilbert space, B be the self-adjoint operator in Hy,where

B>>0, Hp be a Hilbert space which can be obtained from Hy by introducing the
scalar product

(u,U)B — (u,Bu)o-., u,v eD(B).

Furthermore, let P be a bounded self-adjoint operator in Hg and Q be a bounded self-
adjoint operator in Hy and

ke i
[Pl <v. laly <y
- :
Let the inverse operator W = [I - ('y Q) ] exist as (possibly unbounded) operator on
the dense subset
D(W) c Hy.
Let us assume that V is defined everywhere in H and if v e Hg, then Vv eHp and
“V"“B s CV“"“() :
Then the operator equation

X-PXQ=V
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22

has the solution X which is defined in

Prg
—— I+y
prol D(X)-UD(W ) Y e(o,%]
Y
and which can Be Tepresented as a sum of convergent series in the sense of the metric
» :
De; .

e o]
Xv= 3 P™VQ", v ep(x)
Th | o

XveHg veD(X)

and the estimation
I+y
IXvlg < CDC(}')”W v 3
holds for all
If '
fi : ueD(Wlﬂ), O<y Sfl'
It :
We can see that the equation(22) satisfies the hypotheses of lemma 7 and WF; = W, F,
(Here the main points are the inequalities
= [ * 3 2 2
<<r j(x ,v)Fdf> Scqao((Faf)), j=12,.. n
; which follow from the fact that the integrand under the calculation of «l_" i, V)E;f »
is equal to the following expression ’ '

( —ui’)tﬂ(v)+---+(x;, ~Hn Jtn(v).

But for small arcs d we have
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0 0
Ap—Hn _

0 0 thn"'on(ao)
M-y

and hence,

1 tgv, -+ 18y

(li-u?)ln(V)+---+(7»h—u?\)tjn(\')=Cs 01(::0‘0) 05(ao) On(i“o)

tgvy fgvg | - 1

where Ok(ao), kel ..., n} are elements of the j-th row of this matrix.
Thus, according to lemma 7 we have

||Xg||sC(,C(y)a0<<W;+YFdf >> .

g eD(WaFy)'™".

Hence we obtain

I—El[;o,uo] Fa(WaFq)f|| < C6Clr)oto <<W§ (WdFdf) >> :

The operator WyF; has the inverse in the R(Fd) and since the set
{WyFyf, f eD(Wy)} is dense in {F4 (H)}l, we have

n n !
I-E{xo uo] )= I—E[Xo Flo] Fag1 SCGC(Y)OC0<<W<I (wdFdf)>>’

forall g=g;+82 eD(Wg) ,where g; eR( Fdi and g, €Ker Fy.

As a final result we obtain
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(= Dy )Fyg)) < aoc7c(y)<<wd7 Fdf>> +

V2. nCsoo ((Fyf)) < (XOC8C'(’Y)[<<WJ Fdf>>+<<Fdf)>] .

2) There exist numbers Mo, L A4, 1y such that

I 2 n
F}, =E51E52~--E5

n?

where
g et -
E8}. _E“j E;\_." 2 S SR T
Then
1 | n-2
D,y Fj—F; =y I-EgSl F+.. + Dy I—Egu_' E51_2--
n n-1 1
'ESI'FjJF(Dd(I‘ES,,)ESn_I ES] F;
According to the definition of the operator Fl( A, V), we have
] - &4(2) By, Bin| .
N(Xo)E =ag| Ko7 il
An(x) Bn2 Bnn
Therefore,

-
(Dd(l ~Eg, )Fj e Gd(Bt/) A,(X)r{'(i,o)(l— B, )Fj

>4

2
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where AI(X) is obtained from A, if we take A j(X) instead of A, j=1,2,...,n. Since
the distance from a point A to the boundary of the parallelepiped J is chosen more

(1-gg /

than a const. o , we have

-1/= 1 —{1= 2
1“1 (X,O)(I—Esl )Fj <C9 0( eO)/

Furthermore,

GdA( )sCmao, 21,2yt~

* ——
(note that (?\.k - K) <C'oyg ).

