
Physics of the Dark Universe 44 (2024) 101457

A
2

F

E
b
S
a

b

c

d

e

f

g

A

K
N
B
Q

1

t
a
t
t
e
e
B
b
t
s
r
r

h
R

Contents lists available at ScienceDirect

Physics of the Dark Universe

journal homepage: www.elsevier.com/locate/dark

ull length article

xploring non-perturbative corrections in thermodynamics of static dirty
lack holes
aheb Soroushfar a, Behnam Pourhassan b,c,d,e,f, İzzet Sakallı g,∗

Department of Physics, College of Sciences, Yasouj University, 75918-74934, Yasouj, Iran
School of Physics, Damghan University, Damghan, 3671641167, Iran
Center for Theoretical Physics, Khazar University, 41 Mehseti Street, Baku, AZ1096, Azerbaijan
Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India
Physics Department, Istanbul Technical University, Istanbul, 34469, Turkey
Canadian Quantum Research Center, 204-3002 32 Ave Vernon, BC V1T 2L7, Canada
Physics Department, Eastern Mediterranean University, Famagusta 99628, North Cyprus via Mersin 10, Turkey

R T I C L E I N F O

eywords:
on-perturbative correction
lack hole thermodynamics
uantum work

A B S T R A C T

This research delves into an extensive exploration of the thermodynamic characteristics exhibited by a
contaminated black hole subject to a uniform electric field, within the theoretical framework of the Einstein-
Nonlinear Electrodynamics (ENE)-dilaton theory. The investigation encompasses a thorough analysis of diverse
thermodynamic facets, encompassing heat capacity, Helmholtz free energy, and internal energy. Through this
comprehensive examination, valuable insights are provided into the distinctive behavior of the black hole when
subjected to the influence of the electric field. Moreover, our study embarks on an exploration of the nuanced
interplay between quantum effects and the thermodynamic profile, with a particular focus on scrutinizing
the quantum-corrected entropy. This approach allows for a deeper understanding of the intricate relationship
between quantum mechanics and the thermodynamic attributes exhibited by the system. By doing so, we aim to
illuminate the non-perturbative corrections inherent in this intricate system, thereby contributing to a holistic
comprehension of the altered thermodynamics characterizing dirty black holes within the confines of the
specified theoretical framework. In essence, this research endeavors to uncover the subtleties of the modified
thermodynamic landscape governing black holes tainted by external factors, specifically within the context
of the ENE-dilaton theory. The outcomes of this study promise to extend our understanding of the intricate
interactions within such complex systems, offering valuable insights into the non-perturbative corrections that
manifest in their thermodynamic behavior.
. Introduction

The field of black hole research has captivated and proven vital
o the realm of theoretical physics and astrophysics [1,2]. Black holes
re enigmatic objects that form when massive stars collapse under
heir gravity, creating a region in space where gravity is so strong
hat nothing, not even light, can escape its pull. These mysterious
ntities originate from the implosion of colossal stars and showcase
xtraordinary thermodynamic traits. The groundbreaking endeavors of
ekenstein and Hawking [3–6] established the bedrock principles of
lack hole thermodynamics [7], revealing that these entities possess
emperature, entropy, and energy resembling those of thermodynamic
ystems, similar to ordinary thermodynamic systems. This idea was
evolutionary because it treated black holes as thermodynamic objects
ather than just gravitational entities. Thus, it is understood that black
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holes emit thermal radiation, which is known as Hawking radiation [8–
14]. The temperature of this radiation, called Hawking temperature, is
inversely proportional to the black hole’s mass in the Schwarzschild
family [15]. This temperature is incredibly low for massive black
holes, making it hard to detect in practice. However, it has significant
implications for the understanding of the universe’s evolution and the
connection between general relativity and quantum mechanics. It is
also worth noting that especially in the non-asymptotically flat black
holes, the temperature may remain constant, as being independent of
the mass throughout the Hawking radiation. Such a phenomenon can
occur during an isothermal process [16–18].

Entropy, another important thermodynamic property, measures the
disorder or randomness present in a system. As mentioned earlier,
Bekenstein and Hawking [19] found that black holes possess entropy
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due to direct thermal fluctuations, as opposed to being attributed to
their volume [20,21]. This finding was revolutionary because it sug-
gested a link between the macroscopic properties of black holes and the
microscopic world of quantum mechanics [22]. The field of black hole
thermodynamics has expanded our understanding of the fundamental
laws of physics. It has led to significant advancements in topics such
as the holographic principle, quantum gravity, and the information
paradox [23–25]. Researchers continue to explore this fascinating field,
uncovering new insights into the nature of black holes and their role
in the universe.

As our understanding of fundamental physics progressed, it became
clear that the classical description of black hole thermodynamics may
require modifications to fully encapsulate the underlying quantum
gravitational effects and other exotic phenomena [26]. Various theo-
ries beyond Einstein’s general relativity have been proposed [27–31]
including complete reviews on modified gravity [32,33], encompassing
novel fields and interactions that can potentially influence black hole
thermodynamics. One such theory is the ENE-dilaton theory [34],
which extends general relativity by incorporating nonlinear electrody-
namics and a dilaton field [35]. In this scenario, the thermodynamic
properties of black holes with nonlinear electrodynamics have been
extensively explored in the literature [36–38]. In the presence of a
uniform electric field, this theory introduces intriguing modifications to
the properties of black holes, including their thermodynamic quantities.
Furthermore, black holes in the context of this theory are often referred
to as ‘‘dirty’’ due to the presence of additional fields and interactions
beyond the vacuum solutions of classical general relativity [39,40].

