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We study the hadronic and radiative couplings of the f,(1270) meson within the hard- and soft-wall
models of AdS/QCD. The results for the tensor meson-nucleon-nucleon coupling (gs,yy) and tensor
meson-photon-vector meson coupling (gy,,,) are compared to the ones obtained by using the dispersion
relations and amplitude methods, respectively. Qualitative agreement with different analyses implies the
reliability of the holographic description of the spin-2 meson.
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I. INTRODUCTION

Quantum chromodynamics (QCD) describes the strong
interaction within the Standard Model of particle physics.
The binding of quarks into nucleons (protons and neutrons)
and other hadrons, such as mesons composed of a quark-
antiquark pair, is accomplished through strong interactions.
One of the main challenges of QCD is the lack of a small
dimensionless variable that would allow for the perturba-
tive calculation of low-energy observables. Lattice QCD
simulations and effective models are alternative approaches
to studying low-energy QCD. Phenomenological bottom-
up approaches of holographic QCD are one of the effective
approaches to low energy QCD which presume that the
extra-dimensional fields propagate through a region of
anti—de Sitter (AdS) space inspired by the AdS/CFT
correspondence [1].

The holographic description of QCD observables was
originally constructed to test the hadrons, including pseu-
doscalar, vector, and axial-vector mesons within the so-
called hard-wall model (HW) of AdS/QCD [2]. Three main
experimental measurements, such as pion mass and decay
constant and the mass of p(770), were used to predict other
quantities of the mesons within the model.
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Later on, the application of holographic QCD is exten-
ded to the spin-2 case within the HW model, in which
tensor mesons were introduced similarly to gravitons [3].
The equation of motion for the profile function of the
f>(1270) meson was solved in this approach, and its decay
into two pions and two photons was evaluated. Higher spin
mesons, including f,(1270), were investigated within the
SW model in [4].

Nucleons within the HW model were studied in Ref. [5].
Further investigations include the coupling between mes-
ons and nucleons, such as the nucleon coupling with the
vector meson in Ref. [6], with the axial-vector meson in
Ref. [7] and with the pseudoscalar meson coupling in
Ref. [8]. Similar studies can be found in Refs. [9—12] and at
finite temperature case in Refs. [13,14].

The resonance f,(1270) is the spin-2 meson with the
positive parity (P) and charge conjugation (C) and the total
spin number J = 2. The lightest spin-2 mesons {a,(1320),
K3 (1430), f,(1270), f,(1525)} make up a multiplet
with quantum numbers JP¢ = 2** and has a solid exper-
imental [15], theoretical [16] and phenomenological [17]
foundation compatible with the quark model. Recent
analyses of spin-2 mesons can be found e.g., in
Refs [18-20]. It has been studied within chiral perturbation
theory in [21]. Especially, the mass and two-photon decay
of f,(1270) estimates within holographic QCD fit the
Particle Data Group (PDG) [15] very well. Gravitational
form factors of nucleons within AdS/QCD approach are
computed in Refs. [22-24] and extension to the finite
temperature see Ref. [25]. To what extent can holographic
descriptions effectively portray various couplings? We
address this question in this paper.

Published by the American Physical Society
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We first study the tensor meson nucleon coupling
constant (gy,yy) within the hard- and soft-wall models
of AdS/QCD and compare it to other known theoretical
models, such as dispersion relation (DR). Second, we
estimate the tensor-vector-vector coupling (gy,,,) and the
tensor-vector-photon coupling (gs,,,) and compare the
latter one to the results obtained from the CLAS experiment
data [26] within amplitude methods.

The organization of the paper is as follows: Holographic
formulations of mesons and nucleons are presented in
Sec. II and Sec. III, respectively. Coupling constants
between the tensor meson and nucleons are in Sec. IV.
Sec. V is devoted to tensor-vector-vector and tensor-vector-
photon couplings. Our conclusion is in Sec. VI. An
alternative derivation of the tensor meson profile function
is discussed in Appendix A, and a flavor-invariant form of
the Lagrangian is presented in Appendix B.

