ASYMPTOTICS OF EIGENVALUES AND EIGENFUNCTIONS OF A DISCONTINUOUS BOUNDARY VALUE PROBLEM WITH A SPECTRAL PARAMETER IN THE TRANSMISSION CONDITION

N.F. BASHIROVA, L.N. JAFAROVA*

Received: 30.06.2023 / Revised: 09.08.2023 / Accepted: 17.08.2023

Abstract. We determine asymptotics of eigenvalues and eigenfunctions of a discontinuous boundary value problem with a spectral parameter in the transmission condition.

Keywords: boundary-value problem, eigenvalue, eigenfunction, asymptotics, transmission condition

Mathematics Subject Classification (2020): 34B05, 34B08, 34E05

1. Problem Statement

Consider the following boundary value problem:

$$-y'' = \lambda y, \quad x \in \left[0, \frac{q}{p}\right) \cup \left(\frac{q}{p}, 1\right],\tag{1}$$

$$y(0) = y(1) = 0,$$

$$y\left(\frac{q}{p} - 0\right) = y\left(\frac{q}{p} + 0\right),$$

$$y'\left(\frac{q}{p} - 0\right) - y'\left(\frac{q}{p} + 0\right) = \lambda my\left(\frac{q}{p}\right),$$
(2)

here $q \in \mathbb{Z}_+$, $p \in \mathbb{N}$, q < p, gcd(q, p) = 1, $0 \neq m \in \mathbb{C}$. In the sequel we will use the denotations $\lambda = \rho^2$ and $Im\rho = \tau$.

Nurangiz F. Bashirova

Ganja State University, Ganja, Azerbaijan E-mail: nurangizbashirova@mail.ru

Lala N. Jafarova

Khazar University, Baku, Azerbaijan E-mail: ljafarova@khazar.org

 $^{^{}st}$ Corresponding author.

The problem (1), (2), in special cases q = 1, p = 2 and q = 1, p = 3, were investigated in [2] and [3]. The asymptotic behavior of eigenvalues and eigenfunctions for the equation

$$-y'' + q(x)y = \lambda y$$

with boundary conditions (2) were studied in [1] for the case of transmission condition at midpoint.

2. Main Results

The main result of the paper is the following

Theorem. Eigenvalues of the problem (1), (2) are asymptotically simple and can be represented as a union of p - q + 2 sequences

$$|\lambda_{1,1}| \le |\lambda_{1,2}| \le |\lambda_{1,3}| \le \dots,$$

 $|\lambda_{2,1}| \le |\lambda_{2,2}| \le |\lambda_{2,3}| \le \dots,$
 $|\lambda_{3,1}| \le |\lambda_{3,2}| \le |\lambda_{3,3}| \le \dots,$

$$|\lambda_{p-q+2,0}| \le |\lambda_{p-q+2,1}| \le |\lambda_{p-q+2,2}| \le \dots,$$

counted with their multiplicity. For these sequences the following asymptotics hold:

$$\sqrt{\lambda_{1,n}} = p\pi n, \sqrt{\lambda_{2,n}} = p\pi n + \frac{p}{m(p-q)q\pi n} + O\left(\frac{1}{n^3}\right),$$

$$\sqrt{\lambda_{3,n}} = \frac{p\pi}{q}n + \frac{1}{\pi mn} + O\left(\frac{1}{n^2}\right), n \neq 0 \pmod{q},$$

$$\sqrt{\lambda_{l,n}} = p\pi n + \frac{p}{p-q}\pi(l-3) + \frac{1}{m(p-q)\pi n} + O\left(\frac{1}{n^2}\right), \ 4 \leq l \leq p-q+2,$$

as $n \to \infty$.

