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Abstract. We discuss inverse problems of determining the time-dependent
source coefficient for a general class of subelliptic heat equations. We show that

a single data at an observation point guarantees the existence of a (smooth)

solution pair for the inverse problem. Moreover, additional data at the observa-
tion point implies an explicit formula for the time-dependent source coefficient.

We also explore an inverse problem with nonlocal additional data, which seems
a new approach even in the Laplacian case.

1. Introduction. Let X = (X1, . . . , Xm) be a system of real smooth vector fields
defined over a subset W of Rd satisfying the Hörmander condition (H): There exists
a natural number r such that the vector fields X1, . . . , Xm together with their r
commutators span the tangent space at each point of W .

Let Ω ⊂ W be a bounded connected open subset with smooth boundary ∂Ω
non-characteristic of X = (X1, . . . , Xm). In Ω, we consider the following inverse
problem of finding a pair (u, p) :

∂tu(x, t)−∆Xu(x, t) = p(t)u(x, t) + f(x, t), in Ω× (0, T ),

u(x, 0) = ϕ(x), x ∈ Ω,

u(x, t) = 0, on ∂Ω× (0, T ),

(1)

with additional condition u(q, t) = w(t), t ∈ [0, T ], for a point q ∈ Ω. Here
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∆X := −
m∑
i=1

X∗i Xi,

with X∗i = −Xi − divXi, is a self-adjoint subelliptic operator (see [3]).
In the classical case when Xi = ∂xi , i = 1, . . . , d, one has the usual (elliptic)

Laplacian ∆ instead of the subelliptic operator ∆X in (1) and there is a vast of
literature on such parabolic inverse problems, especially, in 1D-cases. The existence
and uniqueness of the solution for this inverse problem were initially established by
Cannon, Lin, and Wang [7]. They utilized the method of time variable retardation
along with a priori estimates. Additionally, for more general case, Prilepko and
Soloviev [15] contributed by using a potential theoretic approach with the funda-
mental solution.

Furthermore, integral(nonlocal) overdetermination, expressed as
∫

Ω
u(x, t)ω(x)dx

= w(t), where ω and w are known functions and u is the solution of a specified par-
abolic equation, is also discussed in this paper. This approach can be instrumental
in solving inverse coefficient problems. Notably, problems incorporating integral
overdetermination in parabolic equations were first introduced and analyzed within
the academic circle led by Prilepko [14], to the best of our knowledge. Subsequent
in-depth investigations into these inverse problems were conducted by Cannon and
Rundel [8], Ivanchov [11], Lesnic [13], among others, as referenced in their works.

There is a substantial body of literature on classical parabolic inverse problems,
particularly in one-dimensional cases, as detailed in books [11] and [13] . Additional
resources on integral overdetermination conditions can be found in [6] and [10]
and the references cited therein. For a comprehensive analysis of related inverse
problems in classical contexts, we also refer to references in [5] and [12].

The present paper aims to analyse inverse problems of recovering the time-
dependent source parameter p(t) in the Cauchy-Dirichlet problem for the subelliptic
heat equation (1). First, in order to find a pair (u, p), we fix a point q ∈ Ω as an
observation point for some time-dependent quantity. So, by using this additional
date we recover the time-dependent source parameter p(t). Interestingly, we dis-
cover that this method works well to study an inverse problem for the same model
but with nonlocal additional data. The latter approach seems new even in the
Laplacian case. Our proofs rely on subelliptic spectral theory arguments. Thus, we
establish the existence and uniqueness for the inverse coefficient problem based on
the eigenmodes (eigenvalues and eigenfunctions). It is well-known that the eigen-
modes can be used to numerically solve these types of inverse problems (see, e.g.
recent papers [2] and [4]).

Moreover, we also state that the solution to the inverse problem can be found ex-
plicitly in the case of an increase in the number of overdetermined data by potential
theory techniques.

We organize our paper as follows. In Section 2, we prove the existence and
uniqueness result with a single datum at an observation point by using a spectral
theory approach. In Section 3, the time-dependent source parameter is found in
an explicit form by applying the potential theory arguments. In Section 4, our
technique from Section 2 is applied to treat a nonlocal case. Some interesting
particular models are discussed in Section 5.