It is widely known that in any thermodynamic system, there are
thermal fluctuations occurring at a quantum level. These fluctuations
contribute to the system’s entropy, along with a logarithmic term
that arises from a perturbative correction [41]. These perturbative
corrections are more significant at scales larger than the Planck scale.
However, at the Planck scale and smaller, non-perturbative corrections
dominate [42]. This means that in thermodynamic systems like black
holes, both perturbative and non-perturbative corrections play a role
in determining the entropy [43,44]. One consequence of this is that
an exponential term is added to modify the black hole area entropy
through non-perturbative analysis. This correction appears in all quan-
tum theories of gravity. The impact of this correction is negligible when
the black hole has a large horizon radius, but becomes significant when
the black hole size becomes extremely small.

In a recent article of Mazharimousavi [45], the author has success-
fully addressed key aspects of Einstein’s gravity coupled with square-
root-a nonlinear electrodynamics and a dilaton field: an ENE-dilaton
theory. In that work, field equations have been precisely solved, yield-
ing a unique black hole solution defined by two significant physical
parameters: mass and dilaton field parameters. Notably, while the
latter represents a constant characterizing the dilaton, the former is an
integration parameter. This black hole is non-asymptotically flat (NAF)
and exhibits singularity at its center, coinciding with the location of
an electric charge. The electric field is radially symmetric and uniform,
maintaining a constant electromagnetic invariant. One notable contri-
bution of that study is the determination of the quasi-local conserved
mass, denoted as 𝑀𝑄𝐿, which was obtained by using the Brown-York
formalism [46] since the ADM mass is not applicable to the NAF black
holes. Remarkably, in the Schwarzschild limit, this newly defined mass
coincides with the ADM mass of the Schwarzschild black hole. The
article also explores the thermal stability of the black hole, revealing
that it exhibits thermal stability under specific conditions (0 < 𝑏2 < 1
or 2 < 𝜂2; for more details, we refer the reader to Ref. [45]), as
evidenced by positive Hawking temperature and heat capacity. This
finding underscores the existence of ‘‘dirty’’ black holes surrounded by
normal matter fields, challenging the notion of black holes forming in
empty space.

Our focus in this article delves into the non-perturbative correc-
2

tions to the thermodynamics of dirty black holes of the ENE-dilaton s
theory [45]. We investigate key thermodynamic quantities of those
dirty black holes such as heat capacity, Helmholtz free energy, and
internal energy to uncover the effects of the additional fields and
interactions introduced by the theory. Additionally, we consider the
realm of quantum corrections and examine the modified entropy of
these black holes, shedding light on the interplay between quantum
effects and classical thermodynamics. So, we provide a comprehensive
analysis of the thermodynamic aspects of black holes within the consid-
ered theory. Also, we study the intricate connection between quantum
effects and black hole entropy, unveiling the quantum-corrected (QC)
aspects of thermodynamic behavior. By examining the non-perturbative
corrections to thermodynamic quantities, we aim to contribute to a
deeper understanding of the nature of dirty black holes in the context
of the ENE-dilaton theory.

The paper is organized as follows: In Section 2, we introduce the
dirty black hole spacetime and highlight some of its distinctive features.
In Section 3, we explore the theoretical framework of thermodynamics
in dirty black hole geometry and examine heat capacity, Helmholtz free
energy, and internal energy. In Section 4, we present the QC-entropy
for the dirty black hole within the context of quantum work. Finally,
in Section 5, we summarize our results and discuss potential avenues
for further research in this intriguing field.

2. Features of dirty black holes of ENE-dilaton theory

In this section, the properties of the metric of the dirty black holes
supported by a uniform electric field in the ENE-dilaton theory are
studied. The action used in the ENE-dilaton theory is as follows [45]

 = ∫ 𝑑4𝑥
[

 − 1
2
𝜕𝜇𝜓𝜕

𝜇𝜓 + 𝑒−2𝑏𝜓( )
]

, (2.1)

here 𝑏 ≠ 0 is a free dilaton parameter,  is the Ricci scalar,  =
𝐹𝜇𝜈𝐹 𝜇𝜈 is the electromagnetic invariant, ( ) = 𝛼

√

− and 𝛼 is a
dimensionful constant parameter. In the limit as 𝑏 → ∞, action (2.1)
tends to revert to the Einstein-dilaton case. Varying the action concern-
ing the metric tensor, dilaton scalar field, and gauge potential results
in the Einstein field equation, dilaton field equation, and nonlinear
electrodynamics-dilaton equation, respectively, [45]:

𝜈
𝜇 = 2𝜕𝜇𝜓𝜕𝜇𝜓 + 𝛼𝑒−2𝑏𝜓

√

−
𝐹𝜇𝜆𝐹

𝜐𝜆, (2.2)