It is clear that

Gd(Bt/)A;(X) <Cpyao,

Then we have the relation

<<q>d(1_Eél)ij>><Cua(l) (1~ so)/Z«f» Ciy (l+eo)/2<(f>>

Similarly, for the other terms in (26) we conclude

<<<pd (Fj g F;)f>> <Cyas O ey
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3)Let V| be an angle between the projection of the line

sy k*
and the axis OAq, like sO Vj also be an angle

¥ ke
[h A ] on the plane (M A ) and the axis O)»l Py e B

It is clear that

HAMLET ISAYEV

[X,kk] on the plane (M,kj)

between the projection of the line

*

k
Vi ~Vj <Cya%p 1=2,3,...,0
B
Then
-1
-1 t e
ayFoi =CoGalBL) AoFd =
k
-} 1 tgv2 tgvn Bll Bin| v
-1 t : .
:CGde(Bv) 8 L ek =
tgvy th3 Bnl Bpn| V )
. k‘ 1'\'} \
k 11 V Bl2 v - Byp|v |
1 . -1 1 tgva |
:CGde(BV) bun il i : =
k k ( )
tgvy  18V3 n2 v | Bnnkv
t i
+CGde v g
=1 k k
k k
1 18V tgvn B”(V ) Blz(v ) Blnvk
: : : : : 1By +Q, (28)
k k k
tgv, tgvy 1 Bnl(v } 0 0

where Q is the operator, for which we have
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() = Crsao((Fay £))

Let us prove that the first term on the right hand side of (28) has an upper bo
From the first equation of the system (6) it follows that

A,(f) :B13(v£*) .:-'Bm(ve*)

* : x ; : *
Apg| 2 Bp13| v " Bppa| Vv

¢ ¢ ¢
) ) - )

4] ¢ £x : : f;
Bn—l,l(v ) Bn—1,3(\’ ) Bn-l,n(v )

-

=

gt
[* £* *
Blz(v ) B13(v ) sizi Bln(vg )
-ﬁ(?:,ve*)t# : : : I

B *
n—l,n(vl )
-1

. AN
By multiplying this equation on the left by Gd(Bt,) B:,j(v *), J=2...n

SN g o : Sk
and taking Fl(l ¥ *)Fd'[f instead of fand also taking into account that

GdA(K*) =0, j=2..,n we have

und.
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¢ ¢ t
: Bu(" *) Bls(v *) Bln("e*)
e\ ot ew ! : : .
Gg| By | Byl v : . : ; Fq,

% * {»
Bn—l,l(v ) Bn——l,3(" ) Bn—l,n(v )

(29)
t
4 ¢
Bn(v *) Bl3(V *) Bln(vet)
‘B :B ( [‘) . d .
v v eee
n-1,2(v") o n-l,p(v")

It is easy to prove that

<<fj(7\.*, ve*)Fd:t >> <const-(k + 1)(0(})—80 )2, j=d, .0

and
™ * (% 1—80
«l’l(x ,V )Fd'l >>Sk'COnSt'0.0 3
Then ‘
<<Tj(l', vg*)i“_l'l(l*, Ve*)Fdrl >> < const- a(l)"e"
and

, <<c{;’d Gd(Bt,)-l.
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: -1 44 ke) ke ik k. p
1 tgvlz" tgv_‘z" Blll(v ) 312(\’ ) Bln(\_f )

.
.

F UV PR RV L8 : : t T LEy V< 30)
k* k* A ‘ 0 k= PR () -’di‘» ( )
tgvy - tgv3 1] 0 ' “Bpa| v Bm(v i

<Ci6 -a:)_eo «de f)>

Now let us estimate the second term on the right-hand side of the equation(28).
Again according to the formulas(6) we have

(B AL (DR ¥ g = (B8) 7 BY (v )y +

i ' _
' i N st o
(B:,) Bt‘z(v )l"z(x,vk)r‘,-l(x,vk)% Bl
| tY el kel K |
+(Bv) Bm(v )l",,(x,v )rl»(x,,v )de,
If we multiply the last equation on the left hand side by
! ' kY) . '
Gddet(Bjm(v ));]=l,2,...,n—l; m=L2,..,0,

we obtain

| G&(B‘v)-“Ai.('i)-

Bu(vk) Bl;,(:vk) -(B;)—l(ﬁv ;Bl;l(vk))_lf;l (,}_“vk)de=

: e P
Bn-—l,2(") Bn—l,n(v.]
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" Se3 Bu(v) -~ Bulv)
» =-G,,(nv) an®)| :

