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A B S T R A C T

In this paper, we investigate the thermodynamic properties of an AdS-charged black hole
coupled with a nonlinear electrodynamic field, taking into account the effects of thermal
fluctuations. Our analysis focuses on how thermal fluctuations impact the entropy of the black
hole. It is known that at the quantum level, thermal fluctuations bring about changes in the
entropy of a black hole in both exponential and logarithmic ways. We present the logarithmic
and exponentially corrected thermodynamic characteristics of the black hole, such as Helmholtz
free energy, pressure, enthalpy, Gibbs free energy, and specific heat. A comparative analysis of
equilibrium states with corrected thermodynamic potentials is conducted to observe the signif-
icant influence of the black hole under consideration. Additionally, we examine a second-order
phase transition in the case of non-perturbed correction.

. Introduction

The Bekenstein–Hawking area law for black hole (BH) entropy was found by using the quantum approach [1] and string
heory [2], which has brought back interest in the quantum aspects of BH physics. The profound interactions between the physics
f BHs and the fundamental principles of thermodynamics were initially elucidated during the early 1970s, as documented in the
eminal works [3–5]. The underlying framework of this phenomenon is deeply connected with the complex structure of gravitation,
hich is crucial in establishing the entropy of BHs [4,6,7]. Additionally, the principles of quantum mechanics determine that BHs
mit radiation and possess a finite temperature [5,8]. Thermodynamics, being situated at the intersection of the gravitational and
uantum frameworks, is often regarded as a portal through which one can gain insights into the fundamental principles underlying
he quantum theory of gravity [9]. The study of BH thermodynamics is of great importance to the progress of quantum field theory
n the context of curved space–time. According to our comprehension, BHs exhibit a profound association with the fundamental
aws of thermodynamics and can be considered entities characterized by a maximum entropy [10,11]. It was postulated that the
ntropy of BH was strongly linked to the surface area of its BH radius rather than its volumetric properties. Theoretical physicists
elieved Planck-scale thermal fluctuations could change the area-entropy relationship of a BH. Furthermore, these phenomena
an be further investigated and comprehended through the application of the holographic principle, as discussed in [12,13]. It is
orth noting that in these proposed modifications, the entropy continues to exhibit scaling behavior that is dependent on a certain

unction of the area. The quantum corrections to space–time would modify the entropy area law. The quantum correction through
hermal fluctuations refers to two types of corrections: perturbed correction, also known as a logarithmic correction (at leading
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order [14]), and non-perturbed correction, also known as an exponential correction [15]. In various settings, both perturbative and
non-perturbative corrections have received extensive scholarly attention. The story is as follows: when black hole size reduced due
to the Hawking radiation, perturbative correction become dominant. Reducing more in size yielding the black hole to the Planck
size where non-perturbative corrections become dominant. It is been proposed that correction terms are universal and have the
approximate form [15],

𝑆 = 𝑆0 + 𝜓 log𝑆0 +⋯ + 𝜆 exp(−𝑆0) (1)

where 𝜓 and 𝜆 are correction coefficients, and dots denote higher-order corrections [16]. It was found that perturbative corrections
of AdS BHs exist, as evidenced by the Refs. [17–21]. The utilization of the extremal limit of BHs was used for acquiring perturbative
corrections, as revealed in the works of [22,23]. It has been suggested that the aforementioned corrections can be derived through
an analysis of the density of microstates within a conformal field theory [24]. In [25], the quantum correction to the Cardy formula
for BHs was used to derive the logarithmic correction. Black hole entropy modifications have been calculated using the Rademacher
expansion [26]. Because of this, a lot of research has been done using many diverse methodologies to look at perturbative corrections
to the entropy of a BH [27,28]. The entropy of BHs that exceed the Planck scale is directly proportional to the area of their event
horizon. However, it is necessary to make corrections to this relationship when considering relatively smaller BHs. When the BH is
shrunk, it is essential to study leading-order corrections to entropy. The influence of quantum fluctuations near the equilibrium
state becomes considerable in the case of BHs and contributes to affecting the entropy of the BH. These modifications, which
are regarded as the quantum effect and are caused by quantum fluctuations, change the holographic principle [29–31]. Kaul and
Majumdar [32], have made significant contributions to the field of quantum correction geometry. Specifically, they have focused on
determining the simplest corrections to the Bekenstein area entropy relation. It is discussed in [33] that the Hawking temperature
increases unboundedly with the mass of a BH, as predicted by the leading-order correction to the geometry of such objects in four-
dimensional Einstein gravity with a negative cosmological constant. Current efforts [34–37], focus on the research of logarithmic
modifications in a variety of contexts. In order to take a Schwarzschild BH in a cavity of small radius, a logarithmic correction term
must be present [38]. For different BHs geometries, it has been noted that these modified logarithmic terms are significant [39–
56,56]. Recently, Abbas and Ali [57–59], have made contributions to the field of first-order logarithmic correction using thermal
fluctuations.

The exponentially corrected or non-perturbed correction term arises when performing microstate counting exclusively for
quantum states on the horizon [60]. The investigation into the microscopic origins of entropy is an important area of study in
the field of quantum BH physics. The Bekenstein–Hawking area law for entropy is a standard requirement for any quantum theory
of BHs. Both string theory and loop quantum gravity provide a framework for microstate counting, which not only confirms the
Bekenstein–Hawking area law but also introduces additional corrections. The quantum description of BH horizons is a key aspect
of our method that will be essential in our derivation.

In recent times, a novel exponential term has been postulated in order to modify the entropy of BHs. It has been speculated
that the quantum theory of gravity may provide results similar to the exponential corrections in the entropy of BHs. Till now, a
comprehensive thermodynamic analysis of BHs, including exponential entropy corrections, has been absent in the literature, except
for the notable work presented in [61]. Consequently, this paper aims to address this gap by conducting such an analysis for various
significant BH configurations. Non-perturbative methods emerge themselves through exponential corrections in the theoretical
framework [62–64]. The most captivating scenario arises from the exponential term that exhibits non-perturbative dominance [64–
67]. Recently, Pourhassan et al. [68,69], conducted a comprehensive analysis on the universality of these corrections, which exhibit
logarithmic and exponential correction. Furthermore, they investigated the effects of these quantum corrections on black holes
thermodynamics.