𝜇∇𝜇𝜓(𝑟) =
𝛼𝑏𝑒−2𝑏𝜓

2

√

− , (2.3)

( 𝑒
−2𝑏𝜓
√

−
𝐹 ) = 0, (2.4)

here 𝐹 is the dual field two-form of 𝐹 . At this point, a reader
ay question the significance of the chosen theory and, most im-
ortantly, the theory of non-linear electrodynamics considered in this
aper can be thought as an ill-defined theory because the Lagrangian
n Eq. (2.1) contains the square root of

√

− . To clarify this issue, let
us recall that the pure electric or magnetic Born–Infeld (BI) nonlinear
electrodynamics [47] is described by

𝐿 = 𝑏2
(

1 −
√

1 + 
2𝑏2

)

, (2.5)

in which  = 𝐹𝜇𝜈𝐹 𝜇𝜈 . While the weak field limit of the theory ( 
𝑏2

→ 0)
is the linear Maxwell electrodynamics i.e.,

𝐿 → −1
4
𝐹𝜇𝜈𝐹

𝜇𝜈 , (2.6)

nd its strong field limit
(


𝑏2

→ ∞
)

yields

𝐿 ∼
√

 , (2.7)

p to a constant coefficient. Therefore, the square-root model is not
upposed to be considered instead of the linear electrodynamics theory
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but it is a model for the strong fields. Namely,
√

 corresponds to
the strong field regime of the BI nonlinear electrodynamics theory,
and hence there is no way to recover Maxwell’s linear electrodynamics
theory, which is in the weak field regime of the BI theory. Furthermore,
as highlighted in the paper of Mazharimousavi [45], 𝑏 = 0 ought
o be excluded since it does not satisfy Einstein’s equations. Similar
tudies can be seen in the literature from the pioneering works of
. ’t Hooft [48] and H. B. Nielsen and P. Olesen [49]. In the se-
uel, important studies for the applications of the same model have
een published by Guendelman and his colleagues [50–55], mainly on
he confinement of quarks, and their followers like Mazharimousavi,
alilsoy, and Övgün [56–58] and references therein. Therefore, this
NE-dilaton model has a solid foundation and whence, in such a
onfiguration, either there is a strong magnetic field or a strong electric
ield, one can set 𝐿 ∼

√

± [50–58].
Based on Eqs. (2.2)–(2.4), the metric for a static, spherically sym-

etric black hole spacetime having the dilaton field 𝜓 = 1
𝑏 ln 𝑟 was

xpressed as [45]:

𝑠2 = −𝜂2
(

1 −
( 𝑟+
𝑟

)𝜂2
)

𝑟
2
𝑏2 𝑑𝑡2 +

𝜂2

1 −
(

𝑟+
𝑟

)𝜂2
𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2𝜃𝑑𝜑2),

(2.8)

here 𝑟+ represents the event horizon of a black hole described by
he above spacetime and 𝜂2 = 𝑏2+1

𝑏2
> 1 is the dilaton parameter.

Furthermore, Eq. (2.8) can be re-expressed as follows:

𝑑𝑠2 = −(1− 2𝑀
𝜌𝜂2

)𝜌2(𝜂
2−1)𝑑𝜏2+(1− 2𝑀

𝜌𝜂2
)−1𝑑𝜌2+

𝜌2

𝜂2
(𝑑𝜃2+sin2𝜃𝑑𝜑2), (2.9)

here 𝜌 = 𝜂𝑟, 𝑀 = (𝜂𝑟+)𝜂
2

2 , and 𝜏 = 𝜂1−
2
𝑏2 𝑡.

The Hawking temperature of the dirty black hole (2.9) can be
omputed with the aid of a timelike Killing vector (𝜒𝜇) and whence

the surface gravity (𝜅):

𝑇𝐻 = 𝜅
2𝜋

=
∇𝜇𝜒𝜇∇𝜈𝜒𝜈

2𝜋

|

|

|

|

|𝑟=𝑟+

=
𝜂2

4𝜋
𝑟𝜂

2−2
+ , (2.10)

and when the black hole area law [3] is applied, the black hole’s
entropy can be determined as

𝑆𝐵𝐻 = 𝜋𝑟2+. (2.11)

It is also worth noting that the NAF structure of metric (2.8) admits

the quasilocal mass [46] as 𝑀𝑄𝐿 = 𝑟𝜂
2
+
2 in which 𝜂2 is related to the

background. Thus, the first law of thermodynamics of the dirty black
hole is satisfied as:

𝑑𝑀𝑄𝐿 = 𝑇𝐻𝑑𝑆𝐵𝐻 . (2.12)

It is consistent with the following Smarr–Gibbs–Duhem relation,

𝜂2𝑀𝑄𝐿 = 2𝑇𝐻𝑆𝐵𝐻 , (2.13)

which is indeed an integrated formula relating the black hole mass
to the temperature and entropy. In the case of 𝑏 → ∞ (𝜂2 = 1) we
recover the ordinary Schwarzschild results. The validity of the first
law of thermodynamics is significant because it connects the change in
quasi-local mass 𝑀𝑄𝐿 to the changes in entropy and temperature. This
implies that the thermodynamic behavior of these non-asymptotically
flat dirty black holes still obeys the fundamental relation between heat,
entropy, and energy. The form of the first law highlights the fact that
the quasi-local mass plays the analogous role to internal energy for
these solutions. Its changes correspond to exchange of heat defined by
the Hawking temperature and black hole entropy. Therefore, Eq. (2.12)
puts the exotic dirty black holes on equal thermodynamic footing with
classical black holes.