2. Single datum. Let Ω be a bounded connected open subset with smooth
boundary ∂Ω non-characteristic of X = (X1, . . . , Xm) and let |H| > 0, where the
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set H is defined in (5). Consider the following inverse problem of finding a pair
(u, p): 

∂tu(x, t)−∆Xu(x, t) = p(t)u(x, t) + f(x, t), in Ω× (0, T ),

u(x, 0) = ϕ(x), x ∈ Ω,

u(x, t) = 0, on ∂Ω× (0, T ),

(2)

where ϕ ∈ C2k(Ω) and f ∈ C2k, 0(Ω× [0, T ]) for integer k > ν̃
4 + 1. Here and after

we understand g ∈ C1(Ω) if Xg ∈ C(Ω).
The operator ∆X is well-defined on {u ∈ H1

X,0(Ω) : ∆Xu ∈ L2(Ω)}. Recall that

H1
X(Ω) = {u ∈ L2(Ω) : Xiu ∈ L2(Ω), 1 ≤ i ≤ m} and H1

X,0(Ω) is the closure of

C∞0 (Ω) in H1
X(Ω).

For any x ∈ Ω̄ and given 1 ≤ k ≤ r, let Vk(x) be the subspaces of the tangent
space at x spanned by all commutators of X1, ..., Xm with length at most k. Note
that the number r in the statement (H) in the introduction is called the Hörmander
index. The Hausdorff dimension ν of Ω (or it can be also called the Métivier index
of Ω) is defined as

ν :=

r∑
k=1

k (νk − νk−1)

with ν0 = 0. Here it is assumed that for each x ∈ Ω̄, dimVk(x) is a constant denoted
by νk in a neighborhood of x.

Let us consider the following Dirichlet spectral problem of finding a nontrivial
function φ and eigenvalue λ:{

−∆Xφ(x) = λφ(x), in Ω,

φ(x) = 0, on ∂Ω.

By using the spectral theorem for compact self-adjoint operators, it can be shown
that the eigenspaces are finite-dimensional and that the Dirichlet eigenvalues λ are
real, positive, and have no limit point. The eigenspaces are orthogonal in the space
of square-integrable functions and consist of smooth functions. In fact, the system
of eigenfunctions φn(x), n ∈ N, an orthonormal basis of L2(Ω) (see, [3, Section 3.1]).

The eigenvalues can be arranged in increasing order:

0 < λ1 ≤ λ2 ≤ · · · ≤ λn →∞,
where each eigenvalue is counted according to its geometric multiplicity. It is well-
known that Weyl’s asymptotic formula for the Dirichlet Laplacian (ν = d) holds

λn ∼ n
2
ν . (3)

The asymptotic formula (3) fails to hold for general Hörmander vector fields not
satisfying the so-called Métivier condition. However, recently, in [3] for the operator
∆X it was proved that Weyl’s asymptotic formula

λn ∼ n
2
ν̃ (4)

holds if and only if |H| > 0. Here

H := {x ∈ Ω | ν(x) = ν̃} (5)

and ν(x) :=
∑r
j=1 j (νj(x)− νj−1(x)) (with ν0(x) := 0) is a pointwise homogeneous

dimension and

ν̃ := max
x∈Ω̄

ν(x). (6)
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Clearly, ν̃ = ν if dimVk(x) is a constant in a neighborhood of x.
Let q ∈ Ω be a point such that φn(q), n = 1, 2, ..., is bounded with φn(q) 6= 0 for

some n0 ∈ N. Let Nq ⊂ N be maximal set such that φn(q) 6= 0 for all n ∈ Nq. We
use this point q ∈ Ω as an observation point for the quantity:

w(t) = u(q, t), t ∈ [0, T ]. (7)

Set ϕn =
∫

Ω
ϕ(x)φn(x)dx and fn(t) =

∫
Ω
f(t, x)φn(x)dx.