The universal impacts of non-linear electrodynamics (NLED) theory have been extensively studied in order to investigate the
problem of universal evolution, as indicated by the Born–Infeld theory [70–72]. The impact of NLED in cosmology has been
highlighted by a recent study, specifically in relation to the transition time of both large and small areas. In recent years, NLED
containing cosmological models have received a great deal of attention [73–75]. Research on the NLED in heavenly bodies has grown
due to significant results [76–79]. The surprising nature of Einstein’s solutions for gravity and the NLED field becomes apparent
when considering them in the context of the Big Bang. Nonlinear electrodynamic fields may play an essential role in the universe.
In order to comprehend these solutions, one needs to understand the correlation between strong magnetic and electromagnetic
nonlinear fields. Previous studies [80–84] have examined BHs with multiple horizons in NLED fields. Gunasekaran et al. [85],
conducted a study on the thermodynamics of charged BHs, considering the influence of NLED. They also examined the critical
behavior of charged BHs. Recently, Abass and Ali [57], discussed the extended phase space thermodynamics of BH with NLED field
and analyzed the thermodynamic properties and critical exponents. Mazharimousavi [86], formed the RN-BH solution coupled with
NLED field. The objective of this study is to examine the thermodynamic properties of a NLED BH through thermal fluctuations.

The paper is organized as follows: In Sec. 2, we review the considered BH solution. In Sec. 3, we studied equilibrium
thermodynamic characteristics. Section 4, presents the quantum corrected thermodynamics of the BH with logarithmic corrected
entropy. Section 5, discusses the corrections in thermodynamics of this BH due to exponential correction entropy. Results are
summarized in the last section.
769



Chinese Journal of Physics 88 (2024) 768–785R.H. Ali et al.

w
L

i

I
b

3

a
t

w
r
a
w

D

O
a

2. Review of the NLED black hole solution

The NLED model will be integrated with Einstein’s gravity by means of the action described in [86],

𝑆 = ∫ 𝑑4𝑥
√

−𝑔
( 1
16𝜋𝐺

𝑅 + ( )
)

, (2)

here 𝑅 is the Ricci scalar, 𝐺 is the Newton gravitational constant,  = 1
4𝐹𝜇𝜈𝐹

𝜇𝜈 is the Maxwell invariant [86], and  is NLED
agrangian, which is given by,

 = −
16

(

3
√

−2 + 𝜁 (𝜁 +
√

𝜁2 + 4
√

−2 )
)

√

−2

3(𝜁 +
√

𝜁2 + 4
√

−2 )4
, (3)

where 𝜁 is an NLED parameter. The Einstein field equation can be written as

𝐺𝜈𝜇 = 8𝜋𝑇 𝜈𝜇 , (4)

where 𝐺𝜈𝜇 is the Einstein’s tensor and 𝑇 𝜈𝜇 be energy momentum tensor. The NLED energy momentum tensor is of the form [86],

𝑇 𝜈𝜇 = 1
4𝜋

(𝛿𝜈𝜇 − 𝐹𝜇𝛾𝐹
𝜈𝛾 ), (5)

where  = 𝜕
𝜕 .

The consistency of the Einstein field equations has been established [86]. It is worth noting that there is only one radius involved
n this scenario, which yields

𝐺0
0 = 8𝜋𝑇 0

0 , (6)

The following is the form of the spherically symmetric ansatz metric.

𝑑𝑠2 = −ℎ(𝑟)𝑑𝑡2 + 1
ℎ(𝑟)

𝑑𝑟2 + 𝑟2(𝑑𝑟2 + sin2 𝜃𝑑𝜙2), (7)

where,

ℎ(𝑟) = 1 − 2𝑚
𝑟

+ 𝑄2

𝑟2
+ 𝑙2

𝑟2
−

(

4𝜁𝑄
√

𝑄
)

log(𝑟)

3𝑟
. (8)

n this case, 𝑄 represents a BH’s charge, and 𝑚 is its mass. When 𝜁 approaches zero, the BH becomes a RN-BH. If 𝑄 is zero, it
ecomes a Schwarzschild BH.

. Equilibrium thermodynamics

In this particular segment, we shall explore equilibrium thermodynamic potentials, specifically focusing on the usual entropy of
n AdS BH with NLED parameter 𝜁 [87]. The equilibrium quantities under consideration encompass the geometric mass, Hawking
emperature, and usual specific heat.

The given expression represents the geometrical mass of the BH under consideration,

𝑚 = 𝑙2

2𝑟ℎ
+ 1

3
(−2)𝜁𝑄3∕2 log

(

𝑟ℎ
)

+ 𝑄2

2𝑟ℎ
+
𝑟ℎ
2
, (9)

here 𝑟ℎ is the BH horizon radius, which is obtained by largest positive root of ℎ(𝑟) = 0. In Fig. 1 we draw ℎ𝑟 in terms of 𝑟 to find its
oot. We can see depend on model parameters, there are several situations. We can find a black hole with two horizons are possible
s well as a naked singularity (see green dotted lines of Fig. 1). The extremal case (where two horizons coincide) is also possible
hich is illustrated by solid red lines of Fig. 1.

The determination of the total mass of BH can be achieved by employing the definition of mass proposed by Abbott and
eser [88,89],

𝑀 = 𝑚
8

= 1
8

( 𝑙2

2𝑟ℎ
+ 1

3
(−2)𝜁𝑄3∕2 log

(

𝑟ℎ
)

+ 𝑄2

2𝑟ℎ
+
𝑟ℎ
2

)

. (10)

ne of the fundamental thermodynamic potentials of great significance is the entropy associated with a BH, which can be expressed
s

𝑆0 =
𝐴
4

= 𝜋𝑟2ℎ. (11)

The volumetric thermodynamic potential of the BH is expressed as

𝑉 =
4𝜋𝑟3ℎ . (12)
770
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Fig. 1. Horizon structure analysis for 𝑙 = 1. (a) we take 𝜁 = 1, 𝑚 = 1 and vary 𝑄. (b) we take 𝜁 = −1, 𝑄 = 1 and vary 𝑚. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

The Hawking temperature of the given BH is the following:

𝑇 =
(

− 𝑙2

4𝜋𝑟3ℎ
−
𝜁𝑄3∕2

3𝜋𝑟2ℎ
− 𝑄2

4𝜋𝑟3ℎ
+ 1

4𝜋𝑟ℎ

)

. (13)

The expression for the associated heat capacity 𝐶 = 𝑇 ( 𝜕𝑆0𝜕𝑇 ) can be represented

𝐶 =
2𝜋𝑟2ℎ

(

4𝜁𝑄3∕2𝑟ℎ − 3𝑟2ℎ + 3
(

𝑙2 +𝑄2))

−8𝜁𝑄3∕2𝑟ℎ + 3𝑟2ℎ − 9
(

𝑙2 +𝑄2
) . (14)

To observe the Hawking temperature concerning the altered values of the electric charge 𝑄 and the NLED parameter 𝜁 , we have
graphically represented the Hawking temperature in Fig. 2 (left two plots). Upon careful observation, it is apparent that the values
of 𝑄 and 𝜁 , the Hawking temperature, exhibit fascinating behavior. It initially experiences a growth phase, reaching its maximum
value, after which it commences a gradual decline towards its equilibrium position. Similarly, the graphical representation of specific
heat is illustrated in Fig. 2 (right two plots) to observe the local stability of the system. The specific heat exhibits discontinuities at
specific points, indicating a phase change between regions of stability and instability for the BH under consideration. Hence, there
is the second order phase transition in this case. It means that the black hole is initially in the instable phase, then goes to the stable
phase as its size decreased due to the hawking radiation. However at this point we should consider quantum effects to find real
phase of this stage. It will be subjects of the next sections.