Fig. 1 shows the behavior of the black hole temperature as a func-
3

tion of the horizon radius 𝑟+. Different curves are plotted for various (
Fig. 1. Black hole temperature versus the horizon radius 𝑟+. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

values of the parameter 𝜂, including 𝜂2 = 1 which corresponds to the
chwarzschild case (dotted blue line).

As can be seen, the temperature starts from an extremely large
ositive value but decays rapidly, approaching zero asymptotically as
he horizon radius increases. This is the expected qualitative behavior
or most black holes — the temperature is inversely related to the mass.

More specifically, for the dirty black hole solutions studied here, the
emperature is proportional to 𝑟𝜂

2−2
+ . So for higher values of 𝜂, the initial

eak temperature is lower and the subsequent decay is more gradual.
he 𝜂2 = 1 (Schwarzschild) case decays the fastest.

At very small horizon radius close to zero, the curves for 𝜂 ≠
remain finite while the Schwarzschild temperature diverges. This

ighlights a key difference between the dirty black holes and classical
acuum solutions.

The positivity of the temperature curves indicates that these dirty
lack holes can be in stable thermal equilibrium for certain ranges
f the parameters. This has important consequences for the thermo-
ynamic properties studied in later sections. Overall, Fig. 1 provides
nsight into how the additional fields and interactions introduced in the
NE-dilaton theory qualitatively modify the temperature profile of the
lack holes across different mass scales. The non-asymptotically flat,
on-vacuum nature of these solutions leads to distinct behavior.

. Thermodynamics

In this section, we will study the thermodynamics of a dirty black
ole supported by a uniform electric field in the ENE-dilaton theory by
pplying quantum corrections to the entropy.

.1. Exponential correction

Researchers have used two types of quantum corrections: pertur-
ative [59–64] and non-perturbative [65–69]. These corrections have
een applied to analyze and investigate the thermodynamic properties
f various black holes. It is well-known that the entropy of a system

denoted by 𝑆0) is related to the number of measurable microstates (𝛺).
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This relation can be expressed in units of Boltzmann constant (𝑘𝐵 = 1)
s follows:

0 ≡ 𝑆𝐵𝐻 = ln𝛺. (3.1)

However, there exist other unmeasurable microstates contributing to
entropy (𝑆micro). The probability of encountering such states is in-
versely proportional to 𝛺, where the corresponding entropy is also
proportional to the probability. Therefore,

𝑆micro ∝ 1
𝛺
. (3.2)

Consequently, we can express the total entropy as a sum of two
omponents:

= 𝑆0 + 𝑆micro. (3.3)

By combining Eqs. (3.1) and (3.2), we derive the relationship

micro = 𝑒−𝑆0 . (3.4)

Applying Stirling’s approximation and utilizing statistical physics
or a large total number𝑁 , the exponential quantum correction to black
ole entropy is expressed as:

= 𝑆0 + 𝑒−𝑆0 , (3.5)

which aligns with non-perturbative aspects of string theory [49,70] and
is applicable to the Planckian regime of a black hole event horizon
area. Subsequently, we utilize the non-perturbatively corrected entropy
to examine the thermodynamic properties of the black hole that arise
from these entropy modifications [71,72]:

𝑆 = 𝑆0 + 𝜆𝑒−𝑆0 , (3.6)

where 𝜆 is the correction coefficient which is related to the proportion-
ality constant in Eq. (3.2). So, we have

𝑆 = 𝜋𝑟2+ + 𝜆𝑒−𝜋𝑟
2
+ , (3.7)

which means that the last term of Eq. (3.7) affects the black hole ther-
modynamic quantities. It is important to highlight that the exponential
correction becomes dominant as the black hole size decreases, primarily
attributed to Hawking radiation at the Planck scale. Consequently, for
large black holes, the correction coefficient is negligible, leading to the
vanishing of the last term in Eq. (3.7). Conversely, for small black holes,
the last term in Eq. (3.7) significantly influences the thermodynamics
of the black hole.

Fig. 2 illustrates the behavior of black hole entropy with exponential
correction plotted against the horizon radius for various values of the
correction parameter. The case with 𝜆 = 0 represents the uncorrected
scenario, consistent with the expected outcome from the standard
Bekenstein–Hawking black hole entropy formula.