II. MESONS IN AdS/QCD

Background gravity for the AdS/QCD models is the 5D
AdS spacetime, and the metric of it in Poincaré coordinates
has the following form:

1

22

dsz — (_dZZ + dx”dxﬂ) (,Lt - Ov 17 27 3)’ (1)

where extra z coordinate extends 0<z<z, =
323 GeV~! in the HW model and 0 < z < o in the SW
model. The action of the model we are interested in has four
components: free tensor field /4, vector field v, spinor field
N, and their interactions:

S:Sh+Sv+SN+Sint- (2)

In the next sections, we shall present the profile functions of
these fields and perform calculations of the couplings
within both hard- and soft-wall models.

A. Tensor and vector mesons in the HW model

Tensor mesons in AdS/QCD were introduced in an
analogy with the graviton field in the bulk of the AdS
spacetime [3], and here we present this solution briefly. Let
us consider the 5D extension of the massive spin-2 field
hyn(x,z) (M,N =0,1,2,3,5). The gauge condition on
fifth components of h,,y implies

Oa
hMN = h

(2

ifMorN=5

otherwise

(3)

The linear perturbation of gravity around the AdS back-
ground is given by the h,,(x,z) field:

1 1
ds* = 2 (M + By )dxtdx” — Z—zdzz, (4)

leading to the following action:

1 1
N == / d5xz—3 [(0:hy,) (01" + By, IR
+ higher order terms]. (5)

The UV boundary value of &, corresponds to the wave
function of the graviton. The first mode in the Kaluza-Klein
(KK) decomposition of 4, will be the lightest tensor
meson listed in the introduction, i.e., the f,(1270) meson.
QCD predicts the existence of multiple isospin singlets
spin-2 particles,' such as glueballs. Therefore, a compre-
hensive formulation of the spin-2 particles should contain
various bulk spin-2 fields. Each spin-2 particle appears as a

KK mode (h,,(x.z) =, K% (x)hHW (z)) where the pro-
file function AfW(z) satisfy the following equation of
motion:

3
AN (2) = 20N (2) + (A (2) = 0. (6)

The generic solution to this equation is expressed in
terms of Bessel functions of the first kind J, and the second
kind Y, [3]:

RV (2) = N,22[Ja(mlz) + B, Yo(mhz)].  (7)

UV boundary condition /"W (0) = 0 implies 3, = 0 and
the IR boundary condition hHW'(z,,) =0 quantize the
tensor meson masses according to J;(m!z,,) = 0. Thus
the profile function for the f,(1270) meson is

2
WY (2) = 3.512J, <3.83 i) with the normalization

m Zm

[ @y =1 )
0
The f,(1270) mass is predicted by the IR boundary
condition of this solution and equals to 3.83/z, =
1236 MeV, which is only 3% off of the observed mass
in [15]. However, predictions for the two pion decays are
underestimated compared to the PDG [15].

Vector mesons in the HW AdS/QCD are introduced
using a 5D vector field composed of the left and right gauge
fields. The action for the V,,; vector field is

1
SI:W = —4—g2/d5x\/§VMNVMN
5

1 5 2 2
=—— )
i Px(V3, —2V%)/z. (9)

ISee for instance Ref. [27] for the recent detailed discussion
about spin-2 isoscalars.
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where V,, :=9,V, - 0d,V, —i[V,.,V,], V, = Vit* and the
coupling g5 = y/4x°N #/N, was obtained in Ref. [2]. The

equation of motion for KK modes (V,(x,z)=

S VI ()WY (2)) of the vector field in the HW model
has the following form

1
Gz (2) = 20,0 (2) + (mp)?0i™ (2) = 0. (10)
and solution to this equation is also expressed in terms of
Bessel functions:

HW( )

Un :NI‘IZ[J1<mI7;Z) +/}nY1(Wl;Z)] (11)

One can use boundary conditions vV'(z,,) = v"W(0) = 0,
which sets 8, = 0 and quantize the masses of the vector
mesons according to the IR condition Jy(m) z,,) = 0.
Normalization is set by

A T ) 1, (12)

Z

and the ground state profile function of p meson reads
PV (2) = oW (7) = 2725, (2.4 i), (13)
Zm Zm

where z,, = (323 MeV)™!
of p(770) meson.

is fixed with experimental mass

B. Tensor and vector meson profile functions
in the SW model

In the SW model, the spin-S mesons are described by the
rank-S tensor field ¢*1-#s(x, z) in the bulk of the 5D AdS
space and the quadratic part of the gauge and coordinate
invariant action for this field is written in the form [4]:

S = 1/d5xexp{_(q> _A()(25 - 1))
S aN¢ﬂ|...ySaN¢ﬂlm”S' (14)

Here A denotes A(z) = —logkz and the dilaton field
®(z) = k*z? is introduced to regulate the integral over
the extra dimension z and to give a meson spectra agreeing
with Regge trajectory. The 5D equation of motion for
the KK modes ¢, of the transverse traceless part of the
v 100 (D (1.2) = 32, (. )y () can

be easily derived from this action by considering
ng/(;;l?--ﬂs (x) = m%ng/(;]l?--ﬂs (x):

9. (e—(<1>(z)—A(Z)(25—1))az¢n (Z))
+ m2e~(@@-AR)2S-D)g (7) = 0. (15)

By making substitution ¢, (z) = e~ (®(@)-ARES-1)/2g (7)
in the equation it gives the Schrodinger-like equation
form for ¢

452 -1

K22 +2(S - 1)k* + Ed,(2).

(16)

_~n( ) &n(z>:

Solving the Eq. (16) will give the eigenfunctions, which are
so-called the profile functions for the spin-S mesons, and
the corresponding eigenvalues are

E=4n-25+2, (17)
with the mass spectrum

miys =4k*(n+S). (18)

(1) For the vector meson (S = 1) the equation of motion
(16) gets a form:

)+ K24 o) = mia(o). 19
By solving this equation with the substitution

13V (z) = VkzeF'?/2¢,(z) the profile function in
terms of Laguerre polynomials (L} (x)) reads:

2n!
T R2LLR2).  (20)

v (2) = (n+1)!

Note that, parameter k is fixed according to the mass
of p(770) which leads k = 0.388 GeV.

(2) For the tensor meson (S = 2) the equation of motion
(16) becomes

_NZ(Z)+[2k2 N T ]d)n()—mﬁn(z)’
(21)

and the substitution A3V (z) = \/(kz)?e¥ </ 2, (2)
leads to the following profile function:

V() = () [ e, @)

which has the normalization:

/oo dze¥? (B3V(2))*/2 = 1. (23)

0
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In the appendix A, we show that the solution for the
tensor meson profile function in (22) is the same
as the one derived in [22] if one approximates the
spin-2 tensor meson as a graviton.

III. NUCLEONS IN AdS/QCD
A. Nucleon profile function in the HW model

Two bulk fermion fields, N*™ and N5V are required in
the AdS space-time to describe the independent left and
right chiral components of the boundary nucleon [5]. The
Lagrangian for these spinors has different signs for the
“S-dimensional mass” ms, which is related to the conformal
dimension of the spinor: ms = 3 for NV and ms = —3 for
NV In light of the normalizability and chirality analyses,
NV describes the left-handed component of the boundary
nucleon, while NV describes the right-handed one. The
IR boundary condition eliminates the remaining compo-
nents of the spinors and gives the mass spectrum of the
nucleon m,,. The bulk action for the Dirac spinors N{W and
NV is given by [5]:

s = [ @y Ez‘vlfweyrAvMN?W

i -i- -_ —_
— L (VL) HTANIY — RV Y

+ (N - NV mg — —ms) |, (24)
where e4, = 1y4, is the vielbein and the Dirac matrices

M = (y#,—iy®) satisfy the Clifford algebra {I*, T8} =
2nB. The Lorentz and gauge covariant derivative is

i

Vy =9
M M+4

wll?/IBF AB> (25 )
where the Lorentz generator "2 is defined as M2 :=
5: [, T'?] and the nonvanishing components of the spin
connection w}f equal to wy; = -} = 15y, Extremizing
the action (24) with respect to NV, we get 5D Dirac
equation for NTVW:

(el T4V, — ms) NV =0, (26)
with the boundary condition
[NV TANTW 2 = 0, (27)

Similarly, for the field of NYW. Since the AdS/CFT
correspondence relates the classical solution to the bulk
equation of motion with the corresponding boundary
operator, it is useful to decompose the bulk spinor into

left and right components, similar to the 4D chirality
projectors, when evaluated at the UV brane:

Ni™(x,2) = N (x. 2) + MR (x. 2),

NIV (x,z) = N (x.2) + Nig¥ (x. 2), (28)
where N} = ”inrs Ny are chiral spinors. In momen-

tum space, they are written in terms of the left (right) 4D
spinors u; g(p) satisfying the 4D Dirac equation
Ni™(p.z) = Fi" (p. 2)ur(p) + FiR' (p. 2)ur(p).
NY™(p.2) = Fy (p. 2Jur(p) + F3g' (p. 2)ug(p)-  (29)

We perform KK decomposition for the fermion fields as
follows:

NII{EZ/R(PvZ) = ZN?,zL/R(P)F’fEIX;R(P’Z)- (30)
n

Mode functions for ground state nucleons Fi%(z) =
F)IV(z) are the solutions of the Dirac equation (26) [5]

FW(p,z) = ,2°J5(m,z),

FW(p,z) = c,2°2J5(m,2); (31)

FYV(p.z) = —y2%/%05(m, ),

F5R(p.2) = e227205(m,2), (32)
with the normalization constants [6]:

V2

ZmJ2(ng) ‘ (33)

|C1,2| =

B. Nucleon profile function in the SW model

In the SW model with the negative dilaton field ® the
action for the 5D N spinor fields with ms = 5/2 (similarly
for N, with ms = —5/2) is written as [28]:

Sﬁ,\;v = /d“xdz\/ée“l’(z) E NV (x, 2)eMTAV NSV (x, 2)
— % (VarN§Y (x,2) ) TTOMTANSWY (x, 2)
- N3V (x, z) (ms + @(z))N?W(x, z)] . (34)
For removing the dilaton field from the overall exponential,

the fermionic fields are rescaled as NP%(x,z) —
eFZ2N$Y (x,z). We decompose the fermion field in

114032-4



TENSOR MESON COUPLINGS IN ADS/QCD

PHYS. REV. D 108, 114032 (2023)

left- and right-chirality components (28) and KK modes.”
To obtain the equation of motion, we use the following
substitution:

Fis¥(z) = 21158 (2). (35)
The equation of motion for fermions can be represented as a

Schrodinger-type equation

1 +1
{—ag + k2 42k (m F 5) + (m )] fiR (2)

= maf15% (2). (36)

The solution of the Eq. (36) gives the mode functions for
nucleons in the SW model:

nSW(; / k3 5/2 p—k2 2/2L2(k2 2y,
() = [ :_r1))kzz3/2e‘kzzz/2L,ll(kzzz). (37)

Undoing the change of variables, we get the original mode
functions

FZSW l k3 9/2L2 k2 2

2(n+1)

F SW
k I'(n+2)

k2 7/2L k2 2 (38)

The normalization is set by

k?. 2
® e
[T emenmo=-m @
0o z
and the mass spectrum of the nucleon will be given by
m? = 4k*(n +2). (40)

Note that we will consider the interaction only for the
ground states n = 0 and will use the shorthand notation for
the SW profile functions as

FSW()

Lr(2) = Fy ' (2)- (41)

L/R

IV. TENSOR-NUCLEON COUPLINGS

In order to derive the tensor meson-nucleon coupling
constant gy yy Wwithin the holographic QCD, we have to

*Since indices 1 and 2 follow the same analogical structure as
the HW model, we shall omit them in order to avoid repetition.

write down the interaction Lagrangian LSf?NN for the

corresponding fields in the bulk of the 5D AdS space.
The interaction Lagrangian between the tensor meson and
nucleons in 4D theory is given in Ref. [29]:

(1)
g
Lywy = =20 Y () (7#0” + 70" YN () ()
9(2)1\/1\/ -
LY 3N (x) ¥ N (x) (), (42)

n

+4

< = @ —
where 0 = 0 — d and My denote the mass of nucleon. It
is reasonable to write 4D action in momentum space using
Fourier transforms of the nucleon N(x) and tensor meson
hy, (x) fields:

N(x) —/d“p/[v(p/)eip’x’ N(x) —/d4pN(p)e‘iPx,
hy (x) = / d*qhy,(q)e"". (43)

The action for the interaction of these fields in momentum
space has two terms:

(1)
9 NN Ui
S —4—’;; / d*p'd*p(p'+ p)’N(p")r"N(p)h,,(q)

n

g (fo)NN

PPRIAL / & pp p N (P IN(p)hy(q),  (44)

n

which are proportional to (p’ + p)“y* and p*p* in the
tensor current of the nucleon. In 5D space-time (1), the
interaction Lagrangian between the bulk tensor /,,y and
fermionic fields N is the extension of the Lagrangian (42).
To this end, we should replace partial derivatives with the
covariant derivatives (25) of the spinor field and construct
hermitian Lagrangian. Thus, we can write the 5D action