For the eigenfunctions $y_{1,n}(x)$, $y_{2,n}(x)$, $y_{3,n}(x)$ and $y_{l,n}(x)$, that correspond to eigenvalues $\lambda_{1,n} = \rho_{1,n}^2$, $\lambda_{2,n} = \rho_{2,n}^2$, $\lambda_{3,n} = \rho_{3,n}^2$ and $\lambda_{l,n} = \rho_{l,n}^2$, respectively, the following asymptotics hold:

$$y_{1,n}(x) = \sin p\pi nx, \quad x \in [0,1];$$

$$y_{2,n}(x) = \begin{cases} \gamma_{2,n} \sin p\pi nx + O\left(\frac{1}{n}\right), & x \in \left[0, \frac{p}{q}\right), \\ \gamma'_{2,n} \sin p\pi n(x-1) + O\left(\frac{1}{n}\right), & x \in \left(\frac{p}{q}, 1\right]; \end{cases}$$

$$y_{3,n}(x) = \begin{cases} \gamma_{3,n} \sin \frac{p\pi n}{q} x + O\left(\frac{1}{n}\right), & x \in \left[0, \frac{p}{q}\right), \\ \gamma'_{3,n} \sin \frac{p\pi n}{q}(x-1) + O\left(\frac{1}{n}\right), & x \in \left(\frac{p}{q}, 1\right]; \end{cases}$$

$$y_{l,n}\left(x\right) = \begin{cases} \gamma_{l,n} \sin\left(p\pi n + \frac{p}{p-q}\pi\left(l-3\right)\right) & x + O\left(\frac{1}{n}\right), & x \in \left[0, \frac{p}{q}\right), \\ \gamma'_{l,n} \sin\left(p\pi n + \frac{p}{p-q}\pi\left(l-3\right)\right) & (x-1) + O\left(\frac{1}{n}\right), & x \in \left(\frac{p}{q}, 1\right], \end{cases}$$

 $4 \le l \le p - q + 2$, as $n \to \infty$, where

$$\begin{split} \gamma_{2,n} &= \left(-1\right)^p + O\left(\frac{1}{n^2}\right), \quad \gamma'_{2,n} = \frac{q}{q-p} + O(\frac{1}{n^2}), \\ \gamma_{3,n} &= -\cos\left(\frac{p-q}{q}\pi n\right) \right. \\ &+ O(\frac{1}{n}), \quad \gamma'_{3,n} = O(\frac{1}{n}), \\ \gamma_{l,n} &= \left(-1\right)^{pn-1+l} + O(\frac{1}{n^2}), \\ \gamma'_{l,n} &= -\cos\left(\frac{q}{p-q}\pi \left(l-3\right)\right) + m\left(p\pi n + \frac{p}{p-q}\pi \left(l-3\right)\right) \sin\left(\frac{q}{p-q}\pi \left(l-3\right)\right) + O\left(\frac{1}{n^2}\right), \end{split}$$

 $(p-q^{n+1})^{n+1} (p-q^{n+1})^{n+1} (p-q^{n+1})^{n+1} (p-q^{n+1})^{n+1} (n^2)$ $as \ n \to \infty.$

Proof. It is straightforward to check that $\lambda = 0$ is not an eigenvalue of the problem (1), (2). For any $\lambda \neq 0$ the solution $y(x,\lambda)$ of the problem (1), (2) is in the form

$$y\left(x,\lambda\right) = \begin{cases} C_{1}y_{1}\left(x,\lambda\right), & \text{if } 0 \leq x < \frac{q}{p}, \\ C_{2}y_{2}\left(x,\lambda\right), & \text{if } \frac{q}{p} < x \leq 1, \end{cases}$$

where $y_1(x,\lambda) = \sin \rho x$, $y_2(x,\lambda) = \sin \rho (x-1)$, and C_1 and C_2 are yet unknown complex numbers. $\lambda \neq 0$ is an eigenvalue of the problem (1), (2) if and only if C_1 and C_2 are nontrivial solutions of the following homogeneous system of linear equations:

$$\begin{cases} C_1 \sin\frac{q}{p}\rho - C_2 \sin\left(\frac{q}{p} - 1\right)\rho = 0, \\ C_1\rho \cos\frac{q}{p}\rho - C_2\rho \cos\left(\frac{q}{p} - 1\right)\rho = C_1\rho^2 m \sin\frac{q}{p}\rho. \end{cases}$$

Hence, eigenvalues of the problem (1), (2) are nonzero roots of the following equation:

$$\Delta(\rho) = \begin{vmatrix} A_{11}(\rho) & A_{12}(\rho) \\ A_{21}(\rho) & A_{22}(\rho) \end{vmatrix} = 0,$$

where

$$A_{11}(\rho) = \sin\frac{q}{p}\rho, \quad A_{12}(\rho) = \sin\left(1 - \frac{q}{p}\rho\right), \quad A_{21}(\rho) = \rho\cos\frac{q}{p}\rho - \rho^2m\sin\frac{q}{p}\rho,$$
$$A_{22}(\rho) = -\rho\cos\left(1 - \frac{q}{p}\right)\rho.$$

