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1. Introduction

Fractional calculus is a non-integer order derivative and integral calcu-
lus. The concept of non-integer order derivative and integration, pro-
posed by Leibniz and L’Hospital, is now available in many studies on the
subject of fractional analysis ([1]-[8]). When the literature is examined,
we see that there have been many studies about fractional derivatives
and the studies are continuing intensively today. Recently, a new def-
inition of the fractional derivative has been proposed which is called a
conformable fractional derivative and based on the classical derivative
definition ([9]). Khalil et al. were defined conformable fractional deriv-
ative ([9]). In ([10]), the authors defined the right and left conformable
fractional derivatives.

Conformable fractional derivative aims to extend the definition of
derivative in the known sense by providing the natural properties of
the classical derivative and to give new perspectives to the theory of
differential equations with the help of conformable fractional differen-
tial equations obtained using this derivative definition. In [11, 12], the
authors studied the conformable fractional Sturm-Liouville problems.
In their study, the authors discussed a conformable fractional Sturm-
Liouville boundary-value problem. In [13], they used sine-Gordon ex-
pansion (SGE) approach and generalized Kudryashov (GK) scheme to
generate broad spectral solutions containing unknown parameters. The
dynamic behavior of the waves drawn for the individual values   of the pa-
rameter was analyzed in the 3D and contour graphics of the results they
obtained. In [23], the authors studied the conformable fractional heat
equation. Later, in [24, 25], the authors introduced the conformable
fractional Fourier series and gave its applications to solve some con-
formable fractional equations. In [26], the authors introduced the con-
cept of a mild solution of conformable fractional abstract initial value
problem. They established the existence and uniqueness theorem using
the contraction principle. In [27], the authors adopted the Adomian
decomposition method and the Padé approximation technique to de-
rive the approximate solutions of a conformable heat transfer equation
by considering the new definition of the Adomian polynomials. Many
researchers have done studies in this area [14, 15, 16, 17].

In the present article, we consider a conformable fractional heat con-
duction equation in the following form:

∂αu(t, x)

∂tα
+q(x)u(t, x) =

∂α

∂xα
(r(x)

∂αu(t, x)

∂xα
), x ∈ (0, b), 0 < b <∞, t > 0,

(1.1)
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where
∂αu (t, x)

∂tα
:= lim

ε→0

u
(
t+ εt1−α, x

)
− u (t, x)

ε
, α ∈ (0, 1],

r(.) and q(.) are real-valued functions defined on J := [0, b] and satisfy
the conditions 1

r(.) , q (.) ∈ L1
α(J), and r (x) > 0, q (x) ≥ 0, x ∈ J. We

shall assume that the system (1.1) satisfies the homogeneous boundary
conditions

u (t, 0) = 0, u (t, b) = 0, (1.2)
and the initial condition

u (0, x) = f (x) , x ∈ J. (1.3)
We solve the problem (1.1) by the method of separation of variables.
Let

u (t, x) = e−λ tα

α y (x) , x ∈ J, (1.4)
where λ is a complex constant. If we substitute (1.4) into (1.1)-(1.2),
we arrive at

Γy := −Tα (r (x)Tαy(x)) + q (x) y(x) = λy(x), (1.5)
and

y(0) = y(b) = 0, (1.6)
where x ∈ (0, b).

If λ is an eigenvalue and y(x) is a corresponding eigenfunction of
the problem (1.5)-(1.6) if and only if the function u (t, x) in (1.4) is a
nontrivial solution of the problem (1.1)-(1.2). Since the problem (1.1)-
(1.2) is linear, the function defined as

u (t, x) =

∞∑
k=1

cke
−λ

tα

α φk (x) , (1.7)

where c1, c2, ... are arbitrary constants, is a formal solution of the prob-
lem (1.1)-(1.2). The initial condition (1.3) gives

f (x) =
∞∑
k=1

ckφk (x) , x ∈ J.

In this process, the natural question now is: is it possible to expand a
given function f (x) in eigenfunctions φ1 (x) , φ2 (x) , ...? Our purpose of
this paper is to answer this question.

