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Abstract. In this paper, the classical Sturm–Liouville problem is investigated in the context
of q-multiplicative calculus. Some spectral properties of the q-multiplicative Sturm–Liouville
problems, such as formally self-adjointness, and orthogonality of eigenfunctions, are studied.
Finally, Green’s function corresponding to this problem is established and some of its properties
are given.
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1. Introduction

Quantum calculus is a very old field dating back to Euler. Quantum derivative, which
was given by Jackson in 1908, started to attract the attention of mathematicians. Quantum
calculus has many applications in mathematics, physics, quantum mechanics, particle physics,
hypergeometric series (see [3, 6, 12]).

The multiplicative calculus, also known as the Non-Newtonian calculus, was introduced to
the literature by Grosman and Katz in 1967 [9, 10]. Grosman and Katz made a new definition
of derivatives and integrals. They also turned addition and subtraction into multiplication and
division. However, until recently, multiplicative calculus did not attract as much attention as
ordinary calculus. Today, this topic has started to attract a lot of attention (see [1, 2, 5, 7,
8, 11, 16]). In 2016, Yener and Emiroğlu introduced the concept of multiplicative calculus for
quantum calculus ([17]). In [2], the authors studied the classical Dirac equation on the basis of
quantum multiplicative calculus.

On the other hand, Sturm–Liouville problems are one of the most studied problems in math-
ematics ([4, 13, 14, 12, 18]). Especially when solving partial differential equations by separating
variables, it increases the popularity of the problem. Therefore, the problem arises whether the
results obtained for the classical Sturm-Liouville problem will be valid for the q−multiplicative
calculus. The aim of this paper is to examine the basic properties of Sturm–Liouville problems
in the context of q-multiplicative calculus. According to the authors’ knowledge, there is no
study on this subject in the literature.

2. Preliminaries

Now, we give some concepts of multiplicative quantum calculus ([3, 6, 12, 17]). Let 0 < q <
1 and let A ⊂ R be a q−geometric set, i.e., qx ∈ A for all x ∈ A. The q-derivative Dq is
defined by

Dqy (x) = [y (qx)− y (x)]
1

qx− x
for all x ∈ A. A function y which is defined on A, 0 ∈ A, is said to be q-regular at zero if

lim
n→∞

y (xqn) = y (0) ,

for every x ∈ A. Through the remainder of the paper, we deal only with functions q-regular at
zero.
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Definition 2.1 ([17]). Let y be a positive function. The q-multiplicative derivative D∗q is
defined by

D∗qy (x) =

(
y (qx)

y (x)

) 1
qx−x

.

One can prove that
D∗qy (x) = eDq(ln y(x)),

and [
D∗q−1y (x)

]1/q
= D∗qy

(
xq−1

)
. (2.1)

Theorem 2.2 ([17]). Let y, z be q∗-differentiable functions. Then we have the following prop-
erties.
i)

D∗q (cy) = D∗q (y) ,

where c is a positive constant,
ii)

D∗q (yz) = D∗q (y)D∗q (z) ,

iii)

D∗q

(y
z

)
=

D∗q (y)

D∗q (z)
.

The q-integration is given by∫ b

a

y (t) dqt =

∫ b

0

y (t) dqt−
∫ a

0

y (t) dqt,

where a, b ∈ A and ∫ x

0

y (t) dqt = x (1− q)
∞∑
n=0

qny (qnx) , (x ∈ A).

Definition 2.3 ([17]). Let y be a positive bounded function. Then the q-multiplicative integral
is defined as ∫

y (t)dqt = e
∫

ln y(t)dqt.