Therefore, we obtain

$$\triangle(\rho) = -\rho \sin \rho + \rho^2 \ m \ \sin \frac{q}{p} \rho \sin \left(1 - \frac{q}{p}\right) \rho = 0. \tag{3}$$

Now we find asymptotics of roots of the equation (3). From (3) it follows that, $\lambda_{1,n} = \rho_{1,n}^2 = (p\pi n)^2$, $n = 1, 2, \ldots$ are simple eigenvalues of the problem (1), (2). For sufficiently small $\alpha > 0$, set

$$Q = \bigcap_{n=0}^{\infty} \left(\left\{ \rho \in \mathbb{C} \colon \left| \rho - \frac{p}{q} \pi n \right| > \alpha \pi \right\} \bigcap \left\{ \rho \in \mathbb{C} \colon \left| \rho - \frac{p}{p-q} \pi n \right| > \alpha \pi \right\} \right).$$

Taking into account that for all $\rho \in Q$

$$|-\rho\sin\rho| = |\rho| \cdot |\sin\rho| \le |\rho| \cdot e^{|\tau|};$$

and

$$\left| \rho^2 m \sin \frac{q}{p} \rho \sin \left(1 - \frac{q}{p} \right) \rho \right| = \left| \rho \right|^2 \cdot |m| \cdot \left| \sin \frac{q}{p} \rho \sin \left(1 - \frac{q}{p} \right) \rho \right| \ge$$

$$> C \cdot |\rho|^2 \cdot |m| \cdot e^{\frac{q}{p}|\tau|} \cdot e^{\left(1 - \frac{q}{p} \right)|\tau|} = C \cdot |\rho|^2 \cdot |m| \cdot e^{|\tau|},$$

where C is an absolute constant, by virtue of Rouche's theorem it follows that, zeroes of the function $\Delta(\rho)$ of which absolute values are sufficiently large and are different from $\rho_{1,n}$ lie in small neighborhoods of roots of the equation $\rho^2 \, m \, \sin \frac{q}{p} \rho \sin \left(1 - \frac{q}{p}\right) \, \rho = 0$. Then, all such zeroes of $\Delta(\rho)$ lie in the set \mathbb{C}/Q , hence, have bounded imaginary parts. By Rouche's theorem, these zeroes of the function $\Delta(\rho)$ are asymptotically simple and are in the form $\frac{p\pi n}{q} + \alpha_n$ and $\frac{p\pi n}{p-q} + \theta_n$, where $\alpha_n \neq 0, \theta_n \neq 0$ and $\alpha_n \to 0, \theta_n \to 0$ as $n \to \infty$.

Now let us study asymptotic behaviour of the sequence $\{\alpha_n\}$ as $n \to \infty$. Firstly, consider the case of $n \neq 0 \pmod{q}$. Take $\rho = \frac{p\pi n}{q} + \alpha_n$ in equation (4). We get

$$\sin\left(\frac{p\pi n}{q} + \alpha_n\right) = \left(\frac{p\pi n}{q} + \alpha_n\right) \cdot m \cdot \sin\frac{q}{p} \left(\frac{p\pi n}{q} + \alpha_n\right) \cdot \sin\frac{p - q}{p} \left(\frac{p\pi n}{q} + \alpha_n\right).$$

Hence,

$$\sin\left(\frac{q}{p}\alpha_n\right) = \frac{1}{m} \cdot \frac{1}{\frac{p\pi n}{q} + \alpha_n} \cdot \frac{\sin\left(\frac{p\pi n}{q} + \alpha_n\right)}{\sin\left(\frac{p\pi n}{q} + \frac{p-q}{p}\alpha_n\right)} . \tag{4}$$

From the last equality it follows that

$$\alpha_n = O\left(\frac{1}{n}\right), \text{ as } n \to \infty.$$
 (5)