For a non-zero lambda, an exponential correction term is intro-
duced, as outlined in Eq. (3.7). When lambda is positive, this correction
leads the entropy curve to approach a maximum finite value asymptot-
ically as 𝑟+ becomes large. The magnitude of this entropy maximum
decreases with an increase in lambda. This observation highlights the
significance of non-perturbative quantum corrections for small black
holes, imposing a fundamental constraint on the minimum attainable
entropy. On the contrary, when 𝜆 is negative, the exponential term
leads to unbounded growth of entropy with increasing 𝑟+. The more
negative 𝜆 becomes, the faster the entropy increases without bounds.

Fig. 2 illustrates the impact of exponential quantum corrections on
black hole entropy, showcasing alterations in thermodynamic behavior,
particularly at scales approaching the Planck length. The sign and mag-
nitude of lambda play a crucial role in determining whether quantum
effects impose fundamental constraints on minimum entropy or amplify
the rates of entropy growth. These considerations bear profound impli-
cations for the stability and phase transitions of miniature black holes,
where non-perturbative quantum gravity effects hold sway.
4

Fig. 2. Exponential corrected entropy versus the horizon radius 𝑟+.

3.2. Heat capacity

One can compute the standard specific heat capacity of the dirty
black hole as follows (see Eqs. (2.10) and (2.11)):

𝐶𝐵𝐻 = 𝑇𝐻
𝜕𝑆𝐵𝐻
𝜕𝑇𝐻

=
2𝜋𝑟2+
𝜂2 − 2

. (3.8)

f both 𝑇𝐻 and 𝐶𝐵𝐻 are positive, the black hole is considered thermally
stable. Hence, when 𝜂2 − 2 > 0

(

𝑏2 < 1
)

, the black hole is thermally
stable. When 𝜂2 = 2, the Hawking temperature (2.10) remains con-
stant, which corresponds to the infinite heat capacity. Similarly, one
can compute the corrected heat capacity

(

𝐶 = 𝑇𝐻
𝜕𝑆
𝜕𝑇𝐻

)

by employing
Eqs. (2.10) and (3.7) for the dirty black hole as follows

𝐶 =
2𝜋𝑟2+

(

𝜆 e−𝜋𝑟
2
+ − 1

)

2 − 𝜂2
, (3.9)

hich reduces to the original heat capacity 𝐶𝐵𝐻 in the case of 𝜆 = 0.
Figs. 3(a)–(d) illustrate the behavior of a dirty black hole’s heat

apacity when supported by a uniform electric field according to the
NE-dilaton theory for various values of 𝜆 and 𝜂. It can be observed
rom Figs. 3(a) and (b) that the original heat capacity (𝜆 = 0) of

this black hole is positive and has no phase transition. For the QC
heat capacity, (𝜆 ≠ 0), and by increasing the values of 𝜆, the heat
capacity enters the negative region (unstable phase), then takes phase
transition type one, and afterward it will be positive (stable) again.
Hence, by reducing the black hole size due to Hawking radiation,
the final stage of this black hole leads to instability (for the positive
correction parameter).

Moreover, the behavior of the QC heat capacity for different values
of the dilaton parameter (𝜂) is shown in Figs. 3(c) and (d). In Fig. 3(c),
we find that, for a certain positive value of 𝜆, the system has phase
transition type one, but for a certain negative value of 𝜆, the system is
in the stable phase and it has no phase transition [see Fig. 3(d)]. In this
case, the final stage of the black hole is stable as well as uncorrected.
In addition, from Fig. 3(c), it is clear that, by increasing the values of
𝜂, the QC heat capacity gradually tends to zero.

In any case, by looking at the aforementioned diagrams [Figs. 3(a)–

(d)], analyzing them, and examining the variations in heat capacity
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or various values of 𝜆 and 𝜂, as well as taking into account the
hase transition that takes place for the heat capacity in the quantum
orrection mode, it can be deduced that a small black hole could be
nstable due to quantum effects (assuming positive correction param-
ter), but a large black hole is in a thermodynamically stable phase.
n the following subsections, we shall look at how the aforementioned
uantum corrections affect the internal energy and Helmholtz free
nergy, among other thermodynamic variables.

.3. Helmholtz free energy

In simple terms, Helmholtz free energy is a thermodynamic po-
ential that combines internal energy and entropy, providing insight
nto a system’s ability to perform work at constant temperature and
olume [73]. When applied to black holes, it offers a unique perspective
n their behavior. The Helmholtz free energy is used to understand
he equilibrium between a black hole and its surrounding radiation,
hedding light on the intricate interplay between mass, temperature,
nd entropy in these mysterious cosmic objects.
5

t

Here, the effects of quantum correction on the Helmholtz free
nergy, which can be fruitful in analyzing the stability and phase
ransition of a black hole, are investigated. The Helmholtz free energy
s given by [74]:

= −∫ 𝑆𝑑𝑇 . (3.10)

o, by employing Eqs. (3.1), (3.7), and (3.10), one can get

= −
𝑟𝜂

2

+ 𝜋
1− 𝜂2

4 e−
𝜋𝑟2+
2 𝑀𝑊

(

𝜂2

4 ,
𝜂2

4 + 1
2 , 𝜋𝑟

2
+

)

(

𝑟2+
)− 𝜂2

4 𝜆

𝜋
(

𝜂2 + 2
)