' Bn—-l;z("k) Bn-*l..n("k)

(o) Bt I
‘. Yok Blz(Vk) B;,,(v#)
e Joe 21 4R (>\
Sold)ul)
lz(vk) Pln(yk) b’ el |
peas) - B -fe(&v Wionke oD

Let us denote

. K
e g PR ) Y
x=Gd(Bv) Bm(v ) & : . 3 3 . 'Fdh.
| | Bn—l,z(") Bn—l.n("

ad | | 4
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k
o) ()
<=2 .

g | I
:Bn-l,;(’vk) B,,_l"“(vk ( ) ( ) )

then we have

...l e Y A :
x—(n‘v) Anl(R)GaXTy 1(7\., vk)FdL =V, (32)

Let us prove that the equation(32)satisfies the hypotheses’ o_f the following lemma.
Lemma 8. (see[20], lemma 8a).Suppose that the estimates |P||, <), |Qfl, <dq.
dpdq <1 hold for the bounded operators P and Q in the spaces Hp and H,

respectively. Let the operator V be defined everywhere in Ho, moreover, for v eHg
we have Vv eHg and

lv"“B s<C, '“ulo-

Then there exists a unique bounded solution of the equation X - PXQ = V, for which

we have the expansion X = Z P"VQ" and the estimate
n=0

C,
IXvlg S 755 Iolos v €Ho.

We have already known the estimate for the operator

P=(B§)°1A:,(X)Gd g/
namely
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((P)) s g

And for Q=T I(X, vk )de we have

= k t k 1 i k p
<<FI(K,V )def>>2 min {ldet £Vn tgvn_1
A edf
k k
\ t18v2  .tgvs 1

>Cpyag ° -k-((Fy, 1)).
For the small enough arc we get
| (@) <aq o b Qg
Similarly, {6 pobtible b provel that
(vEY), < Craag *° -{(Fay £))

(here(( - )) is the norm in H,®...®H,,_; ®(H,) ).
Then, according to lemma 7 we conclude

((X6)) < Crotg ™ '((de f ))

hence;- -

((@Fgy £)) s Caomo ™ ((Fay £)), k=2....r.

~ The dimilar inequality can be also proved for ®4Fyy f, so we have
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[t tatoun

Czlao 02 ( ;(de +Fyy )f »Sszao ol {(£))-

4) Let us expand ®yFq; as in the case 3),but let now ,VT be the angle between the
\ 0 N
projection of the line [7» ,7:] on the plane (7»1',?» j) and the axis OAy, j=2,...,n.

. l
Furthermore, instead of v; we take vj , j=2,.
For the firstterm on the right hand side the formula smnlar to (30) is satisfied. For the

second term, taking vand (I +Wd)F1 instead of v and Fyy , respectively (taking into
account that B, = Bnl(v) ), we obtain the equation of the form

=1 g
x+(Btv) An(R)G4XTy 1(x,vk)de =V

where
Bjp(v) - Bm(v)
X=Gy:| ¢ : P |1+ Wy)Fyy,
Bp-12(V) - Ba-1a(V)

-3 G4(B!) "B, (v):

(=2

Bip(v) -+ Bp(v) 5 L
: : . Tg()»,\')(l+wd)rl (7\., V)Fdl
Bn—l,2(V) Bn—l,n(v)

It is easy to verify that (the similar inequalities have been already verified several times)

3( & O) ((Fdif>>

( (VE)) < c;3a0
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" Thus, all the hypotheses of lemma 7 are satisfied.

Since
WFg; = (1+Wq)Fy;,

according to lemma 7 we have

for all
£ eD(I+Wy)'™.

Take (I +Wd)—l f instead of f and v instead of vy for the second term in the last part
of (28), we obtain

k k|t
S POT gy 7 -ty 2
(( CGd k -X(I+Wd) def >>=
tgvy tgv3 1
-1
e [ Ba®) o B
« CGde : § 3 & . : Fay f))s
Itgvz e 1 Bn—l,z(\’) Bn—l,h(v)
3 (1-¢o)
<ag C5C(y) {((f))+<<w§ f>>]
for all f ED(W&{).