Theorem 2.4 ([17]). Let y, z be q∗-integrable functions. Then we have the following properties.
i) ∫ (

y (t)k
)dqt

=

(∫
y (t)dqt

)k
, where k ∈ R,

ii) ∫
(y (t) z (t))dqt) =

∫
y (t)dqt

∫
z (t)dqt ,

iii) ∫ (
y (t)

z (t)

)dqt
) =

∫
y (t)dqt∫
z (t)dqt

.
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Theorem 2.5 ([17]). Let y be q∗-integrable and z be q-differentiable, they are continuous on
the interval 0 ≤ a < b, then[∫ b

a

(
D∗qy (t)

)z(t)]dqt
=
y (b)z(b)

y (a)z(a)

([∫ b

a

(y (qt))Dqz(t)
]dqt)−1

.

Now we will give the notation that we use in our work.

y ⊕ z = y.z, y 	 z =
y

z
, y � z = yln z = zln y,

where y, z ∈ R+. Here ⊕,	,� : K ×K → K are operations for K 6= ∅ and K ⊂ R+. (K,⊕,�)
defines a ring in multiplicative sense ([7]).

Definition 2.6 ([11]). Let H 6= ∅ and 〈., .〉∗ : H × H → R+ be a function such that the
following axioms are satisfied for all x, y, z ∈ H :
i)

〈x⊕ y, z〉∗ = 〈x, y〉∗ ⊕ 〈y, z〉∗,

ii)
〈x, y〉∗ = 〈y, x〉∗,

iii)
〈x, x〉∗ = 1 if and only if x = 1,

iv)
〈x, x〉∗ ≥ 1,

v)
〈ek � x, y〉∗ = ek � 〈x, y〉∗, k ∈ R.

Then (H, 〈., .〉∗) is called multiplicative inner product space.

Let

L2
∗,q (0, a) :=

{
y :

∫ a

0

|y (x)� y (x)|dqx <∞
}
.

By Definition 2.6, L2
∗,q (0, a) be a multiplicative inner product space with

〈., .〉∗,q : L2
∗,q (0, a)× L2

∗,q (0, a)→ R+, (2.2)

〈y, z〉∗,q =

∫ a

0

|y (x)� z (x)|dqx ,

where y, z ∈ L2
∗,q (0, a) are positive functions.

3. q-multiplicative Sturm–Liouville equation

In this section, a q-multiplicative Sturm–Liouville equation is studied.
We consider a boundary value problem which consists of

1. a q-multiplicative Sturm–Liouville (q-MSL) equation of the form

Υ (z) :=
((
D∗q−1

)1/q
D∗qz (x)

)
⊕
(
er(x) � z (x)

)
= eλ � z (x) , x ∈ [0, a], (3.1)
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where r (.) is a real-valued function on [0, a], and λ is a parameter independent of x; and
2. two supplementary conditions

(ecosα � z (0))⊕
(
esinα �D∗qz (0)

)
= 1, (3.2)(

ecosβ � z (a)
)
⊕
(
esinβ �D∗qz

(
aq−1

))
= 1, (3.3)

where α, β ∈ R.
This type of boundary-value problem is called a q-MSL system.

Theorem 3.1. q-MSL operator defined by (3.1)-(3.3) is formally self-adjoint on the space
L2
∗,q (0, a) .

Proof. Let z, t ∈ L2
∗,q (0, a) . From (2.2), we obtain

〈Υz, t〉∗,q =

∫ a

0

∣∣∣∣([(D∗q−1

)1/q
D∗qz (x)

] [
z (x)r(x)

])ln t(x)
∣∣∣∣dqx

=

∫ a

0

∣∣∣∣[(D∗q−1

)1/q
D∗qz (x)

]ln t(x)
∣∣∣∣dqx × ∫ a

0

∣∣∣∣(z (x)r(x)
)ln t(x)

∣∣∣∣dqx .
By (2.1), we see that

〈Υz, t〉∗,q =

∫ a

0

∣∣∣[D∗q (D∗qz (xq−1
))]ln t(x)

∣∣∣ ∫ a

0

∣∣∣∣(z (x)r(x)
)ln t(x)

∣∣∣∣dqx
It follows from Theorem 2.5 that

〈Υz, t〉∗,q =

(
D∗qz (aq−1)