This paper is organized as follows. In Section 2, we give some defini-
tions and theorems related to conformable fractional calculus. In Section
3, we obtain an eigenfunctions expansion. This expansion is α−square
convergent (that is, in an L2

α-metric). The existence of a countably infi-
nite set of eigenvalues and eigenfunctions is proved. Finally, in Section
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4, we obtain uniformly convergent expansions in the eigenfunctions. In
the analysis that follows, we will largely follow the development of the
theory in [18, 22, 21, 19].

2. Preliminaries

Definition 2.1 (see [10]). Assume α be a positive number with 0 <
α < 1. A function f : (0, b) → R = (−∞,∞) the conformable fractional
derivative of order α of f at x > 0 was defined by

Tαf(x) = lim
ε→0

f
(
x+ εx1−α

)
− f (x)

ε
, (2.1)

and the fractional derivative at 0 is defined
(Tαf) (0) = lim

x→0
Tαf(x).

Definition 2.2 (see [10]). The conformable fractional integral starting
from 0 of a function f of order 0 < α≤1 is defined by

(Iαf) (x) =

x∫
0

sα−1f(s)ds =

x∫
0

f(s)dαs.

Lemma 2.3 (see [10]). Assume that f is a continuous function on (0, b)
and 0 < α < 1. Then, we have

TαIαf (x) = f (x) ,

for all x ∈ (0, b) .

Theorem 2.4. [10] Let z, y : [0, b] → R be two functions such that z
and y are conformable fractional differentiable. Then, we have∫ b

0
y (x)Tα (z) (x) dαx+

∫ b

0
z(x)Tα (y) (x) dαx = z (b) y (b)− z (0) y (0) .

(2.2)

3. α−Square Convergent Expansions

Let us denote by L2
α(J), the space of all real-valued functions defined

on J such that

∥y∥ :=

√∫ b

0
y2 (x) dαx <∞,

where 0 < b < ∞. The space L2
α(J) is a Hilbert space with the inner

product

⟨z, y⟩ =
∫ b

0
z(x)y(x)dαx, where z, y ∈ L2

α(J).
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Let us consider the linear set Dmax consisting of all vectors y ∈ L2
α(J)

such that y and Tαy are absolutely continuous on J and Γy ∈ L2
α(J). We

define the maximal operator Smax on Dmax by the equality Smaxy = Γy.
Let Dmin be the linear set of all vectors y ∈ Dmax satisfying the

conditions
y (0) = Tαy (0) = y (b) = Tαy (b) = 0. (3.1)

The operator Smin, that is the restriction of the operator Smax to Dmin

is called the minimal operator.
For y1, y2 ∈ Dmax, we have the following α−Green’s formula∫ b

0
[Γ[y1](x)y2(x)− y1(x)Γ[y2](x)] dαx = [y1, y2] (b)− [y1, y2] (0) , (3.2)

where
[y1, y2](x) = r (x) {y1(x)Tαy2(x)− Tαy1(x)y2(x)}

(see [12]).

Theorem 3.1. The operator Sminis Hermitian.

Proof. By the formula (3.2), for y, z ∈ Dmin, we have∫ b

0
(Γy)(x)z(x)dαx−

∫ b

0
y(x)(Γz)(x)dαx = 0.

□
Theorem 3.2. Let ξ ∈ L2

α(J). Then, the equation
Γ (y) = ξ (3.3)

has a solution y (x) satisfying the conditions
y (0) = Tαy (0) = y (b) = Tαy (b) = 0, (3.4)

if and only if the function ξ is orthogonal to all solutions of the equation
Γ (y) = 0.

Proof. Let y (x) be the solution of the equation Γ (y) = ξ satisfying the
conditions

y (0) = Tαy (0) = 0. (3.5)
There exists one such solution (see [12]). Let us denote by z1 and z2, a
fundamental system of solutions of the equation Γ (z) = 0 satisfying the
conditions

z1 (b) = 1, Tαz1 (b) = 0,
z2 (b) = 0, Tαz2 (b) = 1.