Lemma 2.1. If ϕ ∈ C2k(Ω̄) and ∆m
Xϕ = 0, m = 0, ..., k − 1, on x ∈ ∂Ω with

k > ν̃
4 + 1, then we have

∞∑
n=1

λn |ϕn| ≤ c
1
2

∥∥∆k
Xϕ
∥∥
L2

,

where c =
∑∞
n=1

1

λ
2(k−1)
n

.

Proof. From Green’s identities for the subelliptic operator ∆X we get

ϕn = (−1)k
1

λkn

(
∆k
Xϕ
)
n
,

where
(
∆k
Xϕ
)
n

=
∫

Ω
∆k
Xϕ(x)φn(x)dx. By the Cauchy-Schwarz and Bessel inequal-

ities we have
∞∑
n=1

λn |ϕn| =
∞∑
n=1

1

λk−1
n

∣∣(∆k
Xϕ
)
n

∣∣
≤

( ∞∑
n=1

1

λ
2(k−1)
n

) 1
2
( ∞∑
n=1

∣∣(∆k
Xϕ
)
n

∣∣2) 1
2

≤ c 1
2

∥∥∆k
Xϕ
∥∥
L2
.

The series c =
∑∞
n=1

1

λ
2(k−1)
n

is convergent by the Weyl-type asymptotic formula (4),

since k > ν̃
4 + 1.

Let us introduce:

Dk(Ω) =
{
ϕ ∈ C2k(Ω̄) : ∆m

Xϕ = 0, m = 0, ..., k − 1 on x ∈ ∂Ω
}

for some k > ν̃
4 + 1.

We have the following assumptions about the given functions.

1. ϕ ∈ Dk(Ω) with ϕnφn(q) ≥ 0 for ∀n ∈ Nq and ϕn0
φn0

(q) > 0 for some
n0 ∈ Nq;

2. f ∈ C(Ω× [0, T ]) and f(x, t) ∈ Dk(Ω) with fn(t)φn(q) ≥ 0 for ∀t ∈ [0, T ] and
for ∀n ∈ Nq;

3. w ∈ C1[0, T ] with w(t) 6= 0 for ∀t ∈ [0, T ] and w(0) = ϕ(q).

The following theorem is valid for the existence and uniqueness of the inverse
problem.

Theorem 2.2. Assuming conditions (1)-(3) hold, a unique smooth pair (u, p), that
is, u ∈ C2k,1(Ω̄, [0, T ]) and p ∈ C[0, T ], exists that solves the inverse problem (2)
with (7).
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Proof of Theorem 2.2. The solution of (2) has the form:

u(x, t) =

∞∑
n=1

(
ϕne

−λnt+
∫ t
0
p(τ)dτ +

∫ t

0

fn(τ)e−λn(t−τ)+
∫ t
τ
p(s)dsdτ

)
φn(x)

with ϕn =
∫

Ω
ϕ(x)φn(x)dx and fn(t) =

∫
Ω
f(t, x)φn(x)dx.

Let r(t) = e−
∫ t
0
p(τ)dτ . So, we have

r(t)u(x, t) =

∞∑
n=1

(
ϕne

−λnt +

∫ t

0

fn(τ)e−λn(t−τ)r(τ)dτ

)
φn(x).

From the additional condition (7) it follows that

r(t)u(q, t) =

∞∑
n=1

(
ϕne

−λnt +

∫ t

0

fn(τ)e−λn(t−τ)r(τ)dτ

)
φn(q) = r(t)w(t)

or

r(t) =

∑∞
n=1 ϕne

−λntφn(q)

w(t)
+

1

w(t)

∫ t

0

( ∞∑
n=1

φn(q)fn(τ)e−λn(t−τ)

)
r(τ)dτ (8)

in the case w(t) 6= 0.
From Green’s identities for the subelliptic operator ∆X we get

ϕn =
(−1)k

λkn

∫
Ω

∆k
Xϕ(x)φn(x)dx

for ϕ ∈ C2k(Ω̄) and ∆m
Xϕ = 0, m = 0, ..., k − 1, on x ∈ ∂Ω. We have

|ϕn| =
1

λkn

∣∣∣∣∫
Ω

∆k
Xϕ(x)φn(x)dx

∣∣∣∣ .
Let |φn(q)| ≤M for some M = const > 0. The majorant of the series

∞∑
n=1

ϕne
−λntφn(q)

is
∑∞
n=1 |ϕn| , that is, by the Cauchy-Schwarz inequality we have

∞∑
n=1

|ϕn| =
∞∑
n=1

1

λkn

∣∣∣∣∫
Ω

∆k
Xϕ(x)φn(x)dx

∣∣∣∣
≤

( ∞∑
n=1

1

λ2k
n

) 1
2
( ∞∑
n=1

∣∣∣∣∫
Ω

∆k
Xϕ(x)φn(x)dx

∣∣∣∣2
) 1

2

.