Furthermore, for Fgy the similar inequality also holds and we obtain the relation
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3 (1-gp) :
4 0
<<(Dd (Fdi +Fdl{)f>> SO C26C( )l:<<wdy f>>:| !

From the results of 1), 2), 3), 4) it follows that the formula (15) is true.
The theorem 1 is proved completely.
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§4. The Integral Representation of the Spectral
Measures of the Multiparameter Problems

In this section applying the theorem 1 we represent the joint spectral family of the
operators I',T,..., I, with respect to Ei, j=12,....n.

Theorem 2, 1. A be a uniformly positive operator Ay >> 0, suppose that

the relation (7) holds and A,...,A, _; are self-adjoint operators with the discrete
spectrum, A, is an arbitrary self-adjoint operator.

00 = :
Let d=A n be the part of the arc of one of the curves of eigenvalues Op of the

3 0 0
multiparameter operator system (AI(K),...,An(l)), AeRy, where A ¢d, p ed
and the closed convex hull does not contain the points of intersection with the other
curves G, p'#p. '

Then there exists the sequence of the inscribed polygons of the arc d

n 0 0
Q= U [}‘k—l,m o }"k,m] A =hom, B o= ?"rm,m
k=1 -

with the maximal length of the segments which tends to zero such that we have

Im -1
Fd =s— lim ZC 1 n-1
m—c0 =) Es -E .

Ak,m Ak,m [)‘k—l m)‘k m]
1 n-1 _n g
.E » "'E * E BV AO
kk,m kk,m [kk_],mxk,m:l

for any choice of the intermediate points x'{(,m of the arc Ay _ mAk m and let V™ be
defined for the arc .

Ak-1,mM,m> such as v=(v,,...,v,) is defined for the arc d.

The equality (36) can be rewritten in the integral form
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Fy=]c
d

-1 1 n-1_n t -1 oy
e = e b de(de) Ag. 37).
Ey---E) Egy

Such a defined integral exists in the above mentioned sense and in the case when the
arc d contains the points of the intersection with the other curves Gy if for each point

of that type we agree to consider
1 -1 ; 1
E (d)E; (d) instead of E;\E? , where

j . n-1  (m) :
E;\(d). - (5311 Ex(m), honed, j=1,..,0n-1
A

e s =l ;
For the spectral family E(JJL of the operator Ay A j the representation

n-1_n

-1 1 3 St
f ortbgidpal prgegticE . 48 Edl(de) Ay (38)
Cp E;\.-..El Ed}\. ;

4]

holds.

In order to prove theorem 2 we apply the following Cordes lemmas (see [10] lemma
11, 12, 13).

Lemma 9. Let p(at) be the monotonically nondecreasing and continuous on the
right function on the segment [ot}, 0 | We set

vlo)= Sup
a go
ajso S

Then in each subinterval af <o < a5, o) <o < there exists at least one point o ,
for which we have

_ - plo)plar,)
o dape
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Lemma 10. Let us introduce in a separable Hilbert space with the scalar product
(u,o)o the sequence of scalar products and corresponding metrics (u,u)n such that

a(u,u)0 S(u,u)n £ b(u,u)o, s 1l

and

(,0), - (u.0)g| s Ealul s

lim €, =0
n—

where a>0 and b>0 do not depend on n.
Let C,, be the operator self-adjoint in H with respect to the scalar product

(u,u)n, n=1L12,..

Assume that

lim (C, i) =(Co-i)™'f; feH

n-—»

and if ¢ € Ker(C — o,gl) for some ag,then @ eD(C,) and
l(Ca -coo], <anfel, -

where the sequence (a,,) does not depend on @ and lim a; =0.
n—»w

Then for the spectral families Eg of the operators C,, we have the relation

lim (EihEg'ﬁ )f - (Eﬁom pi EZO_O)f, f eH,

n—»

for each pair o), oy such that

lim o)y = lim ay=0ap, Op <o <op
. D—®w n—oo ;

and
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ap ap

lim — = lim =0.

n—so0p —0g N0y =0
If the point o, (in particular) is not a pointwise eigenvalue of the operator C, then we
have '

lim Eq_f=Eq,f, fecH

n—»o

for each {o,}, such that lim oy = .
' n—»o

Lemma 1 1. Assume that the relation

1
Yii=Ae

PyPp = Py (M;Ne i N;Mc)l’e

holds for the operators of the orthogonal projection Py in the Hilbert space
B k/f=12,...% skt {yk}g R and M N are bounded operators for which