SISII? = /dsx\/_szNN’ (45)
based on the following interaction Lagrangian:

SN oM
)(FMV +FNV )N(x, Z)hMN(x, Z)
+4 (N(x, 2) TOVMVNN(x, z)

L3Py = 2iN(x,

+ (N(x, 2) TOVMVNN (x, z))'l') hyn(x,2), (46)

had = =
where V = V — V. Note that the second term with two
derivatives is written in such a way as to ensure the
Hermiticity of the Lagrangian. One can show that it is a
correct 5D generalization of the corresponding 4D term,

114032-5
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TABLE I. Predictions for the couplings compared to the Refs. [30-34].
Couplings Hard Wall Soft Wall TMD [30] DR [31] DR [32] DR [33] DR [34]
}ggfliwv} 1.06 8.46 2.18£0.12 6.44 £ 0.60 3.75 5.16 526+ 2.15
}g } 0.23 0.42 =~0 0.39 +1.10 e ~0 3.154+4.73
f2NN
and it looks like to the 4D Lagrangian upon replacing The couplings are as follows:
(u.v > M.N)
_k2 2
<N <~>M = — d FSW
L = 28w 2) (P75 15" )N (e, ) (.2 gy / 2 ())*

+40MN(x,z)0VN(x, 2) hyn (x, 7). (47)

In momentum space, 5D action in the HW model reads:
st =2 [“E{FEN @) + (FIN )P I )
< [ @ a4 (o)
2 [T @) - (PR P IR

< [ @ pp )b @) (48)
Comparing Eqgs. (44) and (48), we find the coupling

constants g](clz)N y and g}iZVN for the interaction between the

ground state nucleon and the tensor meson. In the HW
model, we find the following integral representations for
these couplings:

o =5 [T S P + (P @) )
(49)
szN = /7"* € FHW ))2 - (Fll-llgv(z))z}hHw(Z)
(50)
Action in the SW model gets the following form:
_kZ 2
s =2 [Ta )+ ()
x / d*p'd*p(p+ p')a(p")r*u(p)h,,(q)
v2 [Tae 0P - ()
< | d“p'd‘*pp'ﬂpva(p')u(p)h,,xq). (51)

+ (F{V(2))? }hSW (52)
_k2 2
szN _/ dZ FSW( ))

In Table I, we present the results of our numerical
calculations compared to the analyses performed in various
works.

It is interesting to know the sensitivity of the couplings to
the value of the cutoff parameter z,,. To this end, we plot in
Fig. 1 the dependencies of the gj‘-’jNN constants on z,,. These
plots are obtained by interpolating the points (black dots)
corresponding to the different cutoff values. It is seen from
Fig. 1, in the domain approximately 0 < z,, < 0.24 GeV~!,
the result for the couplings is susceptible to the cutoff
values z,,. In the domain 0.24 GeV~! < z,, < 0o the
couplings weakly depend on this parameter. In the case
of the z,, = 0.322 GeV~! in which the masses of mesons
are fixed to the experiment, we observe some deviation
from other results. While in the case of z,, = 0.205 GeV~!
in which nucleons are well described, we get g} ny & 15,
Therefore, all results obtained by different groups can be
described within the HW model in the domain of

€1[0.205,0.322] GeV~!. Note that some underestimate
for tensor-nucleon coupling can be understood in the
context of tensor meson dominance (TMD) since the AdS/
QCD prediction for g}y = 0.009 is two times less than the

SU(3) effective model prediction g} = 0.019 [30]. If

L7 2
we set g}?N » = 0in the following relation (see derivation in

the appendix of Ref. [29]),

gfzrm
my

2
<g(f2)1v1v + ;"Z)NN) (54)
2

we get g}lz)NN = 1.06, which is approximately two times

less than in the Ref. [30].
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14+
12
10

> NN

(1)

N B O
R o

022 024 026 028 0.30 0.32
Zm[GeV™]

FIG. 1.