)ln t(a)(
D∗qz (0)

)ln t(0)
× 1∫ a

0

∣∣∣(D∗qz (x)
)Dq ln t(x)

∣∣∣dqx
∫ a

0

∣∣∣∣(z (x)r(x)
)ln t

∣∣∣∣dqx

=

(
D∗qz (aq−1)

)ln t(a)(
D∗qz (0)

)ln t(0)
× 1

e
∫ a
0 Dq ln z(x)Dq ln t(x)dqx

∫ a

0

∣∣∣∣(z (x)r(x)
)ln t(x)

∣∣∣∣dqx . (3.4)

Similarly,

〈z,Υt〉∗,q =

∫ a

0

∣∣∣z (x)ln[D∗q(D∗q t(xq−1))]
∣∣∣dqx ∫ a

0

∣∣∣(z (x))ln(t(x))r(x)
∣∣∣dqx

=

∫ a

0

∣∣∣[D∗q (D∗q t (xq−1
))]ln z(x)

∣∣∣dqx ∫ a

0

∣∣∣∣(t (x)r(x)
)ln z(x)

∣∣∣∣dqx
=

(
D∗q t (aq−1)

)ln z(a)(
D∗q t (0)

)ln z(0)
× 1

e
∫ a
0 Dq ln t(x)Dq ln z(x)dqx

∫ a

0

∣∣∣∣(t (x)r(x)
)ln z(x)

∣∣∣∣dqx . (3.5)
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From (3.4) and (3.5), we get

〈Υz, t〉∗,q =

(D∗qz(aq−1))
ln t(a)

(D∗qz(0))
ln t(0)

(D∗q t(aq−1))
ln z(a)

(D∗q t(0))
ln z(0)

〈z,Υt〉∗,q.

Then we have

〈Υz, t〉∗,q =
[z, t] (a)

[z, t] (0)
〈z,Υt〉∗,q, (3.6)

where
[z, t] (x) :=

(
t (x)�D∗qz

(
xq−1

))
	
(
z (x)�D∗q t

(
xq−1

))
.

By (3.2) and (3.3), we conclude that

〈Υz, t〉∗,q = 〈z,Υt〉∗,q. (3.7)

�

Theorem 3.2. Eigenfunctions corresponding to distinct eigenvalues are orthogonal.

Proof. Let ξ, η be two distinct eigenvalues with corresponding eigenfunctions z, t, respectively.
From (3.7), we get

〈Υz, t〉∗,q = 〈z,Υt〉∗,q

〈eξ � z, t〉∗,q = 〈z, eη � t〉∗,q

eξ−η〈z, t〉∗,q = 1.

Since ξ 6= η, we conclude that
〈z, t〉∗,q = 1.

�

The q∗-Wronskian is defined by the formula

W∗,q (z, t) =
(
z �D∗q t

)
	
(
t�D∗qz

)
.

Then we have the following theorem.

Theorem 3.3. The q∗-Wronskian of any two solutions of Eq. (3.1) is independent of x.

Proof. Let z and t be two solutions of Eq. (3.1). By (3.6), we see that

〈Υz, t〉∗,q =
[z, t] (a)

[z, t] (0)
〈z,Υt〉∗,q.

Since Υz = eλ � z and Υt = eλ � t, we obtain

[z, t] (a)

[z, t] (0)
= 1.

Consequently,
[z, t] (a) = [z, t] (0) = W∗,q (z, t) (0) .

�
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Theorem 3.4. Any two solutions of Eq. (3.1) are multiplicative linearly dependent if and only
if W∗,q = 1.

Proof. Let z and t be two multiplicative linearly dependent solutions of Eq. (3.1), i.e, z = tk,
where k 6= 1 ([16]). Then, we obtain

W∗,q (z, t) =
(
z �D∗q t

)
	
(
t�D∗qz

)
=
(
tk �D∗q t

)
	
(
t�D∗q tk

)
= 1.