Y»0<YI<"'<Yna "NkPkHSC',

IMyPy < Clyx = Yie-1l:
where C, C’ are positive constants.

n
Then for the operator P = Py we have the estimate
k=1

0<P< 1+2CC'%(4n +2b),
where

a= min lYk’Yk—lla b= max |Yk—Yk—1|-

kell,....n} kefl,...,n}

The prodf of lemma 9 is not so difficult. To prove lemma 10 first of all it is necessary to
show that
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limCq = DB P BeH,

n—>

if Jmz=0 . The main point of all the next arguments is the inequality
(Q (I En )u u)

where Qj, is the orthogonal projection on the kernel Co—0tgl; in a sense of (wv), and
n "

n n
E5n i E(’*'ﬁ —E“'n'

To prove lemma 11 one should apply the number inequality

an

}\\ ul,|

min{jo; —ctollotn - ~atg|

2

i X Ve S(41t+2b) kzl‘x ‘ Z‘Yk\

‘oL —~ O
kgl ;

where 0<a<oy —0g_1Sb, k=1.2,...,n for any choice of the complex numbers,
Xy and yy.

The Qroot of theorem 2. There exist monotone non-decreasing continuous

on the right base functions p\a according to which for each u,v e(H) the function

\v(a) = <u,E}1u>

is absolutely contiuous at each point of the interval —oo <o <.
For example, the function

plo) = mZ_lm (‘Pm, L,(Pm),

is one of them, where (@) is the base of (H).
The space H' of all the elements ve(H), for which the relation
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dp(oz) . <C(u)

holds for some constant c( v) is dense in (H) for all o, e (—oo,oo).
N T
Indeed, for each linear combination V= 3"a,0, ofthe elements ¢, n= 1,2,... this

n=1
relation always holds, if the constant C(v) is

C(v) = N’ )I_i.lan!z i

n=}

If A ed , then

k| 1 2 2 n n |
Fo =|B;. «E, E,. -E il By = E =
AA ( M k?)( h2 93) ( *n x?.)

1 1 1
=E, ‘Fo =E, .|F -F =E, F
A lol A ( d luo) A1 td

Now we want to find a subdivision of the arc d such that the division points will be

outside of the set clj,t(FJ );‘_l (apply theorem 1),

We denote by d the closed arc on O containing d. This arc is continued to both sides
and does not contain the points of intersection witho,,, m’'#m

~ & Lok ~ -~ i £ ol &l 0
We set d = Afi, where Ay=a', fi;=a&" For simplicity we denote o’ = A1 and
0 - .
a” =y and then we obtain
<o’ <a” <G”.

Let J be defined in the same way as in the theorem 1.

In order te choose the necessary .
sequence of the polygons @, let us divide the interval

S a'<a S(X"+%n- (a”-a’)
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into 2m+3 equal parts.

e -a’), k=0,1...,2m+3,

where m is supposed to be large enough and we apply lemma 9 for

oy =0hk-2.m> 1 =%2%k-1m> ah =0k m -
o] =02k+1,m > =18, 50K

Then there exist m+1 points 0tk m » k =1,2,...,m+1 such that

o' <0)m S mS ) m <03 mS%2,m Sy ms
—ptt
<..f0ymm = <0hmsl,m S%m+lm S

[ [ iy
<0ym+2,m <%2m+3m <% -

For the intervals

%(ak—l,m +°‘k,m) s %(ak’m +ak+l’m)

for 1<k<m and

ApmSAS ‘;‘(al,m +az,m) )

1
i(am,m +°'-m+1,m) SO SOm+l,m

for k=1 and k=m, correspondingly, we have

Ap iy pla) - p(otk,m) : 4ma, [p( a'2k+1,m) g p(a2k—.l’m)] :

Ao oSG . B

Ok m

.

; ; -1
It means in particular that Otk m gKerAg Ay,
because otherwise there would exist the vector @, such that

(El {ak,n}(Pno ’(‘pno) # 0
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and therefore, we have

AE & P(ak,m) "P(ak,m "8) 1 1 1

cmtradictin% the formula (39).