(4) implies that

$$\frac{q}{p}\alpha_n + O\left((\alpha_n)^3\right) = \frac{1}{m} \cdot \left(\frac{1}{\frac{p\pi n}{q} + \alpha_n} - \frac{q}{p\pi n} + \frac{q}{p\pi n}\right) \times \frac{\sin(\frac{p\pi n}{q} + \alpha_n)}{\sin(\frac{p\pi n}{q} + \alpha_n)\cos(\frac{q}{p}\alpha_n - \cos(\frac{p\pi n}{q} + \alpha_n)\sin(\frac{q}{p}\alpha_n)} = \frac{1}{m} \cdot \left(\frac{m\pi n}{q} + \alpha_n\right)\cos(\frac{q}{p}\alpha_n - \cos(\frac{p\pi n}{q} + \alpha_n)\sin(\frac{q}{p}\alpha_n)\right) = \frac{1}{m} \cdot \left(\frac{m\pi n}{q} + \alpha_n\right)\cos(\frac{q}{p}\alpha_n - \cos(\frac{p\pi n}{q} + \alpha_n))\sin(\frac{q}{p}\alpha_n)$$

$$\begin{split} &= \frac{1}{m} \cdot \left(\frac{-q\alpha_n}{\left(\frac{p\pi n}{q} + \alpha_n \right) \cdot p\pi n} + \frac{q}{p\pi n} \right) \times \\ &\times \frac{1}{\cos \frac{q}{p}\alpha_n - \cot \left(\frac{p\pi n}{q} + \alpha_n \right) \cdot \sin \frac{q}{p}\alpha_n} = \\ &= \frac{1}{m} \cdot \left(\frac{q}{p\pi n} - \frac{q \cdot \alpha_n}{\left(\frac{p\pi n}{q} + \alpha_n \right) \cdot p\pi n} \right) \times \\ &\times \frac{1}{1 + O\left(\alpha_n^2\right) - \cot \left(\frac{p\pi n}{q} + \alpha_n \right) \cdot \sin \frac{q\alpha_n}{p}} \end{aligned} .$$

Taking into account (5) and the fact that for sufficiently large $n \neq 0 \pmod{q}$ $\left|\cot\left(\frac{p\pi n}{q} + \alpha_n\right)\right| \leq \alpha \ (\alpha > 0 \text{ is independent of } n)$, we get

$$\frac{q}{p}\alpha_n + O\left(\frac{1}{n^3}\right) = \frac{1}{m} \cdot \left(\frac{q}{p\pi n} + O\left(\frac{1}{n^3}\right)\right) \cdot \frac{1}{1 + O\left(\frac{1}{n}\right)}.$$

Since

$$\frac{1}{1 + O\left(\frac{1}{n}\right)} = 1 + O\left(\frac{1}{n}\right), \text{ as } n \to \infty,$$

we have

$$\alpha_n = \left(\frac{1}{m\pi n} + O\left(\frac{1}{n^3}\right)\right) \cdot \left(1 + O\left(\frac{1}{n}\right)\right) + O\left(\frac{1}{n^3}\right) = \frac{1}{m\pi n} + O\left(\frac{1}{n^2}\right).$$

Therefore,

$$\rho_{3,n} = \frac{p\pi}{q}n + \frac{1}{\pi mn} + O\left(\frac{1}{n^2}\right), n \neq 0 \pmod{q}, \quad n = 1, 2, ...,$$

is a subsequence of the set of roots of (3).

Now let $n = 0 \pmod{q}$. Then n = qk, $k \in \mathbb{N}$. Denoting $\beta_k = \alpha_{qk}$, from (4) we get

$$\sin\left(\frac{q}{p}\beta_k\right) = \frac{1}{m} \cdot \frac{1}{p\pi k + \beta_k} \cdot \frac{\sin\left(p\pi k + \beta_k\right)}{\sin\left(p\pi k + \frac{p-q}{p}\beta_k\right)} =$$

$$= \frac{1}{m} \cdot \frac{1}{p\pi k + \beta_k} \cdot \frac{\sin\beta_k}{\sin\frac{p-q}{p} \cdot \beta_k}.$$

The above equality implies that $\beta_k = O\left(\frac{1}{k}\right)$. Therefore, from (4) we get:

$$\frac{q}{p}\beta_k + O\left(\frac{1}{k^3}\right) = \frac{1}{m} \cdot \left(\frac{1}{p\pi k} + O\left(\frac{1}{k^3}\right)\right) \cdot \frac{\beta_k + O\left(\frac{1}{k^3}\right)}{\frac{p-q}{p}\beta_k + O\left(\frac{1}{k^3}\right)} =$$

$$=\frac{1}{m}\cdot\left(\frac{1}{p\pi k}+O\left(\frac{1}{k^3}\right)\right)\left(\frac{p}{p-q}+O\left(\frac{1}{k^2}\right)\right)=\frac{1}{m\left(p-q\right)\pi k}+O\left(\frac{1}{k^3}\right).$$