Conversely, let W∗,q (z, t) =
(
z �D∗q t

)
	
(
t�D∗qz

)
= 1. Then,

D∗q t
ln z = D∗qz

ln t

eln zDq ln t = eln tDq ln z

ln zDq ln t− ln tDq ln z =

∣∣∣∣ ln z ln t
Dq ln z Dq ln t

∣∣∣∣ = 0,

i.e., ln z and ln t are linearly dependent (see [3]). Hence ln z = k ln t, where k 6= 1. �

Theorem 3.5. All eigenvalues of (3.1)-(3.3) are simple from the geometric point of view.

Proof. Let ξ be an eigenvalue with eigenfunctions z (.) and t (.) . It follows from (3.2) that

W∗,q (z, t) (0) =
(
z (0)�D∗q t (0)

)
	
(
t (0)�D∗qz (0)

)
= 1,

i.e., z and t are multiplicative linearly dependent. �

4. Green’s function

In this section, we construct Green’s function for the following nonhomogeneous q-MSL
problem ((

D∗q−1

)1/q
D∗qz (x)

)
⊕
(
er(x)−λ � z (x)

)
= ef(x), x ∈ [0, a], (4.1)

where r (.) is real-valued function on [0, a] and ef(.) ∈ L2
∗,q (0, a) , which fulfills the supplementary

conditions

(ecosα � z (0))⊕
(
esinα �D∗qz (0)

)
= 1, (4.2)(

ecosβ � z (a)
)
⊕
(
esinβ �D∗qz

(
aq−1

))
= 1, (4.3)

where α, β ∈ R. Denote by ϕ (x, λ) and ψ (x, λ) two basic solutions of Eq. (3.1) which satisfy
the following initial conditions

ϕ(0) = e− sinα, D∗qϕ(0) = ecosα,

ψ(a) = e− sinβ, D∗qψ
(
aq−1

)
= ecosβ.

It is clear that

ω (λ) = −W∗,q (ϕ, ψ) 6= 1.
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Theorem 4.1. If λ is not an eigenvalue of (3.1)-(3.3), then the problem (4.1)-(4.3) is solvable
for any function ef(x), i.e., the function

z (x, λ) = 〈G (x, t, λ) , ef(x)〉∗,q, (4.4)

where

G (x, t, λ) =

{
e−

1
ω(λ) � ψ (x, λ)� ϕ (t, λ) , 0 ≤ t ≤ x,

e−
1

ω(λ) � ϕ (x, λ)� ψ (t, λ) , x < t ≤ a,
(4.5)

is the solution of the problem (4.1)-(4.3). Conversely, if λ is an eigenvalue of (3.1)-(3.3), then
the problem (4.1)-(4.3) is generally unsolvable.

Proof. Assume that λ is not an eigenvalue of (3.1)-(3.3). We will use the method of mul-
tiplicative variations of constants. Suppose that a particular solution of (4.1) may be given
by

z (x, λ) = ϕ (x, λ)k1(x) ψ (x, λ)k2(x) ,

where k1 (x) and k2 (x) are solutions of the following equations

Dqk1 (x) =
qf (qx) lnψ (qx)

ω (λ)
, Dqk2 (x) = −qf (qx) lnϕ (qx)

ω (λ)
.

Thus, we obtain

k1 (x) = k1 (a)−
∫ a

x

qf (qt) lnψ (qt)

ω (λ)
dqt,

k2 (x) = k2 (0)−
∫ x

0

qf (qt) lnϕ (qt)

ω (λ)
dqt.

Then, the general solution of (4.1) is given by

z (x, λ) = ϕ (x, λ)c1 ψ (x, λ)c2 ϕ (x, λ)−
∫ a
x
qf(qt) lnψ(qt)

ω(λ)
dqt ψ (x, λ)−

∫ x
0
qf(qt) lnϕ(qt)

ω(λ)
dqt ,

where x ∈ [0, a] and c1, c2 are arbitrary constants. By (4.2) and (4.3), simple calculations yield

c1 = −
∫ q−1a

0

qf (qt) lnψ (qt)

ω (λ)
dqt

c2 = −
∫ a

0

qf (qt) lnϕ (qt)

ω (λ)
dqt.