V. TENSOR MESON DECAY CONSTANTS
8rpp AND ¢,

The tensor meson-vector meson interaction, which
includes f, decays to the vector particles p and y (f, — pp,
f2» — yp,and f, — yy) lies in the bulk action for the vector
field in the background of Eq. (9). The action containing
the first order of the #* and the second order of V, is
written as:
|

1 dz

0.26 |
0.24 |
0.22 }

<2020}

© 018
0.16 |
0.14 |

022 024 026 028 030 0.32
z,[GeV]

Dependence of the couplings on the cutoff value z,, within the HW model.

1 dz
S=— =
2¢2) z

—a,vVa, v 1+ a,v Vv - azv,(})azvﬁf)} . (55)

dbxhe [a,, vilo, v — o vV v®

Using KK decomposition and Fourier transformation, we
can write the action in momentum space:

S =57 [ Sapid*pa{ha. )V (p1. )V (p2. )0 (q) | prpsVi (1)VE (p2) = prupsVE  (p)VE (2)

29? z

= Pup2aVi (POVOH(p2) + prupacVi (POVE ()| = (g 2)0.V D (p1.2)0.VE (s )W) Vi (p1)VE (p2) }.

where g = —(p, + p,) due to (¢ + (p; + p,))-function
arising on x integration. Here p, p, are the four-momenta
of the pt"), p® mesons. As is known from earlier works on
tensor meson couplings [18,30,36], the tensor-vector vector
meson interaction amplitude contains five independent
couplings due to the tensor structure of the tensor-meson
current [36]:

9£,vivy D2 5
Arviv, = %Tﬂ {ﬁoe,(, e + ) (e P2)€;(4 '
fa

+B2(e® - pr)el pay, + B3 (e - €2) prupa,

+ 5(6(1) : Pz) (6(2) : pl)pluph/}’ (57)

with the polarization tensor 7#* for spin-2 field and (:‘,(41’2)—

polarization vectors for massive vector fields.

The first scenario, the so-called TMD model in which
Po = pi1- P2 1 =P =—p3 =—1,and § = 0 leads to the
following Lagrangian

(56)

™D __ (1) ) (1) )
LI — g0 1V, Vi = gf0) 1 (9,V) 0,V e

=0, Vi, v — o, ViV 4 o,V oY),

(58)
where the coupling g;lzL , is evaluated as follows
4m?> md
(DHW| _ f2 [ 42w HW ())2
= ) (7 (2
fz/lﬂ} 29%\/50 Z[ ()( ())]
=0.31 GeV, (59)
dxm? (o d
(sw _ f2 < K2 [SW SW(,\)2
= —e h v
i | =05y 2 ¢ PO @)
= 0.68 GeV. (60)

Here the factor f'/—% is inserted to do a compatible matching
with 4-dimensional theory [3].
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In the case of the so-called minimal model [18], where
all momentum dependent terms are neglected (S, = m}z,
Bi1 =P, =Pz =8 =0), the 4D Lagrangian has a simple
form

Lmin = g© pey,v (61)

Farr = 9fapp ura
Numerical estimation of the minimal coupling constant
within the HW model reads from the last term of Eq. (56):

(0)HW dr [adz gy HW (})2
. = — h Z a v Z
fzﬂp| 292\/50 Z[ ()(z ())]
— 0.04 GeV, (62)

Similarly, within the SW model:

©Osw  4r odz 1
Iy |_W§ e CE AV (2) (0.0%V(2))?]
— 0.08 GeV. (63)

Note that the Lagrangian describing the minimal model
(61) can be extended to the following 5D form:

min — 0
L P = g}z)p/phMN VuVn- (64)

Numerical results for the coupling of the g;(;)p/p in the HW

and SW models are g}(ﬁg{w = 0.38 GeV and gj(g)p/psw =

0.84 GeV, respectively.

We move on to the next action describing the decay of
the tensor meson into a vector meson and a photon. In this
case, the action consists of the convolution of two field
stress tensors Vi, and Fyy = 0yAy — dyAy correspond-
ing to vector meson and photon fields’ stress tensors in the
boundary3 :

S—/dsx\/gFMNVMN. (66)

The KK decomposition for the A,; field will contain the
photon profile function [3]

34D analogous of the action Eq. (66) can be obtained via VMD
[37,38] by applying the following shift in the Lagrangian (58)

0 0

e
Vi = Vi +— 0
9p

F,,. (65)

Hv

S O wie
Wl—

0 -3

The electromagnetic field tensor is represented by F,,. The
electric coupling constant is denoted by e and is equal to v4za.
The photon-vector-meson transition is parameterized by g,

which is approximately equal to 5.5. The holographic description
of VMD is studied in [39].