Let g m =0k, m:Bk,m.- "Yk,m)’ where By m,...,Yk, m is defined such that
Ag.m €d, k=12...m+ '

Let us draw the polygon

0 0
P =2 AMme- Ao, mAm,mh

def
dk,m = Ak,mrk+1,m SOp

k=12...m ,

with the help of intermediate points x’k,m we form the operators ?4, ,, and

R 7‘1 m"m+l m-
'lhen for ggH), feH' according to theorem 1 we have

m m
g de —Elq)dk,m ij / ~ g’kZ:l (de,m —(bdk,m )ij> s

<ol o) (w0

3 fonnt 50

Now we shall find the upper bounds of all the terms of the right hand side of the
inequality (40).

(40)
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‘Tt is easy to verify that

m 1 i ¥ o : : ‘
Z <<wg k,m de,m f>> = Jac( f)-const - - )
k=1

1 3 ¥
<<W3k,.;,F3f>>sJEcz(f), ooy s vt (4B
ifonly f eH'.

And now applying lemma 10 we prove that

and

S S

% kzl‘bd"s"‘ <cp7l, . : (43).
where ¢, does not depend on the choice of m.
According to the definition of @, we have

'Ei. ® =Er G =@ el
. Mkm dk,m [xk—-l,mxk,m] dk,m dk,m

An—l("'k,m) Bn—-l,3

S .A‘l(}\:k,\m)' Bjz '+ - B
<(Ao : : q’dk,;x\ U» =
i B.n-l,n

Al(’“k.m) B3 - B
=4 : St : tbak'mu“s
An-l("k,m) B.n—l,3 % Bn—l,n

£ C28(°~k+l.m ‘ak,m) I Poy ¥ I

| 5;C29(°:'k+1-,m -ék;;n)((‘bc;g;n o))
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{take into account that HA j(xk,m)Ei' é(ak;l,m —ak,m)- C)

k,m
forve(H). .
Fusthermore,

3 L TR S
<<402A:,(xk,m)¢dk,m °>> T ‘"é:\(%k,m)‘l’dk,m ui 3
_r“
() Aol
< C3| Pa, , VS C31{(@q, , 0))

Also we have

(ak,m —at’,l:)<¢dk,m £, d)dt,m f> G ‘(Al(xk,m‘)d’dk.m £, (Dd!,m f) =

( 55 4 b | \
2 ‘
(Al(;‘f,m)(bdk,m f’ ‘Ddl,mg) = ‘(A() Al(kk’m)(bdk,m f, A()2 (D“ ¥ g,J i3
) g it
H Ag" g, . £,40" 1Py, 8
for all £ ,g €(H). -
Therefore, the relation

{ e

1 {*)
() O ()] Ay D .
dk,m dl,m ak,m —0lgm dk,m {|: 0 dk,m :I

= 0 4 o1 e g T
80" a (A m)@,,, || 0 Ai(Aim)®ay | | Ao Pay o | Pd,,

holds. :
Then, in view of lemma 10, we have
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<<Z“’d¢,m>>sczv 1 @)
k=1

(42) and (43) we obtain

58

Thus, because in view of (40),(41),

m m %
\<g (de zq)dl m)FAf\)\S ¢ (] f) yO «g» o <8, Z(Ddt,mg\) <
k=1 (44)

ccrif)m (e

Taking into account that g is arbitrary this estimate gives

| ' <<(de B {n";d)dk,m)ﬁf» < C(i ,f)- m—%o (45
k=1

for f eH’ .

- Then prove this estimate for any fe(H). ‘

Let now J run a sequence J o m=12,... such that Uj m=R“.We choose the
o :

. used under deﬁning.the base function plo) such that for

orthonormal basis @1,92,-
such that the relation

each @, there exists m’,

F" W‘W

Z holds.
1t follows from (45) that

<<(de—:2¢dk’m)ij>>sCm(f)m—y‘O
=1

fin
account that lim Fgq = F4, we obtain
mowo

for all f€)_ XkPk - Taking into




(43)

(44)

(45)

se the

hat for

for all f€)_ xx@x . Let now f be an arbitrary element from (H) ,

then for arbltrary e>0 there exists ' EZ X k@ such that

where ((f"))<e. Then

MULTIDIMENSIONAL COMPLEX-ANALYTICAL VIEW

[Fd — lim Z(de )ij’:-O

m—»oo il

fin

fin

f=f'+f",

S \\ //m :