(3.6)

Applying α−Green’s formula (3.2) to the functions y (x) and zi (x)
(i = 1, 2) , we conclude that

(ξ, zi) = (Γ (y) , zi) = [y, zi] (b)− [y, zi] (0) + (y,Γ (zi)) . (3.7)
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By the condition (3.5), we deduce that [y, zi] (0) = 0. It follows from
Γ (zi) = 0 that

(ξ, zi) = [y, zi] (b) =

{
−Tαy(b) for i = 1
y (b) for i = 2,

(3.8)

and this is precisely the assertion of the theorem. □
Now, let us denote by Ω the set of all solutions of the equation Γ(z) =

0. Further, we denote by M the range of the operator Smin. It follows
from Theorem 3.2 that

L2
α(J) = Ω⊕M. (3.9)

Theorem 3.3. For arbitrary real numbers α1, α2, α3 and α4, there exists
a function y ∈ Dmax satisfying the conditions

y (0) = α1, Tαy (0) = α2,
y(b) = α3, Tαy (b) = α4.

(3.10)

Proof. Firstly, we will prove the theorem for the special case when α1

and α2 are zero. Let ξ be an arbitrary vector in L2
α(J) satisfying the

conditions
(ξ, zi) =

{
−α4 for i = 1
α3 for i = 2.

(3.11)

Here z1 and z2 are a fundamental system of solutions of the equation
Γ (z) = 0. There exists such a vector ξ. If we put

ξ = c1z1 + c2z2,

then the conditions (3.11) provide a system of equations in the constants
ci (i = 1, 2) whose determinant is the same as the Gram determinant for
the linearly independent functions z1, z2, and does not vanish.

Let z denote the solution of the equation
Γ (z) = ξ

satisfying the conditions
z (0) = Tαz (0) = 0. (3.12)

Then we have
z (b) = α3, Tαz (b) = α4.

Applying the formula (3.2) to the functions z (x) and zi (x) (i = 1, 2) ,
we get

(ξ, zi) = (Γ (z) , zi) = [z, zi] (a)− [z, zi] (0) + (z,Γ (zi)) . (3.13)
It follows from Γ (zi) = 0 and (3.12) that [z, zi] (b) = 0. From the condi-
tions (3.6) and (3.8), we get

[z, zi] (b) =

{
−Tαz(b) for i = 1
z (b) for i = 2.
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From (3.11) and (3.13), we conclude that
z (b) = α3, Tαz (b) = α4.

Thus, we have constructed a function z ∈ Dmax such that
z (0) = Tαz (0) = 0, z (b) = α3, Tαz (b) = α4.

Similarly, we can construct a function k ∈ Dmax such that
k (0) = α1, Tαk (0) = α2, k (b) = 0, Tαk (b) = 0.

Then the function y = z + k ∈ Dmax satisfies the conditions (3.10). □
Theorem 3.4. Dmin is dense in L2

α(J).

Proof. We will show that every vector ζ orthogonal to Dmin is zero. Let
ζ be such a vector, i.e.,

(ζ, y) = 0, for all y ∈ Dmin.

Let ν be any particular solution of the equation Γ (ν) = ζ. For an arbi-
trary vector y ∈ Dmin, we have

(ν, Sminy) = (Smaxν, y) = (Γ (ν) , y) = (ζ, y) = 0.

An application of Theorem 3 yields ζ = 0. □
It follows from Theorem 3.1 and Theorem 3.4 that Smin is a symmetric

operator.

Theorem 3.5. The equality Smax = S∗
min holds.

Proof. For arbitrary vectors y ∈ Dmin and z ∈ Dmax, we have
(Sminy, z) = (y, Smaxz) ,

i.e., Smax ⊂ S∗
min. Hence, we have to prove the converse. Let ζ be an

arbitrary vector in the domain of definition D∗
min of the operator S∗

min
and S∗

minζ = ν. Further, we denote by ξ (z) any particular solution of
the equation Γ (ξ) = ν. Then we have

(ν, y) = (Γ (ξ) , y) = (Smaxξ, y) = (ξ, Sminy) for every y ∈ Dmin.
(3.14)