Now we apply the Bessel inequality

∞∑
n=1

1

λ2k
n

∞∑
n=1

∣∣∣∣∫
Ω

∆k
Xϕ(x)φn(x)dx

∣∣∣∣2 ≤ ∞∑
n=1

1

λ2k
n

∥∥∆k
Xϕ
∥∥2

L2
.

This series is convergent by the Weyl-type asymptotic formula (4).
The same inequality is true for the second series in (8). Then the second kind

Volterra equation has a unique continuous solution in [0, T ] and it must be positive.
Then

r(t) = e−
∫ t
0
p(τ)dτ =⇒ p(t) = −r

′(t)

r(t)
.
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The function r(t) is continuously differentiable if the series
∑∞
n=1 ϕnλne

−λntφn(q)
is uniformly convergent. It is the case since the majorant series M

∑∞
n=1 λn |ϕn| is

convergent for k > ν̃
4 + 1 by Lemma 2.1.

Simple example. The inverse problem
ut = uxx + p(t)u+ (1 + t) sinx, 0 < x < π; 0 < t < T,
u|t=0 = sinx,
u|x=0 = u|x=π = 0,
u(π2 , t) = t+ 1,

satisfies all the assumptions of Theorem 2.2 in the one-dimensional case, since
ϕ(x) = sinx, f(x, t) = (1 + t) sinx, q = π

2 and w(t) = t + 1. Consider the
corresponding spectral problem{

−φ′′(x) = λφ(x),
φ(0) = φ(π) = 0.

The eigenvalues are λn = n2, n = 1, 2, .. and orthonormal eigenfunctions are φn(x) =√
2
π sin(nx), n = 1, 2, ....

Because ϕ ∈ D2(0, π) and f ∈ D2(0, π) for ∀t ∈ [0, T ], and also ϕn = (ϕ, φn) = 0,
n > 1, ϕ1 =

√
π
2 , fn(t) = (f, φn) = 0, n > 1, f1(t) =

√
π
2 (t+1) and ϕ1φ1(π2 ) = 1 >

0, f1(t)φ1(π2 ) = 1 + t > 0 with w(0) = 1 = ϕ(π2 ), all the assumptions of Theorem
2.2 are satisfied. This problem has the exact solution pair u(x, t) = (1 + t) sinx and
p(t) = 1

1+t .

3. Double data. Let Ω ⊂ Rd be bounded open set with piecewise smooth bound-
ary ∂Ω. Consider the inverse problem of identifying a pair (u, p):

∂tu(x, t)−∆Xu(x, t) = p(t)u(x, t) + f(x, t), in Ω× (0, T ),

u(x, 0) = ϕ(x), x ∈ Ω,

u(x, t) = 0, on ∂Ω× (0, T ),

(9)

where ϕ ∈ C2
0 (Ω) and f ∈ C2, 0

0 (Ω× [0, T ]) are given functions. Assume that there
exists q ∈ Ω such that f(q, t) ∈ C1[0, T ] is continuously differentiable function with
f(q, t) 6= 0. We now fix q ∈ Ω as an observation point for two time-dependent
quantities:

w1(t) := v1(q, t), w2(t) := v2(q, t), t ∈ [0, T ]. (10)

Here 
∂tv1(x, t)−∆Xv1(x, t) = p(t)v1(x, t) + f(x, t), in Ω× (0, T ),

v1(x, 0) = ϕ(x), x ∈ Ω,

v1(x, t) = 0, on ∂Ω× (0, T ),

(11)

and 
∂tv2(x, t)−∆Xv2(x, t) = p(t)v2(x, t) + ∆Xf(x, t), in Ω× (0, T ),

v2(x, 0) = ∆Xϕ(x), x ∈ Ω,

v2(x, t) = 0, on ∂Ω× (0, T ).