<<Z(de,mf— Fdf>> = <<Z(de mf Fd ) \ +< Z(de m ">> <
k=1

m / o

; <<Z(de f, ¥ Fdf >> <Fdf"\\ +{ 2(Dd 1 ">\»

m \ ),

k=1
\
<<Z(de 5f7 ~ Fyf! > )+e-const,

a

k=1 /]
hence,
m \
> &g, FFaf ) <g-const,
k=1
and

Fg f= lim Z‘de f, fe(H).

n—-)ook 1

The following expression which corresponds to the nolygon @,
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=1
| ! <p"d(),m +®am'm i ZCEl __.Bn—l n
= * e
? - Mem Mem )'k’l,mxk,m‘_\
: -1 .
gl n-1 gn t ‘
E . --E. E B & AO
"n /
i A penTnmEm Y

coincides with the following expression

m e .
kz:bdk,m 5 (DdOJ“ " (Dam,m S ?91“,“1 *

where

0
'.do,m=7" A,m ’dm,mA:Mn,ml'l .

Let us prove that D —>0and &5 ~ g LN G

"~ For ¢& we have
: %m,m

-1
where
' =
a = E * E“# E 0
| o Am,m Am,m ‘_}‘m,mp' ]
‘and El{k 0:\ is the épgctdral family of the operator
‘ n_m,m“" i v

v

‘ i [B“LAn(g(“ﬁ'))]t ={B}An(u°)+(u§’ —ul)r}t
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According to lemma 5 it follows that EE 0] — Eno, where E, -is the orthogonal
m,m”L H

grasection on the kernel of the operator
: t
-1 0
[B o Ay (U- )]

relanng to ("')v=limvm g

Soce
1 -1 1 -1
E » "'E!L _)E 0"‘En0 s
m,m A-m,m B B
we have
q 1 n
lim Gj f=E ¢---E of, feH
m—co LM B H
& follows from the MPS theory that
1 0
(E 0---5“0-)}1_:1:{;1 }(H).
B B
According to lemma 5 we have
0 -1 1 B Lactols o
F{u }f:C 1 n 'E 0...E O(Bv) AO.
Eog...Eo H o
T
Thus, fhe relation

holds for all f €(H).
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We prove the similar equality for ®q . - Since E{‘M gt ] is the spectral family
> 1,mo/ m+lm

t
-1 m 0

of the operator {B mAu(u( ))} where Apm=HK > the distance
v

0
pmu \ with

: m m )
respect to the distance ||t Am,m and |0 Amsl,m tends to zero for m — . Thus, if

0 ol m\| S
Amm % H then for the operators {B mAn(u )} and [B; An(u ﬂ , where
» v : e
v= lim vy, the suppositions of the lemma 10 holds. Then we have
m—>
0

lim E Fe’f el
[7" m,m ’)" m+l,m] B

and, therefore,

: 0
‘}:_T(D(de,mf = F{u }f

: i 0 .
In the same way taking into account that A €d for @4, We obtain
lim chO,mf =0.

m—»o

This concludes the proof of the formula (36).

If the arc d,, contains the points of intersection with the other curves then the small
arcs in the neighbourhood of this point A can be neglected. Let d; be some small arc
containing A and dj = d.

1 *
Let Gq, =E”~~E;, Eg,» where A ed, and d, =&n and let | —&|=P—n|. Then,

applying lemma 10 we obtain

1 e
fim G, £=Ex(4)--Ea {Q)EL.
d;‘——ﬂ\.



/

with

g, if

where
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where E; is the operator of the orthogonal projection on the kernel of the operator

t
0
gB A (u ﬂ with respect to the scalar product (Bt\, ) vz (\72,...,9“), where

v; are the angles between corresponding tangents of the curve d at the point A and

their projections.
Thus,

-1 n-1_n-1 Y
. I CE;E‘;---E“—IE" E)\_ -Ey Eq, (Bdk) Ao.
The formula (38) follows from the facts like

1
Eq, = F{_oo ou]x(e0,0)x(=o0,40) = Flav.0.0)

Thus, theorem 2 is proved.
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