By definition of the adjoint operator, we get
(ν, y) = (S∗

minζ, y) = (ζ, Sminy) . (3.15)
Subtracting (3.15) from (3.14 ), we have

(ξ − ζ, Sminy) = 0,

i.e., ξ − ζ ∈ M⊥. By virtue of (3.9), we deduce that ξ − ζ ∈ Ω. Thus,
Γ (ξ − ζ) = 0, i.e., Γζ = Γξ = ν = S∗

minζ. □
Theorem 3.6. The equality S∗

max = Smin holds.
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Proof. From Theorem 3.5, we have
S∗
max = S∗∗

min ⊃ Smin.

Thus, we have to show the opposite inclusion. Since Smin ⊂ Smax, we
arrive at

S∗
max ⊂ S∗

min = Smax. (3.16)
Let ξ be a vector in the domain of definition D∗

max of the operator S∗
max.

From (3.16), we have ξ ∈ Dmax and S∗
maxξ = Smaxξ. Then we get

(S∗
maxξ, y) = (ξ, Smaxy) ,

(Smaxξ, y) = (ξ, Smaxy) for all y ∈ Dmax.

Using α−Green’s formula (3.2), we conclude that
[ξ, y] (b)− [ξ, y] (0) = 0 for all y ∈ Dmax. (3.17)

It follows from Theorem 3.3 that the equation (3.17 ) is possible if
ξ (0) = Tαξ (0) = ξ (b) = Tαξ (b) = 0,

i.e., ξ ∈ Dmin. □

It follows from Theorem 3.6 that Smin is a closed symmetric operator.
Furthermore, the deficiency indices of the operator Smin is (2, 2).

Now, we will give the self-adjoint extension of the operator Smin. Let
D be the linear set of all vectors y ∈ Dmax satisfying the conditions

y (0) = y (b) = 0. (3.18)
Then we have the following theorem.

Theorem 3.7. Let S be the restriction of the operator Smax to the set
D. Then the operator S is a self-adjoint extension of the symmetric
operator Smin.

Theorem 3.8. The operator S is positive, i.e., for all y ∈ D (y ̸= 0) ,
we have

(Sy, y) =

∫ b

0

{
r (x) [Tαy(x)]

2 + q (x) [y(x)]2
}
dαx > 0 . (3.19)

Proof. From the formula (2.2), we have for all y ∈ D

(Sy, y) = r(x)y(x)Tαy(x)|b0 +
∫ b

0

{
r(x)[Tαy(x)]

2 + q(x)[y(x)]2
}
dαx

=

b∫
0

{
r(x)[Tαy(x)]

2 + q(x)[y(x)]2
}
dαx > 0.

□
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Since S is self-adjoint, we have the following properties:
i) All eigenvalues are real and positive
ii) Any two eigenfunctions corresponding to distinct eigenvalues are

orthogonal.
iii) The eigenvalues are simple.
In the next result, we use the notation

kerS = {y ∈ D : Sy = 0} .

Then we have the following proposition

Proposition 3.9.
kerS = {0} .

Proof. Let y ∈ D and Sy = 0. It follows from (3.19) that, for x ∈
(0, b), Tαy(x) = 0. Thus y(x) is constant on (0, b). From (1.6), we
conclude that y(x) ≡ 0. □

It follows from Proposition 3.9 that the inverse operator S−1 exists.
Now, we shall define Green’s function for the problem (1.5)-(1.6). Let

φ (x, λ) and ψ (x, λ) two linearly independent solutions in L2
α(J) of the

equation (1.5) and satisfy the following conditions

φ (0, λ) = 0, r(0)Tαφ (0, λ) = 1,
ψ (b, λ) = 0, r(b)Tαψ (b, λ) = 1.