−

(

𝜆 𝜂2𝑟𝜂
2−2

+ + 2𝜆𝑟𝜂
2

+ 𝜋
)

e−𝜋𝑟
2
+ + 𝑟𝜂

2

+ 𝜋
(

𝜂2 − 2
)

4𝜋
, (3.11)

n which 𝑀𝑊 denotes the 𝑊 ℎ𝑖𝑡𝑡𝑎𝑘𝑒𝑟𝑀(𝜇, 𝜈, 𝑧) function and it can be
efined in terms of the hypergeometric function [75,76]. In addition,
he original Helmholtz free energy of the dirty black hole, in the case
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Fig. 4. Variations of the Helmholtz free energy in terms of horizon radius 𝑟+.
of 𝜆 = 0, can be written as follows

𝐹0 = −
𝑟𝜂

2

+
(

𝜂2 − 2
)

4
. (3.12)

The behaviors of the Helmholtz free energy for different values of 𝜆 and
𝜂 are plotted in Fig. 4.

Fig. 4(a) illustrates that, for a specific positive 𝜂 and 𝜆 ≥ 0, the
elmholtz free energy is consistently negative, whereas it becomes
ositive for 𝜆 < 0. Additionally, in Fig. 4(b), we observe that, with
certain positive 𝜆, the Helmholtz free energy remains negative across

ll values of 𝜂. Conversely, in Fig. 4(c), a specific negative 𝜆 yields a
ositive Helmholtz free energy value, which subsequently decreases as
values increase.

.4. Internal energy

One of the most intriguing aspects of black holes is their ther-
odynamic behavior, which is described by analogies to classical
6

thermodynamics. The concept of internal energy becomes essential in
this context. In the study of black holes, internal energy refers to the
energy contained within the black hole itself, often associated with
the mass–energy equivalence principle, 𝐸 = 𝑀𝑐2. The process of
Hawking radiation causes the black hole to lose mass over time and,
consequently, its internal energy.

In this subsection, the effects of quantum correction on the internal
energy is investigated. The general expression for the internal energy
of a black hole is given by [77]

𝐸 = ∫ 𝑇𝐻𝑑𝑆. (3.13)

Therefore, by using Eqs. (3.1), (3.7) and (3.13), we have

𝐸 = −

2

(

e−
𝜋𝑟2+
2 𝑀𝑊

(

𝜂2

4
, 𝜂

2

4
+ 1

2
, 𝜋𝑟2+

)

𝜋− 𝜂2

4
(

𝑟2+
)− 𝜂2

4 𝜆 +
(𝜂2+2)

(

𝜆 e−𝜋𝑟
2
+−1

)

2

)

𝑟𝜂
2

+

2𝜂2 + 4
.

(3.14)
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r
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Therefore, the standard (when 𝜆 = 0) internal energy can be obtained
s

0 =
𝑟𝜂

2

+
2
. (3.15)

The plots of the internal energy for different values of 𝜆 and 𝜂, accord-
ing to the horizon radius are depicted in Fig. 5.

Referring to Fig. 5(a), it becomes evident that, for a specific positive
value of 𝜂 and when 𝜆 ≤ 0, the internal energy consistently remains
positive. However, when 𝜆 > 0, the internal energy takes on negative
values. Furthermore, Fig. 5(b) reveals that, with a certain positive
value of 𝜆, the internal energy turns negative, and as the parameter 𝜂
increases, the internal energy gradually converges to zero. In addition,
Fig. 5(c) illustrates that, for a particular negative value of 𝜆, the internal
energy remains positive across all values of 𝜂. At very small 𝑟+, the
internal energy trends negative when lambda is positive. This is because
the exponential quantum corrections become very large, reducing the
overall energy content of the tiny black hole. For negative lambda
7

however, the internal energy remains positive regardless of size, as the
corrections instead add to the energy. As 𝑟+ increases, the exponential
term quickly diminishes and in all cases the internal energy grows large
and positive as expected classically. The higher the value of 𝜂, the more
apidly the internal energy converges to the uncorrected result. So in
ssence, Fig. 5 demonstrates how the sign of 𝜆 determines whether

quantum effects fundamentally limit the minimum internal energy
for microscopic black holes or boost it to higher values. The dilaton
parameter 𝜂 controls how rapidly the classical picture is recovered
with increasing black hole scale. These intricate dependencies further
highlight the significant role played by non-perturbative corrections in
dictating the thermodynamic profile and content of tiny dirty black
holes where semi-classical formulations break down. The plots advance
our understanding of stability and phase transitions for these systems.

The key observation is that at very small horizon radius 𝑟+, the
exponential quantum corrections to the entropy and internal energy
formulas become exceedingly large. Specifically, the term 𝜆𝑒−𝜋𝑟

2
+ dom-

inates as 𝑟+ approaches zero. The sign of the correction parameter
𝜆 determines whether this exponential term contributes positively or

negatively. For a positive 𝜆, the corrections render the overall internal
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energy expression negative when 𝑟+ is tiny. Physically, this implies that
quantum effects impose a fundamental limit on the minimum internal
energy. In contrast, for a negative 𝜆, the exponential corrections in-
stead enhance the internal energy, maintaining it as positive even for
microscopic black holes. Thus, negative 𝜆 eliminates any theoretical
lower bound on internal energy. As 𝑟+ increases, the exponential term
rapidly diminishes, and the standard classical picture is recovered, with
internal energy growing large and positive. The higher the dilaton
parameter 𝜂, the faster this convergence occurs.