4. Corrected thermodynamical quantities due to logarithmic corrected entropy

In this particular section, we will examine the potential impacts of quantum fluctuations on the RN-BH that are associated
with NLED [86]. The concept of entropy is closely connected to the horizon radius of a BH [4,90], which is of great importance
in understanding the thermodynamic properties of a system. Now, we are focusing on the modified entropy that string theory
and loop quantum gravity produce as a result of counting microstates. The perturbed simple logarithmic corrected entropy
𝑆𝑝 [29,35,37,45,47,59] can be represented as

𝑆𝑝 = 𝑆0 −
1
2
ln(𝑆0𝑇

2), (15)

where 𝑆0 be zeroth order entropy. The corrected entropy of a BH can be rewritten by introducing a parameter 𝜓 to replace the
factor 1

2 . This substitution, whic is originally did by [36], enhances the corrected terms [58] in the expression,

𝑆𝑝 = 𝑆0 − 𝜓 log
(

𝑆0𝑇
2) . (16)

This paper examines the thermodynamic characteristics by incorporating simple logarithmic corrections. From Eqs. (11), (13), and
(16), we can write

𝑆𝑝 = 𝜋𝑟2ℎ + 𝜓 log
(

144𝜋𝑟4ℎ
)

− 2𝜓 log
(

4𝜁𝑄3∕2𝑟ℎ − 3𝑟2ℎ + 3𝑙2 + 3𝑄2) . (17)

Fig. 3, illustrates the monotonic and smooth increase of the modified entropy, 𝑆𝑝, resulting from the perturbation correction.
This behavior is observed across all parameters within the specified domains. The system for large-small radii BHs is positive and
continuous, obeying the second law of BH thermodynamics. Similar findings have been observed in previous studies [36,45,58,59],
and [91–95]. All observed trends, including equilibrium entropy and corrected entropy, are consistently positive and increasing.
The usual entropy is applicable to small-sized BHs, whereas the modified entropy is more persuasive and applicable to both large
771
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Fig. 2. The letf 2 plots indicate the graph of temperature as a function of 𝑟ℎ for 𝑙 = 2. For (a) we take 𝜁 = −2, for (b) 𝑄 = 1.50. Similarly the right 2 plots
express the graph of heat capacity as a function of 𝑟ℎ for 𝑙 = 2 and for (c) we take 𝜁 = −1.50, for (d) 𝑄 = 0.90.

and small-sized BHs. In Ref. [58], we examined the corrected entropy of the system and found that it exhibited a positive and stable
trend within the specified range. In the literature [59], we investigated the perturbed correction in entropy caused by thermal
fluctuations and observed stability for very small BH horizon radii, specifically for the charged and correction parameters.

Thermal fluctuations, resulting from statistical perturbations, significantly impact small BHs, as demonstrated in Fig. 3,
specifically in plots (a), (b), and (c). It is important to note that modifying the charge parameter 𝑄 alters its behavior, causing
a shift from the negative to the positive region at small horizon radii. Additionally, the plot (a), demonstrates a positive, increasing
trend for large radii. When the charge parameter decreases, the corrected entropy of the system increases at a faster rate. The
maximum entropy of the system occurs when the charge parameter is equal to zero (𝑄 = 0). This study investigates the impact
of thermal fluctuations on entropy. It is found that the corrected entropy is consistently greater than the usual entropy, which is
observed when the correction parameter 𝜓 is equal to zero. The maximum corrected entropy is obtained when 𝜓 = 4. Additionally,
the equilibrium entropy of the BH under consideration remains stable [96]. It is worth mentioning that the thermodynamics of large
BHs is not significantly influenced by small thermal fluctuations [91,93].

The Helmholtz free energy [36,45,58,59] can be modified as,

𝐹𝑝 = −∫ 𝑆𝑝𝑑𝑇 = −∫ (𝑆0 − 𝜓 log(𝑆0𝑇
2))𝑑𝑇 . (18)

Using Eqs. (11), and (17) in Eq. (18), we obtain the form of Helmholtz free energy as following,

𝐹𝑝 = −1
12𝜋𝑟3ℎ

(

−9𝜋𝑟2ℎ(𝑙
2 +𝑄2) + 𝜓 log(144𝜋𝑟4ℎ)(−4𝜁𝑄

3∕2𝑟ℎ + 3𝑟2ℎ − 3(𝑙2 +𝑄2)) + 2𝜓(4𝜁𝑄3∕2𝑟ℎ

−3𝑟2ℎ + 3(𝑙2 +𝑄2)) log(4𝜁𝑄3∕2𝑟ℎ − 3𝑟2ℎ + 3(𝑙2 +𝑄2)) − 4𝜁𝑄3∕2𝜓𝑟ℎ + 8𝜋𝜁𝑄3∕2𝑟3ℎ log(𝑟ℎ) − 3𝜋𝑟4ℎ
−4𝜓(𝑙2 +𝑄2)

)

. (19)

Fig. 4 illustrates the interpretation of the perturbed corrected Helmholtz free energy 𝐹𝑝, for the AdS charged BH with a NLED
parameter. The free energy graph demonstrate distinct behaviors, such as stability and instability, exhibited by various parameters
as their domains increase. Some articles, [36,45,55,56,58,59,91,93,95–98] discussed the observation of modified Helmholtz free
energy. The Helmholtz free energy, as discussed in [58], exhibits a consistent, positive, and stable trend across all parameters and
772
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Fig. 3. This figure illustrates the graph of logarithmic corrected entropy as a function of 𝑟ℎ for a specific value of 𝑙 = 5 and for plot (a), we take 𝜁 = 1, 𝜆 = 2,
for (b), 𝑄 = 3, 𝜆 = 3 and for (c), 𝑄 = 4, 𝜁 = 0.2.