(12)

Theorem 3.1. Let ϕ ∈ C2
0 (Ω) and f ∈ C2, 0

0 (Ω × [0, T ]). Let q ∈ Ω be such that
f(q, t) ∈ C1[0, T ] is continuously differentiable function with f(q, t) 6≡ 0. Let w1

and w2 defined in (10) be the observation data. Then there exists a unique smooth



INVERSE PROBLEMS FOR SUBELLIPTIC HEAT EQUATIONS 7

solution pair (u, p), that is, u ∈ C2,1(Ω̄, [0, T ]) and p ∈ C[0, T ], for the inverse
problem (9) with

p(t)w1(t) = w′1(t)− w2(t)− f(q, t).

Note that if p is found, then the solution u of the direct problem has the following
representation

u(x, t) = exp

(∫ t

0

p(τ)dτ

)[∫
Ω

hD(x, y, t)ϕ(y)dy+

+

∫ t

0

∫
Ω

hD(x, y, t− τ) exp

(
−
∫ τ

0

p(s)ds

)
f(y, τ)dydτ

]
,

where hD is the subelliptic heat kernel [3, Theorem 1.1] for the Cauchy-Dirichlet
problem for the subelliptic heat equation in the cylindrical domain Ω× [0, T ).

Proof of Theorem 3.1. Let us recall the following transformation from [6]:

v(x, t) = r(t)u(x, t), r(t) = exp

(
−
∫ t

0

p(τ)dτ

)
,

that is,

p(t) = −r
′(t)

r(t)
, u(x, t) =

v(x, t)

r(t)
.

Thus, we have 
∂tv(x, t)−∆Xv(x, t) = r(t)f(x, t), in Ω× (0, T ),

u(x, 0) = ϕ(x), x ∈ Ω,

u(x, t) = 0, on ∂Ω× (0, T ).

(13)

We now fix a point q ∈ Ω as an observation point for two time dependent quantities:

w̃1(t) := w1(q, t), w̃2(t) := w2(q, t), t ∈ [0, T ].

Here 
∂tw1(x, t)−∆Xw1(x, t) = r(t)f(x, t), in Ω× (0, T ),

w1(x, 0) = ϕ(x), x ∈ Ω,

w1(x, t) = 0, on ∂Ω× (0, T ).

(14)

and 
∂tw2(x, t)−∆Xw2(x, t) = r(t)∆Xf(x, t), in Ω× (0, T ),

w2(x, 0) = ∆Xϕ(x), x ∈ Ω,

w2(x, t) = 0, on ∂Ω× (0, T ).

(15)

It is known that the solutions of Cauchy-Dirichlet problems (14) and ( 15), cor-
respondingly, can be presented by

w1(x, t) =

∫ t

0

∫
Ω

hD(x, y, t− τ)r(τ)f(y, τ) dy +

∫
Ω

hD(x, y, t)ϕ(y) dy (16)

and

w2(x, t) =

∫ t

0

∫
Ω

hD(x, y, t− τ)r(τ)∆Xf(y, τ) dy +

∫
Ω

hD(x, y, t)∆Xϕ(y) dy. (17)
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That is, for q ∈ Ω and for all t ∈ [0, T ] we have

w1(q, t) =

∫ t

0

∫
Ω

hD(q, y, t− τ)r(τ)f(y, τ) dy dτ

+

∫
Ω

hD(q, y, t)ϕ(y) dy = w̃1(t);

w2(q, t) =

∫ t

0

∫
Ω

hD(q, y, t− τ)r(τ)∆Xf(y, τ) dy dτ

+

∫
Ω

hD(q, y, t)∆Xϕ(y) dy = w̃2(t).