Specifically, in Fig. 3(c), where the correction parameter 𝜆 is posi-
tive, we observe a phase transition in the heat capacity, transitioning
from negative (unstable) to positive (stable) as the horizon radius 𝑟+
increases. This aligns with the behavior seen in Fig. 5(b) for positive
𝜆; the internal energy is negative at small 𝑟+ and rises back to positive
values as 𝑟+ increases. Therefore, the negative internal energy at micro-
scopic scales corresponds directly to the black hole being in an unstable
thermodynamic phase. Once 𝑟+ increases sufficiently for the internal
energy to become positive, stability is restored as the heat capacity
turns positive as well.

In contrast, for negative 𝜆 in Figs. 3(d) and 5(c), both the heat
capacity and internal energy remain positive across all 𝑟+, indicating
a stable black hole phase even at the smallest scales.

4. Quantum work

This section delves into calculating the quantum work involved
when the dirty black hole undergoes transitions between different
states. This analysis is crucial because at microscopic scales comparable
to the Planck length, quantum fluctuations and gravitational effects
become very significant. It introduces corrections to classical thermo-
dynamic concepts like entropy and free energy. Understanding how
these quantum corrections affect the partition functions and probability
distributions associated with microstates is key to modeling black hole
emission/evaporation processes properly. The quantum work quantifies
the relative weights of transitions in terms of modified free energy
differences. So this section is motivated by the need to uncover how
factors like the exponential correction to entropy alter equilibrium
thermodynamics and statistical mechanics at a quantum gravitational
level. This sheds light on the fundamental workings of tiny black holes
where semi-classical physics breaks down. The concepts explored here
promise to elucidate the role of quantum information theory and quan-
tum gravity in dictating black hole stability, phase changes, and decay.
The analysis lays the groundwork for assessing black hole informa-
tion loss paradoxes while accounting for microscopic non-perturbative
phenomena beyond the standard Hawking radiation theory.

The quantum-corrected entropy change of a dirty black hole sub-
jected to a uniform electric field in the ENE-dilaton theory is expressed
as [78]:

𝛥𝑆 = 𝑆𝑓 − 𝑆𝑖, (4.1)

where 𝑆𝑖 represents the initial entropy during the evolution and 𝑆𝑓
stands for the final entropy. Therefore, one can find out

𝛥𝑆 = 𝜆
(

, e−𝜋𝑟
2
+𝑓−, e−𝜋𝑟

2
+𝑖
)

+ 𝜋
(

𝑟2+𝑓 − 𝑟2+𝑖
)

. (4.2)

Furthermore, to analyze the quantum work involved, it is beneficial
to consider the change in the Helmholtz free energy. Thus, we can
express the change in Helmholtz free energy (𝛥𝐹 = 𝐹 (𝑟+𝑓 ) − 𝐹 (𝑟+𝑖))
and the quantum work

(

𝑒
𝛥𝐹
𝑇
)

[67] as follows:

𝛥𝐹 = −
𝑟𝜂

2

+𝑓𝜋
1− 𝜂2

4 e−
𝜋𝑟2+𝑓
2 𝑊𝑀

(

𝜂2

4 ,
𝜂2

4 + 1
2 , 𝜋𝑟

2
+𝑓

)(

𝑟2+𝑓
)− 𝜂2

4 𝜆

𝜋
(

𝜂2 + 2
) − (4.3)

𝜆

(

𝜂2𝑟𝜂
2−2

+𝑓
2 + 𝑟𝜂

2

+𝑓𝜋

)

e−𝜋𝑟
2
+𝑓 +

𝜋
(

𝜂2−2
)

(

𝑟𝜂
2
+𝑓−𝑟

𝜂2
+𝑖

)

2

, (4.4)
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2𝜋
and

𝑊 = 𝑒
𝛥𝐹
𝑇 = e

−
2𝑟−𝜂

2+2
+ (𝛼1+𝛼2)

(𝜂2+2)𝜂2 , (4.5)

by which

𝛼1 = 2𝑟𝜂
2

+𝑓𝜋
1− 𝜂2

4 e−
𝜋𝑟2+𝑓
2 𝑀𝑊

(

𝜂2

4
,
𝜂2

4
+ 1

2
, 𝜋𝑟2+𝑓

)

(

𝑟2+𝑓
)− 𝜂2

4 𝜆, (4.6)

2 =

⎛

⎜

⎜

⎜

⎝

𝜆
⎛

⎜

⎜

⎝

𝜂2𝑟𝜂
2−2

+𝑓

2
+ 𝑟𝜂

2

+𝑓𝜋
⎞

⎟

⎟

⎠

e−𝜋𝑟
2
+𝑓 +

𝜋
(

𝜂2 − 2
)

(

𝑟𝜂
2

+𝑓 − 𝑟𝜂
2

+𝑖

)

2

⎞

⎟

⎟

⎟

⎠

(

𝜂2 + 2
)

.