region, followed by a progression towards equilibrium for charged and correction parameters. In Fig. 4 plot(a), it is evident that
as the charge parameter increases, the Helmholtz free energy undergoes a phase transition from an unstable state to a stable state
and then returns to an unstable state for the specific range of charge values from 𝑄 = 02 to 𝑄 = 08. The Helmholtz free energy is
stable for all considered domains when 𝑄 = 0 (blue line). When examining the stable region, it is observed that the Helmholtz free
energy reaches its maximum value at a charge parameter of 𝑄 = 8 (indicated by the green line). As the parametric values increase,
the Helmholtz free energy in the domain system also increases, reaching its highest value. The modified Helmholtz free energy is
depicted in plot (b), both with and without the inclusion of the NLED parameter 𝜁 . The energy remains negative across the critical
horizon radii. The critical horizon radius is the point at which thermal fluctuations, whether perturbed or non-perturbed, have no
effect on the Helmholtz free energy. It is observed that the Helmholtz free energy undergoes a phase transition in its phase space,
transition from negative to positive and then from positive to negative, when the non-zero NLED parameter 𝜁 is considered. In the
absence of the coupling parameter 𝜁 = 0 (blue line), the Helmholtz free energy function remains stable across the entire range of
the horizon radius. The graphical profile in plot (c), shows the relationship between the Helmholtz free energy and the correction
parameter 𝜓 . It indicates that the energy becomes stable after transition from an unstable region. The free energy initially increases
to its maximum value and then gradually decreases in all the regions under consideration. Therefore, we can infer that the system
is stable, indicating that it absorbs a greater amount of energy from its surroundings. With correction parameter due to thermal
fluctuations, the energy is higher for both small and large BH radii. Therefore, it can be inferred that the inclusion of logarithmic
correction results in an increase in the Helmholtz free energy rather than the energy without correction. Additionally, the presence
of a logarithmic correction leads to a decrease in the stability of charged AdSBH with NLED. The free energy system remains stable
across all domains. Several articles [36,91,96] have reported results showing a decrease in the Helmholtz free energy as a result of
fluctuations.

Now, we can proceed to calculate the total corrected mass [58,59,99], by utilizing the concept of a thermodynamic system,

𝑀̃𝑝 = 𝐹𝑝 + 𝑆𝑝𝑇 = 𝐹𝑝 + (𝑆0 − 𝜓 log(𝑆0𝑇
2))𝑇 , (20)

Using Eqs. (11), (17), and (19) in Eq. (20), we find,

𝑀̃𝑝 =
( 𝑙2𝜓

3
+ 𝑙2 +

𝜁𝑄3∕2𝜓
2

− 2 𝜁𝑄3∕2 log
(

𝑟ℎ
)

+
𝑄2𝜓

3
+ 𝑄2

+
𝑟ℎ − 1 𝜁𝑄3∕2

)

. (21)
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Fig. 4. This figure illustrates the graph of logarithmic corrected Helmholtz free energy as a function of 𝑟ℎ for a specific value of 𝑙 = 5 and for plot (a), we take
𝜁 = 1, 𝜆 = 1, for (b), 𝑄 = 4, 𝜆 = 0.50 and for (c), 𝑄 = 2, 𝜁 = −1. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 5, illustrates the relationship between the total modified mass 𝑀̃𝑝 and BH radius. The total corrected mass exhibits an
initially descending trend, reaching a minimum value, and then showing an ascending pattern as all given parameters increase.
The literature [58,59,91,98,99], presents similar findings, suggesting that the physical masses of the BHs being studied consistently
increase from their minimal value to reach their maximal. The stability of all three parameters was observed to increase as the
horizon radii values increased, as stated in Ref. [58]. Additionally, the maximum corrected mass values can be achieved by using
the highest values for each of the three parameters. The total corrected mass exhibits an endothermic process, indicating that it
absorbs energy from its surroundings. The maximum value of the total corrected mass occurs when the correction parameter is at
its smallest value, which is 𝜂 = 1. From Fig. 5, plot (a), it has been shown that as charge parameter 𝑄 increases, mass stays constant
at higher charge parameter values. At first, the corrected mass system begins to progressively decline toward equilibrium. According
to the green line, the provided domain has its highest energy at 𝑄 = 8. The plot (b), illustrates the impact of the NLED parameter 𝜁 .
The 𝜁 = 0, recovers the complete corrected mass, as shown by the RN-BH [58,100]. It is discovered that for large radii, the physical
mass grows in both circumstances (with and without the presence of NLED). Furthermore, the existence of the NLED parameter
reduces the internal energy of the system compared to the absence of the NLED parameter. We show the total physical mass with
and without modification in the plot (c). The energy of the system can initially drop to a minimum and then begin to rise for large
radii.

The necessity for the first law to remain valid for BH thermodynamical quantities in the presence of thermal fluctuations leads
to the formulation of a modified first law of BH thermodynamics,

𝑀̃ = 𝑇̃ 𝛿𝑆 + 𝜙𝛿𝑄 + 𝑉 𝛿𝑃 = 0, (22)

The variables 𝑇̃ , 𝜙, and 𝑉 are used to represent the corrected temperature, electric potential, and corrected volume, respectively.
The identification of modified thermodynamic characteristics can be achieved by utilizing the following expressions,

𝑇̃ = ( 𝜕𝑀̃
𝜕𝑆

)𝑄

𝜙 = ( 𝜕𝑀̃
𝜕𝑄

)𝑆

𝑉 = ( 𝜕𝑀̃ )
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Fig. 5. This figure illustrates the graph of logarithmic corrected total mass as a function of 𝑟ℎ for a specific value of 𝑙 = 5 and for plot (a), we take 𝜁 = 0.10,
𝜆 = 0.50, for (b), 𝑄 = 0.20, 𝜆 = 0.50 and for (c), 𝑄 = 1, 𝜁 = 0.50. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

which gives

𝑇̃ =
(

− 𝑙2

4𝜋𝑟3ℎ
−
𝜁𝑄3∕2

3𝜋𝑟2ℎ
− 𝑄2

4𝜋𝑟3ℎ
+ 1

4𝜋𝑟ℎ

)

. (23)

The corresponding perturbed corrected pressure [36,45,55,58,59] of the AdS charged BH with an NLED are given by