(3.20)

Let

G(x, s) =

{
φ(x)ψ(s), x ≤ s
ψ(x)φ(s), x ≥ s

(3.21)

(see [12]).
Then, for any v ∈ L2

α(J), we get

(S−1v)(x) =

b∫
a

G(x, s)v(s)dαs. (3.22)

It is clear that the operator S−1 is a compact symmetric in L2
α(J) (see

[12]). Since λ = 0 is not an eigenvalue of the operator S, the eigenvalue
problem Sv = λv, v ∈ L2

α(J), ( v ̸= 0) is equivalent to the eigenvalue
problem Bv = ηv, v ∈ L2

α(J), (v ̸= 0) , where B = S−1 and η = 1
λ . It is

clear that η = 0 cannot be an eigenvalue for B.
Now, we present below for the convenience of the reader.

Theorem 3.10 (see [20]). Let A be a compact symmetric operator
mapping a Hilbert space H into itself. Then there is an orthonor-
mal system ϕ1, ϕ2, ... of eigenvectors of A, with corresponding nonzero
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eigenvalues η1, η2, ... such that every element f ∈ H has a unique repre-
sentation of the form

f =
∑
k

ckϕk + h,

where h satisfies the condition Ah = 0. Moreover,

Af =
∑
k

ηkckϕk,

and
lim
k→∞

ηk = 0

in the case where there are infinitely many nonzero eigenvalues.

Corollary 3.11. Let A be a compact symmetric operator mapping a
Hilbert space H into itself. If kerA = 0, then the eigenvectors of A form
an orthonormal basis of H.

From Corollary 3.11, we have the following theorem.

Theorem 3.12. For the problem (1.5)-(1.6), there exists an orthonor-
mal system {ϕk} of eigenfunctions corresponding to eigenvalues {λk}
(k ∈ N := {1, 2, 3, ...}). Each eigenvalue λk is positive and simple. The
system {ϕk} forms an orthonormal basis for the Hilbert space L2

α(J).
Therefore the number of the eigenvalues is equal to dimL2

α(J) = ∞.
Any function f ∈ L2

α(J) can be expanded in eigenfunctions ϕk in the
form

f(x) =

∞∑
k=1

ckϕk(x), (3.23)

where ck are the Fourier coefficients of f defined by

ck =

b∫
0

f(x)ϕk(x)dαx, k ∈ N. (3.24)

The sum in (3.23) converges to the function f in metric of the space
L2
α(J), i.e.,

lim
n→∞

b∫
0

(
f(x)−

n∑
k=1

ckϕk(x)

)2

dαx = 0. (3.25)

By (3.25), we get the Parseval equality, i.e.,
b∫

0

f2(x)dαx =

∞∑
k=1

c2k, (3.26)
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since
b∫

0

(
f(x)−

n∑
k=1

ckϕk(x)

)2

dαx =

b∫
0

f2(x)dαx−
n∑

k=1

c2k.

4. Uniformly Convergent Expansions

In what follows, we present our main result.

Theorem 4.1. Let f (x) be a continuous real-valued function satisfy-
ing the boundary conditions (1.6) and such that it has a continuous
α−derivative in the interval J . Then the series

∞∑
k=1

ckϕk(x), (4.1)

where

ck =

b∫
0

f(x)ϕkdαx, k ∈ N, (4.2)

converges uniformly on J to the function f .

Proof. We follow the ideas of [19, 21, 22]. Define the functional Q(y) by

Q(y) =

b∫
0

{
r (x) [Tαy(x)]

2 + q (x) [y(x)]2
}
dαx ≥ 0.

If we substitute

y = f(x)−
n∑

k=1

ckϕk(x),

into Q(y), we conclude that

Q

(
f −

n∑
k=1

ckϕk

)
=

b∫
0

r (x)

{
Tαf(x)−

n∑
k=1

ckTαϕk(x)

}2

dαx

+

b∫
0

q (x)

[
f −

n∑
k=1

ckϕk

]2
dαx
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=

b∫
0

{
r (x) [Tαf(x)]

2 + q (x) [f(x)]2
}
dαx

− 2
n∑

k=1

ck

 b∫
0

{r (x)Tαf(x)Tαϕk(x) + q (x) f(x)ϕk(x)} dαx



+
n∑

k,m=1

ckcm

 b∫
0

{r (x)Tαφk(x)Tαϕm(x) + q (x)φk(x)ϕm(x)} dαx


(4.3)