(4.7)

q. (4.5) can be used to express quantum work in terms of the partition
unctions, denoted as 𝑊 = 𝑍𝑓

𝑍𝑖
. The quantum work (𝑒

𝛥𝐹
𝑇 ) for various

values of 𝜆 and 𝜂 can be visualized in relation to the horizon radius 𝑟+,
as shown in Fig. 6.

The distribution of partition functions for a black hole is influenced
by the relative weights, or probabilities, associated with transitions
between different states [69]. These weights are determined by the
quantum work performed during the transition. Quantum work relies
on the difference in equilibrium free energies between the initial and
final states, which, in turn, depends on the microstates of the black
hole. As the black hole emits radiation, understanding this process
requires consideration of the average quantum work during the emis-
sion process [78]. The significance of quantum work becomes more
pronounced at small scales, necessitating the incorporation of quantum
gravitational corrections. It is evident from the curves in Fig. 6 that, at
larger values of 𝑟+, all curves coincide.

Fig. 6 shows how the quantum work, calculated as 𝑒
𝛥𝐹
𝑇 , varies with

the black hole horizon radius 𝑟+ for different values of the correction
parameters lambda and eta. In all cases, the quantum work starts from
a small negative value at very low 𝑟+ and initially rises rapidly before
plateauing and converging at larger horizon radius. This profile reflects
the complex dependence of the quantum work on the changes in free
energy between initial and final black hole states, as described by
Eqs. (4.5)–(4.7).

Specifically, at small 𝑟+, the exponential corrections to the entropy
nd free energy are more pronounced, leading to larger differences
etween initial and final free energies as the black hole shrinks. This
esults in the rapidly increasing magnitude of quantum work. As 𝑟+
ncreases, the black hole grows in size and the exponential corrections
ecome negligible. Thus, the free energy change and corresponding
uantum work starts to plateau. All curves converge at large enough
+ when the corrections no longer contribute.

Comparing the plots, more positive lambda leads to higher overall
values of quantum work, while more negative lambda suppresses it.
Similarly, increasing the parameter eta boosts the quantum work. This
further verifies the sensitive dependence on the exponential correc-
tions.

In summary, Fig. 6 elucidates how incorporating microstate fluc-
tuations and non-perturbative effects significantly alters predictions
of the thermodynamic work involved in black hole transitions. This
underscores the importance of quantum corrections in dictating black
hole behavior. These corrections modify equilibrium free energies,
subsequently affecting the calculation of quantum work. Therefore, it
becomes imperative to integrate these modified expressions for free
energies to accurately assess the impact of quantum gravitational cor-
rections on the distribution of quantum work [69,78–80].

5. Conclusion

In a recent study, a novel solution has been introduced that in-
volves a dirty/hairy black hole within the framework of ENE-dilaton
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heory [45]. This particular black hole is characterized by a uniform
adial electric field and a singular dilaton scalar field, which is NAF
nd possesses a singularity at its core. This type of black hole is of
ignificant interest due to its connections with charged black holes in
tring theory, where the hair/dilaton field is non-minimally coupled
o electromagnetic fields. These connections have far-reaching impli-
ations in various areas, such as the AdS/CFT correspondence, which
ints at a holographic duality with a quark–gluon plasma [81]. Con-
equently, there is a pressing need to delve into the thermodynamics
f this intriguing black hole, especially at quantum scales, which is the
entral focus of the present paper.

The paper has commenced by providing a comprehensive overview
f the dirty black hole sustained by a uniform electric field in the
NE-dilaton theory. Subsequently, we have derived the entropy of this
articular dirty black hole, accounting for exponential corrections. We
ave also conducted an in-depth examination of various thermody-
amic properties associated with this black hole. An analysis of the heat
apacity reveals that the final stage of this black hole becomes unstable,
ssuming that the correction parameter 𝜆 is positive, as anticipated.
9

r

urthermore, we have computed the quantum work employing free
nergy and investigated the influence of exponential corrections on it.
emarkably, it is observed that both non-perturbative and perturbative
orrections exert a substantial impact, particularly as the black hole size
horizon radius) diminishes due to the process of Hawking radiation.

In light of these findings, future research avenues emerge from
his article. First and foremost, it is imperative to explore the conse-
uences of the black hole’s instability in the late stages of its evolution,
hich could have profound implications for our understanding of
ravitational dynamics. Additionally, further investigations into the
olographic duality between this type of black hole and quark–gluon
lasma, as suggested by the AdS/CFT correspondence, could yield
aluable insights into the behavior of matter under extreme conditions.
t is noteworthy that the same analysis can be applied to other entropy
orrections arising from quantum considerations, such as Barrow en-
ropy [82,83], or alternative considerations, as exemplified by Tsallis
ntropy [84] and Kaniadakis entropy [85]. Finally, the interplay be-
ween the dilaton field and thermodynamic properties of black holes
emains a fertile ground for future research, particularly in the context
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of quantum gravity and string theory. These avenues promise exciting
developments in our comprehension of the fundamental aspects of the
universe.
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