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Abstract In this work, we construct new Bailey pairs for  Wwe also adopt the following convention

the integral pentagon identity in terms of q-hypergeometric

functions. The pentagon identity considered here repre- (@, b; @)oo = (45 @)oo (D; ) o- (1.2)

sents the equality of the partition functions of certain three-
dimensional supersymmetric dual theories. It can be also
interpreted as the star-triangle relation for the Ising-type inte-
grable lattice model.
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1 Introduction

Bailey’s lemma [1,2] is a powerful tool to derive hypergeo-
metric identities (ordinary, trigonometric, and elliptic type).
In this work, we construct new integral Bailey pairs for the
pentagon identity in terms of g-hypergeometric functions.
The pentagon identity can be interpreted as a Pachner’s 3-
2 move for triangulated three-dimensional manifolds. Such
identities also play a role in the study of supersymmetric
gauge theories, integrable models, knot theory, etc.!

Letq, z € Zwith |g| < 1. We define the infinite q-product

(@ @)oo = [ [(1 = 2¢") (1.1)

k=0
' See some recent works [3—11].
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Theorem 1.1 Let ay, a», a3, by, by, b3, q € C and integers
mj,n; € Z. Then

Z / _qz)z |m; +m\ |nl —m\ Z_ 13 1(\m i+m| |ni2—m\)
2miz
me7Z
3 1+\m i+ml 1 1+\n, —m| .
_midml _niml (g a4 b doo
X l_[ai bi |mj+m| n‘ —m| h
i=1 (g2 aiz,qg 7 Fi 9o
|m; +n | |m; +n |
T e H(a,b )
i,j=1
[m; +n |
@ e @)
X I H ‘ ! , (1.3)
(g7 7 aibj; 9)oo
where the balancing conditions are
3
[ Jaibi = 4. (1.4)
i=1
3
> mi+n; =0, (1.5)

i=1
and T represents the positively oriented unit circle.

We would like to mention that the integral identity rep-
resents the supersymmetric duality for three-dimensional

N = 2 supersymmetric gauge theories with the flavor sym-
metlry2 SU@B3)xSU3)xU(1). This identity can also be writ-

2 In this case parameters a; and b; stand for the flavor symmetry and z
is the fugacity for the U (1) gauge group.
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ten as the star-triangle relation® for some integrable model
of statistical mechanics.

The proof of the form above is given in [8] for the balanc-
ing conditions*

(1.6)

The absolute values can be eliminated by the identity [12]

1+"§‘

1+% /..
_ L lml=m 2/25
=(—q 2z) 2 w’
@279

/2; @)oo (1.7)

@2 2 oo

and one ends up with the following g-hypergeometric
sum/integral identity [6—8]

3 _
Z/H 2 a,zsq 2 o 1 dz
m+m L D 3m ;
mez’Ti=1 T aiz,q b?l;CI)oo ¥ 2miz
m;+n
1 3 (g'f %;q)Oo
= I—[3 am,bn, l_[ mi+n (]8)
i=1 i,j=1 (q -2 al IE q)oo

2 Integral pentagon identity

In [6-8] it was shown that the identity (1.3) can be written
as an integral pentagon identity

Z/zmznlg[a,,n,—i—m biz~' mi —m]

= Bla1ba, n1 + ma; azby; n3 + mq]

x Blazby, ny +my; azby, n3 + ma], 2.1
where we define the following function as
[n| | |m|  [n+m]| |n| m| ln+m|

B[anbm]—(gﬂ)fr ++a7b77(a 5

M _ M _ |n+m|

(' 7a! q”z b=l q 7 abiq)x
W m gl | . (2.2)
(g2a,q2b.q""" 7 (@b)'iq)wo

In a general sense, any algebraic relation for operators 3

BBB = BB (2.3)

3 In this case parameters a;, b;, and z stand for the continuous spin
variables.

4 Yet, as SU(3) x SUB) x U(1) has five independent parameters,
the above form must be correct even for the more general balancing
conditions in (1.4, 1.5).
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which can be interpreted as a 2-3 Pachner move of a tri-
angulated three-dimensional manifold is called a pentagon
relation [4,5]. Note that the integral pentagon identity (2.1)
for the N = 2 supersymmetric S% x S! partition functions is
supposed to be related to some topological invariant of corre-
sponding 3-manifold via 3d—3d correspondence [12,13] that
connects three-dimensional N' = 2 supersymmetric theories
and triangulated 3-manifolds. There are several examples of
pentagon identities arising from supersymmetric gauge the-
ory computations, see, e.g. [6—15].

3 Bailey pairs

Rogers—Ramanujan type identities are being continuously
used in the solution of the integrable models, namely to derive
the Yang—Baxter and the pentagon identities. In fact, a well-
known example of this usage is conducted during the investi-
gations of the hard hexagon model by Baxter. It turns out that
Bailey discovered a systematic way to derive these types of
identities [1,2,16,17]. As generalized by Andrews [18,19],
there exists an iterative scheme to derive infinitely many of
these identities if one pair, called a Bailey pair is known. This
forms the so-called Bailey chain. The induction step of gen-
erating the particular Bailey pairs is referred to as the Bailey
lemma for the chain we consider.

A generalization of the Bailey pairs approach to the inte-
gral identities is firstly done by Spiridonov in [20,21]. The
construction of integral Bailey pairs yields new powerful ver-
ifications of various supersymmetric dualities [22,23], gen-
erating solutions to the Yang-Baxter equation [24-27], etc.