By differentiating w̃1 and applying the Leibniz integral rule, then using ∂thD(x, y, t−
τ) = ∆XhD(x, y, t − τ), t > τ, ∂thD(x, y, t) = ∆XhD(x, y, t), t > 0, and Green’s
second identity for the operator ∆X , we get

w̃′1(t) =

∫
Ω

∂thD(q, y, t)ϕ(y) dy + r(t)f(q, t)

+

∫ t

0

∫
Ω

∂thD(q, y, t− τ)r(τ)f(y, τ) dy dτ

=

∫ t

0

∫
Ω

∆XhD(q, y, t− τ)r(τ)f(y, τ) dy dτ

+ r(t)f(q, t) +

∫
Ω

∆XhD(q, y, t)ϕ(y) dy

=

∫ t

0

∫
Ω

hD(q, y, t− τ)r(τ)∆Xf(y, τ) dy dτ + r(t)f(q, t)

+

∫
Ω

hD(q, y, t)∆Xϕ(y)dy

=w̃2(t) + r(t)f(q, t).

(18)

Thus, we arrive at

w̃2(t) = w̃′1(t)− r(t)f(q, t). (19)

Moreover, we have the following relations

w̃1(t) := r(t)w1(t), w̃2(t) := r(t)w2(t), t ∈ [0, T ].

Plugging in (19) we obtain

p(t)w1(t) = w′1(t)− w2(t)− f(q, t).

Also, the direct Cauchy-Dirichlet problems (13), (14), and (15) have a unique
solution. It implies that there exists a unique classical pair (v, r), that is, (u, p) for
the inverse problem (9). The proof is complete.

4. Nonlocal data. Consider the following problem:
∂tu(x, t) = ∆Xu(x, t) + r(t)f(x, t), in Ω× (0, T ),

u(x, 0) = ϕ(x), x ∈ Ω,

u(x, t) = 0, on ∂Ω× (0, T ),

(20)

where ϕ ∈ C2k(Ω) and f ∈ C2k, 0(Ω× [0, T ]) for some integer k > ν̃
4 + 1.
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Note that the equation (20) is equivalent to (2) (see the proof of Theorem 3.1).
Now we consider the inverse problem of finding (u, r) from (20) with nonlocal datum∫

Ω

ω(x)u(x, t)dx = w(t), t ∈ [0, T ], (21)

where ω(x) ∈ L2(Ω).
One could also discuss the case when (21) is replaced by the measurement in

Section 2:

u(q, t) = w(t), t ∈ [0, T ],

where q is a given space observation point in Ω such that the sequence ϕn(q),
n = 1, 2, . . . , is bounded. This is retrieved when one considers the Dirac delta

distribution δ(x− q) centred at q in equation (21).
The following theorem is valid for the existence and uniqueness of the inverse

problem.

Theorem 4.1. Let the following conditions hold:

1. ϕ ∈ Dk(Ω);
2. f ∈ C(Ω× [0, T ]), f(x, t) ∈ Dk(Ω) and

∫
Ω
ω(x)f(x, t)dx 6= 0 for ∀t ∈ [0, T ];

3. w ∈ C1[0, T ] with w(t) 6= 0 for ∀t ∈ [0, T ] and w(0) =
∫

Ω
ω(x)ϕ(x)dx.

Then there exists a unique smooth pair (u, r), that is, u ∈ C2k,1(Ω̄, [0, T ]) and
r ∈ C[0, T ], for the inverse problem (20)-(21).

Proof of Theorem 4.1. The solution of (20) has the form:

u(x, t) =

∞∑
n=1

(
ϕne

−λnt +

∫ t

0

fn(τ)e−λn(t−τ)r(τ)dτ

)
φn(x),

where ϕn =
∫

Ω
ϕ(x)φn(x)dx and fn(t) =

∫
Ω
f(x, t)φn(x)dx. So, we have

ut(x, t) =

∞∑
n=1

(
−λnϕne−λnt − λn

∫ t

0

fn(τ)e−λn(t−τ)r(τ)dτ + fn(t)r(t)

)
φn(x).