Therefore

z (x, λ) = ϕ (x, λ)−
∫ q−1a
0

qf(qt) lnψ(qt)
ω(λ)

dqt−
∫ a
x
qf(qt) lnψ(qt)

ω(λ)
dqt

× ψ (x, λ)−
∫ x
0
qf(qt) lnϕ(qt)

ω(λ)
dqt−

∫ a
0
qf(qt) lnϕ(qt)

ω(λ)
dqt

= ϕ (x, λ)−
∫ x
0
f(t) lnψ(t)

ω(λ)
dqt ψ (x, λ)−

∫ a
x
f(t) lnϕ(t)

ω(λ)
dqt ,
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i.e., we get the desired result. Indeed, from (4.4) we obtain

z (x, λ) = 〈G (x, t, λ) , ef(x)〉∗,q = e
∫ x
0 f(t) lnG(x,t,λ)dqt.e

∫ a
x f(t) lnG(x,t,λ)dqt. (4.6)

By (4.5), we have

G (x, t, λ) =


(
ψ (x, λ)lnϕ(t,λ)

)− 1
ω(λ)

, 0 ≤ t ≤ x,(
ϕ (t, λ)lnψ(x,λ)

)− 1
ω(λ)

, x < t ≤ a.

(4.7)

Considering (4.6) and (4.7), we conclude that

z (x, λ) = ϕ (x, λ)−
∫ x
0
f(t) lnψ(t)

ω(λ)
dqt ψ (x, λ)−

∫ a
x
f(t) lnϕ(t)

ω(λ)
dqt .

�

Theorem 4.2. Green’s function G (x, t, λ) defined by (4.7) is unique.

Proof. Assume that there is another Green’s function G̃ (x, t, λ) for the problem (4.1)-(4.3).
Then, we have

z (x, λ) = 〈G̃ (x, t, λ) , ef(x)〉∗,q.

Hence,

〈G (x, t, λ)	 G̃ (x, t, λ) , ef(x)〉∗,q = 0. (4.8)

Putting f (x) = ln
[
G (x, t, λ)	 G̃ (x, t, λ)

]
in (4.8), we infer that

G (x, t, λ) = G̃ (x, t, λ) .

�

Theorem 4.3. Green’s function G (x, t, λ) defined by (4.7) satisfies the following properties.
i) G (x, t, λ) is continuous at (0, 0) .
ii) G (x, t, λ) = G (t, x, λ) .
iii) For each fixed t ∈ (0, qa], as a function of x, G (x, t, λ) satisfies Eq. (4.1) in the intervals
[0, t), (t, qa] and it satisfies (4.2)-(4.3).

Proof. i) Since ψ (., λ) and ϕ (., λ) are continuous at 0, we infer that G (x, t, λ) is continuous at
(0, 0).
ii) Easy to be checked.
iii) Let t ∈ (0, qa] be fixed and x ∈ [0, t]. Then, we have

G (x, t, λ) = ψ (x, λ)
− lnϕ(t,λ)
ω(λ) .

Hence,

ΥG (x, t, λ) = eλ �G (x, t, λ) .
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Similarly for x ∈ (t, qa].

(ecosα �G (0, t, λ))⊕
(
esinα �D∗qG (0, t, λ)

)
=
[
ϕ (0)cosαD∗qϕ (0)sinα

]− lnψ(t)
ω(λ)

= 1,

(
ecosβ �G (a, t, λ)

)
⊕
(
esinβ �D∗qG

(
aq−1, t, λ

))
=
[
ψ (a)cosβD∗qϕ

(
aq−1

)sinβ
]− lnϕ(t)

ω(λ)
= 1.

�
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