𝑃𝑝 = −
𝑑𝐹𝑝
𝑑𝑉

, (24)

which is yields to the following expression,

𝑃𝑝 = 1
48𝜋2𝑟6ℎ

(

(8𝜁𝑄3∕2𝑟ℎ − 3𝑟2ℎ + 9(𝑙2 +𝑄2))(𝜓(log(144𝜋𝑟4ℎ) − 2 log(4𝜁𝑄3∕2𝑟ℎ

−3𝑟2ℎ + 3(𝑙2 +𝑄2))) + 𝜋𝑟2ℎ)
)

. (25)

The modified pressure has been reported in previous studies [36,45,55,58,59,93,96,101]. The articles [36,45], demonstrated the
correction parameter resulted in a decrease in modified pressure. The pressure, as corrected for perturbations [58], diverges from
the stable region for charged and correction parameters. However, it exhibits stability after the phase transition for the coupling
parameter. The pressure of a Torus-like charged BH was corrected in a study by [59]. This study investigates the phase transition
that occurs as the BH transitions from an unstable state to a stable state, ultimately reaching equilibrium. Thermal fluctuations have
a greater impact on small BTZ BHs [93]. The pressure of regular BHs [101], is significantly affected by logarithmic correction. The
corrected pressure due to perturbed correction 𝑃𝑝 for the horizon radius 𝑟ℎ is shown in Fig. 6. The pressure analysis involves three
parameters: 𝑄, 𝜁 , and 𝜓 . The occurrence of a second-order phase transition can be observed when varying the charge parameter,
coupling parameter, and corrected parameter, as the system transitions from an unstable state to a stable state and eventually
reaches an equilibrium state. The plot (a), initially take transitions from a negative phase to a positive phase and then stabilizes at
an equilibrium state. At a value of 𝑄 = 8, the system achieves its maximum corrected pressure. Similar occurrences can be observed
in plots (b) and (c). It is crucial to note from plots (b) and (c) that during the initial increasing phase, the maximum pressure values
occur at 𝜁 = 0 and 𝜓 = 0. In the subsequent phase of decreasing towards equilibrium, the highest increasing pressure is observed at
𝜁 = 4 and 𝜓 = 4 across the entire domain.
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Fig. 6. This figure illustrates the graph of logarithmic corrected pressure as a function of 𝑟ℎ for a specific value of 𝑙 = 5 and for plot (a), we take 𝜁 = 1, 𝜆 = 0.50,
for (b), 𝑄 = 2, 𝜆 = 0.50 and for (c), 𝑄 = 2, 𝜁 = 1.

To accurately determine the perturbed corrected enthalpy 𝐻𝑝 of a thermodynamical system [36,45,55,99],

𝐻𝑝 = 𝑀̃𝑝 + 𝑃𝑝𝑉 , (26)

𝐻𝑝 = 1
36𝜋𝑟3ℎ

(

(8𝜁𝑄3∕2𝑟ℎ − 3𝑟2ℎ + 9(𝑙2 +𝑄2))(𝜓(log(144𝜋𝑟4ℎ) − 2 log(4𝜁𝑄3∕2𝑟ℎ − 3𝑟2ℎ + 3(𝑙2 +𝑄2)))

+𝜋𝑟2ℎ) + 18𝜋𝑙2𝑟2ℎ + 12𝜁𝑄3∕2𝜓𝑟ℎ − 12𝜋𝜁𝑄3∕2𝑟3ℎ − 24𝜋𝜁𝑄3∕2𝑟3ℎ log(𝑟ℎ) + 18𝜋𝑄2𝑟2ℎ + 18𝜋𝑟4ℎ
+12𝑙2𝜓 + 12𝑄2𝜓

)

. (27)

Fig. 7, displays the graphical representation of the corrected enthalpy 𝐻𝑝 in relation to the horizon 𝑟ℎ. In general, the enthalpy
exhibits a positive and increasing trend for larger BH radii, denoted as 𝑟ℎ. Previous research has examined the system’s enthalpy,
specifically in relation to thermal fluctuations, in several studies [36,55,56,58,59,93,96]. The enthalpy of the system is more
appropriate for large radius BHs when considering the correction parameter [56]. The corrected enthalpy, as examined in [58],
assessed the stability of all three parameters across the entire domain. The enthalpy of the system decreased from a stable state
to an equilibrium state due to the charged parameter. Similarly, the correction parameter increased from a lower region to an
equilibrium state, as observed in [59]. The enthalpy of the system characterizes the phase transition from an unstable to a stable
region across all parameters. The enthalpy rises to its peak for small radii, providing stability across the entire domain for all values
of the charged parameter in plot (a). The maximum value of corrected enthalpy across the entire domain occurs at 𝑄 = 8. Plot (b),
exhibits comparable behavior, with the exception that the maximum enthalpy value is associated with the absence of the NLED
parameter 𝜁 . Therefore, the system can achieve its maximum enthalpy without the need for NLED. Enthalpy is observed to be
associated with increased stability in the presence of the NLED parameter. In plot (c), the graph demonstrates an increasing trend
for the given radii when the value of 𝑄 is fixed and the parameter 𝜓 is corrected. The presence of a correction parameter leads to
the occurrence of phase space transitions from instability to stability, followed by a gradual decrease for specific radii and then an
increase for larger radii.

The investigation of global stability necessitates the definition of the Gibbs free energy [36,55,56,58,59,93,96],

𝐺𝑝 = 𝐻𝑝 − 𝑇𝑆𝑝 = 𝐻𝑝 − 𝑇 (𝑆0 − 𝜓 log(𝑆0𝑇
2)). (28)

The Gibbs free energy can be expressed in the following manner, based on the quantities indicated above:
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Fig. 7. This figure illustrates the graph of logarithmic corrected enthalpy as a function of 𝑟ℎ for a specific value of 𝑙 = 5 and for plot (a), we take 𝜁 = 0.20,
𝜆 = 0.50, for (b), 𝑄 = 0.90, 𝜆 = 0.50 and for (c), 𝑄 = 0.20, 𝜁 = 0.20.