Alp.2) =1(2) = . (67)

In the first order of the /*, Eq. (66) contains the tensor-
vector-photon interaction terms similar to tensor-vector-
vector coupling case and has the following explicit form:

d
S= [ St p'hla. DAV DR (a)

< [pup"Au(P)Va(P') = PuP"A(P)Va(P')
= PuPeA(P)V(P') + pupeAL(P)VH(P')]- (68)
The 5D action, which describes tensor meson coupling

to two photons in the 4D boundary, is written in the
same way:

S — /dsx\/gFMNFMN

dz
= [ Satpdphia. a0 20 D (a)

X [pup"Au(P)Ad(P') = Pup"AL(P)Au(p')
= PuPbA(P)AY(P) + puphAL(P)A*(P')]. (69)

(1)
farp
(68) and (69) we write the integral representations for the

(1) (1)
Ifarp and 9fory

In an analogous way to the g, ° ~coupling, from the actions

drm> [ d
DHW : Z
o = [ @@ (@) = 116 Gev.

(70)

while the holographic model result for the two-photon
coupling of the tensor meson [3] reads

(uw _ 4o, [ dz

Iy = \/g z

Considering the following experimental results given
in PDG [15]

[1W¥(2)(7(2))?*] =0.06 GeV. (71)

Ff2(1270)_)p0p0+2p—p+ ~ Ff2(1270)—>ﬂ+71'72ﬂ0 ~ 19.5 MCV,
oy =2.6+0.5 keV,
authors in Ref. [18] extract the coupling g;,,, in Table II

using the following relation derived under the vector meson
dominance (VMD) assumption:

_ % gfz)’/) (72)

g = .
fapp 9 \/m

The following relation for the couplings of the radiative
decays is valid within the quark model
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TABLE II. The HW model estimation for the coupling vs
results derived from Refs. [18,35].
Chiral Our
I, (1270) = w7240 | R model Result
Coupling [18] [18] [35] (HW)
(1) . . . .
gfm/mf2 3.32 0.68 293 0.90
9farr 1
9farp = 9% 4 10w (73)
dra (m—”p + §m_w)

the decay constants for the vector fields p(770) and w(782)
are obtained from the experiment

3mV1—‘V—>€7+6+

= Lt 74
gv 471’0(2 ( )

Decay rate I'y,_,,, = 2.6 keV implies

et

3202l
Gy = ([ T = 0,045 (75)
”

which coincides with the HW AdS/QCD model in Ref. [3].
Considering the relation between the radiative decays of
the tensor meson in Eq. (A.46) of Ref. [33], we obtain
Iy, , = 0.6 MeV which is compatible with the prediction
of the chiral model 0.7 £ 1.7 MeV in Ref. [35].

VI. CONCLUSION AND FUTURE DIRECTIONS

We studied the holographic description of the tensor
meson by exploring its hadronic and radiative coupling
constants. The results are consistent with those obtained
from dispersion relations and amplitude methods, and the
holographic approach still remains effective in describing
the couplings of tensor mesons. Our results show that the
coupling for tensor meson-nucleon interaction coupling
with one derivative term is the dominant one compared to
the two-derivative case. The formalism presented here can
be extended to describe the tensor glueball, which could
be tested in the future Panda experiment [40]. Motivated
by the experimental observation of the 4-pion decay of
f2(1270) (the second dominant decay channel after the

two-pion channel), we have computed the coupling (g}iz)p p)

within the holographic model. Radiative decay channels
such as f,(1270) — p(770)y, which is obtained via the
VMD of the tensor-vector interaction Lagrangian, can be
interesting for future experiment measurements, such as the
GlueX experiment [41] at Jefferson Lab, to effectively test
our prediction for the coupling. We predict the decay width
for this channel to be around 0.6 MeV, which is consistent
with the prediction presented in Ref. [35]. One can study
the finite temperature effects [13,14], the tensor form

factors of nucleons given in Refs. [42-44] and the tensor
meson decay constant [45] within our model.