From the over-determination condition (21) it follows that∫
Ω

ω(x)ut(x, t)dx =

∞∑
n=1

(
−λnϕne−λnt

−λn
∫ t

0

fn(τ)e−λn(t−τ)r(τ)dτ

)∫
Ω

ω(x)φn(x)dx

+ r(t)

∫
Ω

ω(x)

∞∑
n=1

fn(t)φn(x)dx

=ω′(t)

or

r(t) =
w′(t) +

∑∞
n=1 λnϕne

−λnt
∫

Ω
ω(x)φn(x)dx∫

Ω
ω(x)f(x, t)dx

+
1∫

Ω
ω(x)f(x, t)dx

×
∫ t

0

( ∞∑
n=1

λnfn(τ)e−λn(t−τ)dτ

∫
Ω

ω(x)φn(x)dx

)
r(τ)dτ

(22)

since
∫

Ω
ω(x)

∑∞
n=1 fn(t)φn(x)dx =

∫
Ω
ω(x)f(x, t)dx.
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Let
∫

Ω
ω2(x)dx ≤M in (21) for some M = const > 0. The series

∞∑
n=1

λnϕne
−λnt

∫
Ω

ω(x)φn(x)dx

is uniformly convergent since the majorant series M
∑∞
n=1 λn |ϕn| is convergent by

Lemma 2.1. Thus, the Volterra integral equation (22) has a unique continuous
solution.

5. Particular cases and conclusion. Laplacian. In the classical case, when
Xi = ∂xi , i = 1, . . . , d, one has the usual (elliptic) Laplacian ∆ instead of the
subelliptic operator ∆X in (1). Our approach seems new even in this classical case.

Sub-Laplacians. Let G = (Rd, ◦) be a stratified Lie group and {X1, . . . , Xm},
m ≤ d, be a system of generators for G, i.e. a basis for the first strata of G. It
satisfies the Hörmander condition (H). The sum of squares operator

∆G = −
m∑
i=1

X2
i

is called the sub-Laplacian on G. ∆G is elliptic if and only if G is same as (Rd,+).
It is clear that the above results are valid on stratified Lie groups. Note that the
class of stratified Lie groups includes the groups of Iwasawa type and the H-type
groups. A simple example in R3 is the operator

(∂y + 2x∂z)
2 + (∂x − 2y∂z)

2.

Baouendi-Grushin operator. Let z := (x, y) := (x1, ..., xm, y1, ..., yk) ∈ Rm×
Rk with m, k ≥ 1 and m+ k = d. Let us consider the vector fields

Xi =
∂

∂xi
, i = 1, ...,m, Yj = |x|γ ∂

∂yj
, γ ≥ 0, j = 1, ..., k.

The Baouendi-Grushin operator on Rm+k is defined by

∆γ =

m∑
i=1

X2
i +

k∑
j=1

Y 2
j = 4x + |x|2γ4y, (23)

where 4x and 4y stand for the standard Laplacians in the variables x ∈ Rm and
y ∈ Rk, respectively. Recall that the Baouendi-Grushin operator for a positive even
integer γ is a sum of squares of vector fields satisfying the Hörmander condition
(H). In that case, the results of the present paper hold for the Baouendi-Grushin
operator (cf. [1]). A simple example in R2 is the following operator

∂2
xx + x2∂2

yy.

Conclusion. In conclusion, the findings presented in this paper demonstrate that
the subelliptic operator under consideration encompasses a broad spectrum of cases,
underlining its applicability in various scenarios. The adoption of the spectral theory
approach in our analysis has shown its effectiveness, particularly due to its minimal
reliance on additional data, which enhances its practicality. However, a significant
challenge encountered in this methodology is the verification of the boundedness of
the sequence of normalized eigenfunctions at a specific observation point q. This
aspect is straightforward in the context of two-dimensional canonical domains for
the Dirichlet Laplacian, for example. Nevertheless, this may not hold true in more



INVERSE PROBLEMS FOR SUBELLIPTIC HEAT EQUATIONS 11

complex geometrical configurations, where an appropriate observation point q might
not exist, as elaborated in [9, Theorem 4].

On the flip side, our exploration of the potential theory approach has yielded
interesting results, particularly in providing explicit solution pairs. This is indeed
interesting, considering the rarity of such outcomes in the inverse problem theory.
However, it’s important to acknowledge the limitations of this approach, primarily
its dependency on acquiring additional data at the observation point. This require-
ment could potentially restrict its applicability in certain scenarios.
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