𝐺𝑝 = 1
18𝜋𝑟3ℎ

(

3𝜓(𝑙2 +𝑄2)(−6 log(4𝜁𝑄3∕2𝑟ℎ − 3𝑟2ℎ + 3(𝑙2 +𝑄2)) + 3 log(144𝜋𝑟4ℎ) + 2) + 𝑟ℎ

(2𝜁𝑄3∕2𝜓(−10 log(4𝜁𝑄3∕2𝑟ℎ − 3𝑟2ℎ + 3(𝑙2 +𝑄2)) + 5 log(144𝜋𝑟4ℎ) + 3) + 𝑟ℎ(6(2𝜓 log(4𝜁

𝑄3∕2𝑟ℎ − 3𝑟2ℎ + 3(𝑙2 +𝑄2)) − 𝜓 log(144𝜋𝑟4ℎ) + 3𝜋(𝑙2 +𝑄2)) + 𝜋𝑟ℎ(4𝜁𝑄3∕2(1 − 3 log(𝑟ℎ))

+ 3𝑟ℎ)))
)

. (29)

Fig. 8, illustrates the relationship between Gibbs free energy and BH radius, highlighting the importance of all three parameters.
Numerous articles in the literature discuss the Gibbs free energy [36,45,58,59,91,92,95]. Pourhassan [36], observed that the
involvement of thermal fluctuations leads to a decrease in the Gibbs free energy of the BH system. Abbas [58], explored that the given
system of Gibss free energy remains increasing and stable for the considered domain. Abbas [59], also investigated the second-order
phase transition in order to measure the Gibss free energy associated with charged and correction parameters and conclude that Gibss
free energy reaches equilibrium from the negative region. The physical profile of the Gibbs free energy in [91,92], demonstrates
that thermal fluctuation effects only small BHs. The behavior of Gibss free energy is similar to the corrected enthalpy of the system,
which was discussed in detail earlier.

The concept of specific heat [45,58], is employed to analyze the local stability of the BH. The modified heat capacity 𝐶𝑝 =
𝑇𝑑𝑆𝑝
𝑑𝑇

can be expressed as

𝐶𝑝 = −
2
(

𝑟ℎ
(

𝜋𝑟ℎ
(

4𝜁𝑄3∕2𝑟ℎ − 3𝑟2ℎ + 3
(

𝑙2 +𝑄2)) + 4𝜁𝑄3∕2𝜓
)

+ 6𝜓
(

𝑙2 +𝑄2))

8𝜁𝑄3∕2𝑟ℎ − 3𝑟2ℎ + 9
(

𝑙2 +𝑄2
) . (30)

As far as concern to Fig. 9, which illustrates the physical interpretation of heat capacity due to perturbation correction 𝐶𝑝 = 0 in
terms of 𝑟ℎ. Numerous studies, such as [36,45,55,56,58,91,96,99], have examined heat capacity under quantum fluctuations. The
article [96], states that heat capacity is unstable without logarithmic correction but becomes stable for small BH with the presence
of thermal fluctuations. In Fig. 9, the plot (a), which reveals that phase shifts exclusively for low values of the charge parameter.
Specific heat undergoes a phase shift from instability to stability between the values 𝑄 = 0 and 𝑄 = 2. The specific heat regarding
charged parametric values from 𝑄 = 4, to 𝑄 = 8 remain unstable. From plot (b), exhibit that in initial phase specific heat converges
from instability to stability state. It may noted that for large sized BH the associated specific heat becomes more stable as the values
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Fig. 8. This figure illustrates the graph of logarithmic corrected Gibbs free energy as a function of 𝑟ℎ for a specific value of 𝑙 = 5 and for plot (a), we take
𝜁 = 0.50, 𝜆 = 0.50, for (b), 𝑄 = 1, 𝜆 = 1 and for (c), 𝑄 = 0.20, 𝜁 = 0.50.

of the NLED parameter decrease. To check the impact of the existence of the logarithmic correction due to thermal fluctuation, we
focus our attention on plot (c), which describes the occurrence of the phase transition and how specific heat is convergent from the
unstable to the stable region.

5. Corrected thermodynamical quantities due to exponential corrected entropy

In the main section of this paper, we aim to investigate the non-perturbed (exponential) correction regarding the entropy of a
considered BH. According to what we found, the entropy of a BH has an exponential correction when counting microstates, which is
done only for quantum states. This means that the exponential correction term is important when thinking about BHs with smaller
surface areas, which have big quantum effects at short distances [15]. The exponential correction is given by [61],

𝑆𝑛𝑝 = 𝑆0 + 𝜆 exp(−𝑆0), (31)

where 𝜆, be the correction parameter [102,103]. Using the Eq. (11), we get

𝑆𝑛𝑝 = 𝜆 exp
(

−𝜋𝑟2ℎ
)

+ 𝜋𝑟2ℎ. (32)

We observe that Fig. 10, serves as a visual representation depicting the physical profile of exponentially corrected entropy 𝑆𝑛𝑝,
with respect to the horizon radius 𝑟ℎ. The entropy of a given BH undergoes a reduction in size as a consequence of the existence
of non-perturbed corrections characterized by diverse values of the correction parameter 𝜆. To ensure we uphold the second law of
thermodynamics, we focus on utilizing positive values of the correction parameter, 𝜆 > 0. The observed patterns of the corrected
entropy in the regime of reduced 𝑟ℎ the profound influence of quantum corrections, as evidenced by the fluctuations at this particular
scale, which are contingent upon the exponential correction parameter 𝜆. The entropy that usually occurs when 𝜆 = 0, is depicted
by the blue line, which exhibits a restoration of the conventional Bekenstein–Hawking entropy relation. Furthermore, it is worth
noting that the corrected entropy of the entire system reaches its highest value at 𝜆 = 4, and its lowest value at 𝜆 = 0.

The Helmholtz free energy, as described by the exponentially corrected formulation [68], can be expressed in the following
manner:

𝐹𝑛𝑝 = − 𝑆𝑛𝑝𝑑𝑇 = − (𝑆0 + 𝜆 exp(−𝑆0))𝑑𝑇 . (33)
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Fig. 9. This figure illustrates the graph of logarithmic corrected specific heat as a function of 𝑟ℎ for a specific value of 𝑙 = 5 and for plot (a), we take 𝜁 = 0.50,
𝜆 = 1, for (b), 𝑄 = 0.50, 𝜆 = 0.50 and for (c), 𝑄 = 1, 𝜁 = 2.