ACKNOWLEDGMENTS

The authors thank Tahmasib Aliev for the useful dis-
cussion. S.J. thanks Francesco Giacosa for earlier collab-
orations on tensor mesons and Astrid Hiller Blin for fruitful
discussion. S.J. acknowledges the financial support
through the project “Development Accelerator of the Jan
Kochanowski University of Kielce,” cofinanced by the
European Union under the European Social Fund, with
No. POWR.03.05. 00-00-Z212/ 18 and partial support by
the Polish National Science Centre (NCN) through the
OPUS project 2019/33/B/ST2/00613.

APPENDIX A: THE SW TENSOR MESON
PROFILE FUNCTION REVISITED

In the SW model, the gravity action in the second-order
perturbation £, contains an additional exponential warping
factor [22]

—2k27?
SEW — - / dsx% (b + Ry, OR), (A1)
where the transverse-traceless gauge conditions ¢*h,, = 0,
and Ky, = 0 have been imposed. Solution for the perturba-
tion can be found in the form h,, (x, z) = h,, (x)h(x,z), and
the linearized Einstein equation for the Fourier-transformed
profile function A(p, z) takes the form:

—2K272 —2K272
ez e~ T
|:az ( 3 az) + 3 p :| h(p.z) =0. (A2)

We get the solution to this equation expressed in terms of
the hypergeometric function:

m2

h(z) = NI(K1Z)41F1 {2 —W;3;2K%Z2:|
1
2.0 _%"'1
+N261j2 01 —ZK%ZZ s

’

(A3)

where p> = m? has been taken which implies m = 4k, for
the mass of spin-2 tensor meson in the SW model. The
second term of the solution is non-normalizable, so, N,
should vanish. To relate this solution with one in Eq. (21), it
is preferred to express the profile function in terms of the
generalized Laguerre polynomials by taking into account
the following relation between the hypergeometric function
and Laguerre polynomial:

aln!
Fi(=n,a+1,x) = T a)!L,,(x).

(A4)
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. . _ m . .
For our solution ¢« =2 and n = e By taking into

account these values the solution (A3) will be written in
terms of Laguerre polynomials

2n!

WV (z) = N(’ﬁ@“m

L22K37%).  (AS)

The given solution can be interpreted as the nth KK mode,
and the mass spectrum of the modes can be found from
m? = 8xk3(2 + n). We observe that the profile function in

(AS5) coincides with one in (22) with redefinition 2«3 = x2.

APPENDIX B: THE FLAVOR INVARIANT FORM
OF THE LAGRANGIAN

This appendix shows the flavor invariant form of the
Lagrangian studied in Sec. V. In the case of Ny = 2, the
adjoint representation of U(2), can be written as

2®2=3@1. (B1)

Considering the vector mesons as quark-antiquark objects,

we have triplets (p0, p,r, p;;) and the singlet (w,) within the
following nonet V/:

. » iy, u ﬁ}/ﬂd)
V. =g/ = _ _
ui q y,uqt (d}/ﬂl/t d}’ﬂd

1 (P +e  V2p -
:E(\/Zf’ e ﬂ—ﬂﬂ7+wﬂﬂzx2, (B2)

where 7’s are the three Pauli matrices. We have used the
following substitutions:

| - -
pu =5 B —dr,d). pp = idy,u
. I -
pp = iuy,d, o) = 7 (uyﬂu + dyﬂd). (B3)

Thus, we can write V, := Vit* where V¢ = {p,w} and
1* = {7, 154»}. A matrix containing the vector fields is
invariant under the flavor symmetry U(2), such that

V, - UV,U", (B4)

where U’s are the elements of the unitary group U(2),
satisfy the condition

UTU = 15y,. (BS)

Similarly, for the tensor fields, construct the flavor invariant
matrix h,,

, 1<a3+f2 \/§a£> D Eh
v = s = AT T Joulaxa
g \/E \/Ea; —ag + f2 uv ! !
(B6)
which is invariant under U(2),
hy, — Uhy, U'. (B7)

The following Lagrangian describes the interaction
between the tensor and vector meson and is invariant
under flavor symmetry U(2),

L =gOTe[pv, v, + ¢V TtV Ve
g0
= 2P (ol + 20000
(1

g _
200 g+ 2p557) 4

(B8)
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