Accordingly, the generalized version of the Bailey chain
is a couple of infinite sequences of holomorphic functions
{oz,(qi)}n>o and {,B(i) }n=0 such that there exists an identity inde-

pendent of i which connect o and g\ as
BY = Fy(e”, ', ... al), 3.1

where F can be an operator which may now include sum or

integrals. Here, oz,(li) and ,8,(,0 are constructed according to

O = G(ot(l) ozf’), . (’) D
'3(1) H(ﬂ(l) ’3(1) ’3(1) )

(3.2)
(3.3)

where G and H represent integral-sum operators.

Definition 3.1 Let {c,,(z; 1)} ez and {B,, (2; 1) } ez be two
sequences of functions. They are said to form a Bailey pair
with respect to the parameter ¢ iff

B (w3 1) = Z/dzB[th i

nez

+ntw s —m A ozt . 3.4
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Lemma 3.1 If{o (25 1)}mez and {Bm (z; 1)}mez form a Bai-
ley pair with respect to t, then the following sequences
Bltuw, n + n, + ny, 52, 2ngla, (w; 1)

d
ﬁ’/‘l(w, st) = %/ ﬁB[wa_l’ —m-+n
m

o, (w; st) = (3.5)

+ ng; ux, ny +mlBlst*uw, n + 2n,

+ 1y 4 ng, swlx, —n 4 m A4 ng) B (x; 1)

(3.6)
form a Bailey pair with respect to the parameter st.
Proof We have to show that
B (w, st)—Z/B[stwy ! ,n— p+ng
peZ
+ g, sty \x, —n+p+ng+ nila, (v, st)dy. (3.7)

Inserting (3.4) in (3.6), we first calculate the left-hand side
of the equality (3.7)

where we required the sum of the powers of x to vanish,
namely

n, +ng+n =0 (3.10)
Upon renaming the variables as
ay=u—>m|y=n, by=sw—>n=n+n;y (3.11)
azzsuf1 — my=-—n+ng bzzqsfzfzu*1 — Ny =ny
(3.12)
a3=ty*] —>m3=—p+n; b3=tx >n3=p+n;

(3.13)

we identify the integral relation (1.3). Also, observe that the
constraint (3.10) resulted in the balancing condition (1.5).
We hence get upon simplification and regrouping of the
terms

In—=p—nu| p nyl | |- n+p nu|
Z/“p(yvf)dﬂ q?) e

VA
B (w; st)—Z/ —B[swx ,n+ng—m, ux, m+n,| pe
me7Z 1 % (5zwy )_l —p— 'lul(szw_ly)_\l —n Vlu\( 21‘2)'”“‘
xB[st uw,n +n, +2n, +ng, swW-x,m —n + ng|
14 =l T 1 lp=n=nal a1
1 (g (stwy™ )" oo (¢ 7 (StwT YY) oo
X Z/ Bltxy ™ ,m — X [n—p—nu| ] (qlp—n—nulstw—ly)
peZ (g7 stwy™ oo %
—1 i
+ ny, tx y,—m+p+nz]ap(y ndy @t 22y
Tl
_ZZ/f [swx™ !, —m +n + ng, ux, m + ny| (@' 7 572 )
mEZPGZ % ( q ) lp— "5\+|n |- \ﬂs+P\ 2) ‘"Yl(s tuy) P+"s\
X B[st uw, n+n,+2n; + ng, swilx, —n 4+ m + ny|
_ _ |p—ns| |ptns|
x Bltxy ™\ m —p+n,txly, —m 4 p+n] . @7 () oo (@570 (@1 suy) oo
Ip=ns] InsT52) 2 N
(@ 2y @750 tuy) oo
,Ddy —— 3.8
X ap(y, )dys—— (3.8) (3.14)
Hence, by regrouping the terms accordingly, we obtain’
Z Z /( q \m+nu\+\m r12+ny\+|m p2+n,\+|n mz-%—n;\_’_\m nu|+\p m+nt|
peZ meZ
|m—n+ng| |p—m+ng|
X (ux)™ -1 7+( ux) ( _1)_1’7+'
|n— m+n5| |m+ny| |m _ Im—ny|
(q'" Gwxr ) Do (@ w0 Do (¢ (5w 1X) Do (¢ 2" 5% un)oe
|n—m+ng| _1 |m+ny| |m—n+ng| _ lm—ny| 2.2 1.1
(q SWX™ oo (q Ux, )oo (g 2 1X) o0 (@ 2 s7=t7=qu='x oo
Im p+t\ lp—m
('t 1y ') N (' (tyx—l) D 1l | el
— = — 2 (—q )" TR ) "3 (srPuw) (g%
(@ 7 1y ' (q tyx Do
|n—ny| _ |n4n¢| _
(¢ T swg e (@ s Puw) ) (g g 1) P
[n+ny] el 1 —2 ap(ys t) )’2_ (39)
T e (g 2 stPuw)ee (M40 Tix

3 For convenience ¢ of the g-product is omitted.
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which is the desired operator equality

Z/dy[ﬁ’[stwy_l, ng+n,+n—p,stwly, ng
pEL

+ 1 —n+ p)Bltyu, ng + p + ny, 52, 2n;]

= Z/dyl?[stwy_l, ng + n;
pEZ

+n—p,stwly, ng+n, —n+p). (3.15)

]

4 Conclusions

In this work, we have constructed a new integral Bailey pair
for the pentagon identity in the form of g-hypergeometric
functions. One can use this Bailey construction to obtain new
supersymmetric dualities for linear quiver theories. Namely,
any relation between Bailey pairs o™ and g™ gives integral
identities corresponding to the equality of partition functions
of certain dual linear quivers, see e.g. [22,23].

We would like to mention that the pentagon identity pre-
sented here can also be written as the star-triangle relation
for some integrable lattice model of statistical mechanics. It
would be interesting to construct the Bailey pairs correspond-
ing to the star-triangle form of the same integral identity.
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