Fig. 10. The given figure express the graph of corrected entropy as a function of 𝑟ℎ. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Using Eqs. (11), (13), and (33), we get the form of Helmholtz free energy:

𝐹𝑛𝑝 = −1
12𝜋

(

3𝜋𝜆
(

2𝜋𝑙2 + 2𝜋𝑄2 + 1
)

erf
(

√

𝜋𝑟ℎ
)

− 4𝜋𝜁𝜆𝑄3∕2Ei
(

−𝜋𝑟2ℎ
)

+ 8𝜋𝜁𝑄3∕2 log
(

𝑟ℎ
)

− 3𝜋𝑟ℎ

− 1
𝑟ℎ

9𝜋
(

𝑙2 +𝑄2) +
𝜆 exp

(

−𝜋𝑟2ℎ
) (

𝑟2ℎ
(

6𝜋𝑙2 + 6𝜋𝑄2 + 3
)

− 4𝜁𝑄3∕2𝑟ℎ − 3
(

𝑙2 +𝑄2))

𝑟3ℎ

)

. (34)

The exponentially corrected Helmholtz free energy function 𝐹𝑛𝑝 of RN-BH, coupled with the NLED parameter associated with the
horizon radius 𝑟 , appears as captivating graphical features in Fig. 11. It is observed that the stability of the Helmholtz free energy
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Fig. 11. The figure illustrates the graph of Helmholtz free energy as a function of 𝑟ℎ for a specific value of 𝑙 = 5 and for plot (a), we take 𝜁 = 2, 𝜆 = 1, for (b),
𝑄 = 5, 𝜆 = 1 and for (c), 𝑄 = 2, 𝜁 = 2..

is limited to small radii for all three plots, specifically when 𝑟ℎ < 0.8. This observation holds true for all three parameters, namely
the charged parameter 𝑄, the coupling parameter 𝜁 , and the non-perturbed exponentially corrected parameter 𝜆. The Helmholtz
free energy exhibits a decrease as the horizon radius increases while simultaneously diverging from the stable to the unstable region
across all parameters. It is duly observed that the Helmholtz free energy attains its maximum state when all three parameters reach
their maximum values, while the Helmholtz free energy reaches its lowest state when 𝑄 = 0, 𝜁 = 0, and 𝜆 = 0 respectively.

The total corrected mass can be estimated as,

𝑀̃𝑛𝑝 = 𝐹𝑛𝑝 + 𝑆𝑛𝑝𝑇 = 𝐹𝑛𝑝 + (𝑆0 + 𝜆 exp(−𝑆0))𝑇 , (35)

Using Eqs. (11), (13) and (34) in Eq. (35), one can get the required corrected mass as,

𝑀̃𝑛𝑝 = 1
12𝑟ℎ

(

exp(−𝜋𝑟2ℎ)(exp(𝜋𝑟
2
ℎ)(𝑟ℎ(−3𝜆(2𝜋(𝑙

2 +𝑄2) + 1)erf(
√

𝜋𝑟ℎ) + 4𝜁𝑄3∕2(𝜆Ei(−𝜋𝑟2ℎ)

− 2 log(𝑟ℎ) − 1) + 6𝑟ℎ) + 6(𝑙2 +𝑄2)) − 6𝜆(𝑙2 +𝑄2))
)

. (36)

The pressure of the considered BH with NLED can be determined as,

𝑃𝑛𝑝 = −
𝑑𝐹𝑛𝑝
𝑑𝑉

, (37)

From above mentioned equations, we have

𝑃𝑛𝑝 =
1

48𝜋2𝑟6ℎ

(

exp
(

−𝜋𝑟2ℎ
) (

𝜋𝑟2ℎ exp
(

−𝜋𝑟2ℎ
)

+ 𝜆
) (

8𝜁𝑄3∕2𝑟ℎ − 3𝑟2ℎ + 9
(

𝑙2 +𝑄2))
)

.

The exponentially corrected pressure 𝑃𝑛𝑝 of a given BH is visually expressed in Fig. 12. The pressure initially exhibits a stable
behavior for very small BH but gradually decreases towards an equilibrium state as the horizon radius increases. This pattern is
consistently observed across all three plots. The observable consequences arising from quantum fluctuations in non-perturbations
can be observed. Plots (a), and (c), show that the highest corrected pressure can be obtained by using the largest values of the
charged parameter at 𝑄 = 8, as well as the non-perturbed correction parameter at 𝜆 = 4. Plot (b), demonstrates the opposite trend.
Therefore, the stability of a quantum BH can be analyzed by considering the exponentially corrected pressure due to quantum
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Fig. 12. This figure illustrates the graph of exponentially corrected pressure as a function of 𝑟ℎ for a specific value of 𝑙 = 5 and for plot (a), we take 𝜁 = 3,
𝜆 = 5, for (b), 𝑄 = 5, 𝜆 = 1 and for (c), 𝑄 = 5, 𝜁 = 3.

The enthalpy due to the exponential correction can be estimated as

𝐻𝑛𝑝 = 𝑀̃𝑛𝑝 + 𝑃𝑛𝑝𝑉 , (38)

By employing the aforementioned quantities, we obtain

𝐻𝑛𝑝 = 1
36𝑟3ℎ

(

3𝑟2ℎ(exp(−𝜋𝑟
2
ℎ)(𝑟ℎ(−3𝜆(2𝜋(𝑙

2 +𝑄2) + 1)erf(
√

𝜋𝑟ℎ) + 4𝜁𝑄3∕2(𝜆Ei(−𝜋𝑟2ℎ)

−2 log(𝑟ℎ) − 1) + 6𝑟ℎ) + 6(𝑙2 +𝑄2)) − 6𝜆(𝑙2 +𝑄2) + exp(−𝜋𝑟2ℎ))
1
𝜋
((9(𝑙2 +𝑄2)

+ 8𝜁𝑄3∕2𝑟ℎ − 3𝑟2ℎ)𝜋𝑟
2
ℎ exp(−𝜋𝑟

2
ℎ) + 𝜆)

)

. (39)

The enthalpy of the system can be positively influenced by the non-perturbed exponential correction with respect to the horizon
radius 𝑟ℎ. Its physical profile is depicted in Fig. 13. We can explore the exciting physical behavior of corrected enthalpy by dividing
it into three phases. The initial phase is stable, followed by an unstable phase, and finally, we reach the equilibrium phase in all
plots for all three parameters. It is exciting to see that at the start, the enthalpy remains stable for a very small BH radius and
then gradually decreases to reach its minimum before moving towards the unstable region. The phase transition will occur again,
bringing stability and equilibrium to the system, especially for larger radii in the given domain. From Fig. 13, plot (a), it is evident
that the enthalpy associated with charged parameter reaches its maximum value with the largest value of 𝑄, in the stable region.
Similarly, it attains its minimum value with the largest value of 𝑄, in the unstable region. The plot (b), shows that with the highest
value of the NLED parameter, the corresponding corrected enthalpy remains at its maximum for both stable and unstable regions.
This suggests that there is potential for significant and positive outcomes in these regions. In the absence of the correction parameter
𝜆 = 0, the enthalpy of the system remains stable for all given domains, gradually approaching equilibrium. Furthermore, it is worth
noting that the enthalpy reaches its highest value at 𝜆 = 4, but it remains at a minimum for both regions, from stable to unstable.
Gibbs free energy is defined to investigate global stability as

𝐺 = 𝐻 − 𝑇𝑆 = 𝐻 − 𝑇 (𝑆 + 𝜆 exp(−𝑆 )). (40)
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Fig. 13. This figure illustrates the graph of exponentially corrected enthalpy as a function of 𝑟ℎ for a specific value of 𝑙 = 5 and for plot (a), we take 𝜁 = 1,
𝜆 = 1, for (b), 𝑄 = 5, 𝜆 = 1 and for (c), 𝑄 = 5, 𝜁 = 1.