Applications of (2.2) and (1.6) yield
b∫

0

{r (x)Tαf(x)Tαϕk(x) + q (x) f(x)ϕk(x)} dαx

=

b∫
0

f(x) {−Tα [r (x)Tαϕk(x)] + q (x)ϕk(x)} dαx

+ r (b) f(b)Tαϕk(b)− r (0) f(0)Tαϕk(0)

= λk

b∫
0

f(x)ϕk(x)dαx = λkck, k ∈ N,

and
b∫

0

{r (x)Tαϕk(x)Tαϕm(x) + q (x)φk(x)ϕm(x)} dαx

=

b∫
0

ϕk(x) {−Tα [r (x)Tαϕm(x)] + q (x)ϕm(x)} dαx

+ r (b)ϕk(b)Tαϕm(b)− r (0)ϕk(0)Tαϕm(0)

= λm

b∫
0

ϕk(x)ϕm(x)dαx = λkδkm, k,m ∈ N,
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where δkm is the Kronecker symbol. Therefore from (4.3), we conclude
that

Q

(
f −

n∑
k=1

ckϕk(x)

)

=

b∫
0

{
r (x) [Tαy(x)]

2 + q (x) [y(x)]2
}
−

n∑
k=1

λkc
2
k. (4.4)

Since the left-hand side in (4.4) is nonnegative we arrive at

∞∑
k=1

λkc
2
k ≤

b∫
0

{
r (x) [Tαy(x)]

2 + q (x) [y(x)]2
}
dαx (4.5)

analogous to Bessel’s inequality, and the convergence of the series in
(4.5) follows. Since λk > 0, all the terms of this series are nonnegative.

We now show that the series
∞∑
k=1

|ckϕk(x)| (4.6)

is uniformly convergent in J. It follows from (3.22) that

ϕk(x) = λk

b∫
0

G(x, s)ϕk(s)dαs.

Then we can rewrite (4.6) as
∞∑
k=1

λk |ckτk(x)| , (4.7)

where

τk(x) =

b∫
0

G(x, s)ϕk(s)dαs

can be regarded as the Fourier coefficient of G(x, s) as a function of s.
It follows from (4.5) that

∞∑
k=1

λk [τk(x)]
2 ≤

b∫
0

{
r (x)

[
∂α

∂sα
G(x, s)

]2
+ q (x) [G(x, s)]2

}
dαs.

(4.8)
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Since the function appearing under the integral sign in (4.8) is bounded,
we get

∞∑
k=1

λk [τk(x)]
2 ≤ K,

where K is a constant. Applying the Cauchy–Schwarz inequality in
(4.7), we conclude that
s+p∑
k=s

λk |ckτk(x)| ≤

(
s+p∑
k=s

λkc
2
k

)1/2(s+p∑
k=s

λk [τk(x)]
2

)1/2

≤ K1/2

(
s+p∑
k=s

λkc
2
k

)1/2

.

It follows from (4.5) and the convergence of the series with terms λkc2k
that the series in (4.7) is uniformly convergent on the interval J . Hence
the series in (4.6) is uniformly convergent in this interval. Let

f1(x) =

∞∑
k=1

ckϕk(x), k ∈ N. (4.9)

Since the series in (4.9) is uniformly convergent on J , we can multiply
both sides of (4.9) by ϕm(x) and then α-integrate it term-by-term to get

b∫
0

f1(x)ϕm(x)dαx = cm, k ∈ N.

Since the Fourier coefficients of f1 and f are the same, the Fourier
coefficients of the difference f1 − f are zero. Applying (3.26) to the
function f1 − f , we deduce that f1 − f = 0. Hence the sum of series in
(4.1) is equal to f(x), which proves the theorem. □

5. Conclusion

As a result, in our study, by examining a compatible fractional heat
conduction equation, The method of separating the variables was suit-
able for this problem and we obtained the conformable fractional Sturm-
Liouville eigenvalue problem with congruent fractions. Next, by proving
the existence of a countably infinite set of eigenvalues   and eigenfunctions,
we construct uniformly convergent expansions of the eigenfunctions.
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