In order to explore the global stability of a system, one must consider the concept of Gibbs free energy, which is mathematically
defined as

𝐺𝑛𝑝 = 1
36𝜋𝑟3ℎ

(exp(−2𝜋𝑟2ℎ))
(

𝜋𝑟2ℎ(𝑟ℎ(−9𝜆(2𝜋(𝑙
2 +𝑄2) + 1)erf(

√

𝜋𝑟ℎ) + 4𝜁𝑄3∕2(3𝜆Ei(−𝜋𝑟2ℎ)

−6 log(𝑟ℎ) − 1) + 15𝑟ℎ) + 27(𝑙2 +𝑄2)) − 2𝜆 exp(𝜋𝑟2ℎ)(𝑟
2
ℎ(9𝜋(𝑙

2 +𝑄2) + 6) − 10𝜁𝑄3∕2𝑟ℎ

−9(𝑙2 +𝑄2)) − 3𝜋𝑟2ℎ exp(−2𝜋𝑟
2
ℎ)(−4𝜁𝑄

3∕2𝑟ℎ + 3𝑟2ℎ − 3(𝑙2 +𝑄2))
)

. (41)

In this study, we will analyze the physical behavior of the exponentially corrected Gibbs free energy 𝐺𝑛𝑝, using Fig. 14. Plots
(a), and(c), exhibit similar behavior as observed in the corrected enthalpy. Plot (b), describes the Gibbs free energy relating to the
NLED coupling parameter. It demonstrates that the Gibbs free energy of the system remains stable and gradually decreases until it
reaches its equilibrium state.

Now, we will examine the thermodynamic stability of our system and the conditions under which phase transitions occur.
The specific heat of the BH [67,69] is another quantity used to investigate its local stability. The corrected heat capacity 𝐶𝑛𝑝 =
𝑇 ( 𝑑𝑆𝑛𝑝𝑑𝑟ℎ

)( 𝑑𝑟ℎ𝑑𝑇 ) is given by

𝐶𝑛𝑝 = −
2𝜋𝑟2ℎ exp

(

−𝜋𝑟2ℎ
) (

exp
(

𝜋𝑟2ℎ
)

− 𝜆
) (

−4𝜁𝑄3∕2𝑟ℎ + 3𝑟2ℎ − 3
(

𝑙2 +𝑄2))

−8𝜁𝑄3∕2𝑟ℎ + 3𝑟2ℎ − 9
(

𝑙2 +𝑄2
) (42)

The graph of non-perturbed exponential corrected specific heat 𝐶𝑛𝑝, as a function of horizon radius 𝑟ℎ drawn in Fig. 15. Following
inspection of plot (a), it becomes evident that the corrected specific heat for the charged parameter exhibits a consistent negative
trend across the entire range of the given domain and shows instability for all values of the charged parameter. The NLED parameter
𝜁 , used to analyze the stability of the specific heat of a small-sized BH at 𝑟ℎ = 0.8. It is observed that in the first phase, the specific
heat remained stable, while in the second phase, it diverged towards an unstable region, as shown in plot (b). The plot(c), illustrates
that the specific heat exhibits stability for small radii and divergence for large radii in the presence of the correction parameter 𝜓 .
In the stable region, the specific heat reaches its maximum value when the correction parameter is at its highest.
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Fig. 14. This figure illustrates the graph of exponentially corrected Gibss free energy as a function of 𝑟ℎ for a specific value of 𝑙 = 5 and for plot (a), we take
𝜁 = 0.50, 𝜆 = 0.50, for (b), 𝑄 = 5, 𝜆 = 1 and for (c), 𝑄 = 5, 𝜁 = 0.50.

6. Conclusions

In this paper, we have conducted a comprehensive analysis of the thermodynamic properties exhibited by a charged AdS BH that
is coupled with a NLED field. Our investigation primarily focuses on the equilibrium entropy and the modified entropy resulting from
thermal fluctuations. Moreover, we have evaluated the thermodynamic potentials through the utilization of equilibrium entropy,
particularly focusing on entropy, mass, Hawking temperature, and heat capacity. It has been accepted that quantum corrections
arising from thermal fluctuations have a significant impact on the entropy of BHs. For instance, loop quantum gravity and micro-state
counting in string theory have both demonstrated the perturbation (logarithmic correction) in entropy. We have observed the impact
of logarithmic corrections on the uncorrected thermodynamic parameters of a charged AdS BH with an NLED field. Furthermore,
the entropy of a BH receives an exponential correction (non-perturbation) when exclusively considering quantum states restricted to
the event horizon as microstates. We have also observed the impact of exponential entropy on the usual entropy of the system. We
did a thorough evaluation of a study that compared modified thermodynamic potentials like Helmholtz free energy, total corrected
mass pressure, enthalpy, Gibbs free energy, and specific heat. In order to examine the novel points of their physical behavior as
well as their significance and impact. The usage of graphical description for analyzing corrected thermodynamic quantities and
their corresponding physical aspects are observed. The system is continuous and stable because the modified entropy is positive
across all domains. It is worth noting that the validity of the modified first law of BH thermodynamics is also addressed. There is
an occurrence of a first-order phase transition that arises from the consideration of logarithmic correction to entropy. Nevertheless,
the logarithmic correction does not exert any influence on the second-order phase transition. However, the exponential correction
results in a secondary first-order phase transition for the Helmholtz free energy and Gibbs free energy. It is still interesting to expand
this work like recent literature [104–110].
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Fig. 15. This figure illustrates the graph of exponentially corrected heat capacity as a function of 𝑟ℎ for a specific value of 𝑙 = 5 and for plot (a), we take
𝜁 = 0.20, 𝜆 = 0.50, for (b), 𝑄 = 5, 𝜆 = 1 = 5 and for (c), 𝑄 = 2, 𝜁 = 3.
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