Finally, we get

$$\beta_k = \frac{p}{mq(p-q)\pi k} + O\left(\frac{1}{k^3}\right).$$

Therefore.

$$\rho_{2,n} = p\pi n + \frac{p}{mq(p-q)\pi n} + O\left(\frac{1}{n^3}\right), n \neq 0 \pmod{q}, \quad n = 1, 2, ...,$$

is a subsequence of the set of roots of (3).

By the same way it is proved that

$$\theta_n = \frac{1}{m(p-q)\pi n} + O\left(\frac{1}{n^2}\right).$$

Hence, for the sequence $\rho_{l,n}$ of roots of the equation (3) we obtained the following asymptotic formula

$$\rho_{l,n} = p\pi n + \frac{p}{p-q}\pi (l-2) + \frac{1}{m(p-q)\pi n} + O\left(\frac{1}{n^2}\right), \ 4 \le l \le p-q+2, \ n=0,1,2,\dots.$$

Now, let us study the asymptotic behavior of eigenfunctions of the problem (1), (2). From the asymptotic equalities obtained for $\rho_{1,n}$, $\rho_{2,n}$, $\rho_{3,n}$ and $\rho_{l,n}$ ($4 \le l \le p - q + 2$) and the expression for $A_{22}(\rho)$, for sufficiently large n we have:

$$A_{22}(\rho_{1,n}) \neq 0$$
 (for all n), $A_{22}(\rho_{2,n}) \neq 0$, $A_{22}(\rho_{3,n}) \neq 0$ and $A_{22}(\rho_{l,n}) \neq 0$.

Hence, for the sufficiently large n the eigenfunctions of the problem (1), (2) corresponding to eigenvalues $\lambda_{1,n} = (\rho_{1,n})^2$, $\lambda_{2,n} = (\rho_{2,n})^2$, $\lambda_{3,n} = (\rho_{3,n})^2$, and $\lambda_{l,n} = (\rho_{l,n})^2$ (3 $\leq l \leq p-q+2$) will be

$$y_{1,n}(x) = \begin{cases} \frac{1}{\rho_{1,n}} A_{22}(\rho_{1,n}) y_1(x, \lambda_{1,n}), & \text{for } x \in \left[0, \frac{q}{p}\right), \\ -\frac{1}{\rho_{1,n}} A_{21}(\rho_{1,n}) y_2(x, \lambda_{2,n}), & \text{for } x \in \left(\frac{q}{p}, 1\right], \end{cases}$$

$$y_{2,n}\left(x\right) = \begin{cases} \frac{1}{\rho_{2,n}} A_{22}\left(\rho_{2,n}\right) y_{1}\left(x,\lambda_{2,n}\right), & \text{for } x \in \left[0,\frac{q}{p}\right), \\ -\frac{1}{\rho_{2,n}} A_{21}\left(\rho_{2,n}\right) y_{2}\left(x,\lambda_{2,n}\right), & \text{for } x \in \left(\frac{q}{p},1\right], \end{cases}$$

$$y_{3,n}\left(x\right) = \begin{cases} \frac{1}{\rho_{3,n}} A_{22}\left(\rho_{3,n}\right) y_{1}\left(x,\lambda_{3,n}\right), & \text{for } x \in \left[0,\frac{q}{p}\right), \\ -\frac{1}{\rho_{3,n}} A_{21}\left(\rho_{3,n}\right) y_{2}\left(x,\lambda_{3,n}\right), & \text{for } x \in \left(\frac{q}{p},1\right], \end{cases}$$

and

$$y_{l,n}(x) = \begin{cases} \frac{1}{\rho_{l,n}} A_{22}(\rho_{l,n}) y_1(x, \lambda_{l,n}), & \text{for } x \in \left[0, \frac{q}{p}\right), \\ -\frac{1}{\rho_{l,n}} A_{21}(\rho_{l,n}) y_2(x, \lambda_{l,n}), & \text{for } x \in \left(\frac{q}{p}, 1\right], \end{cases}$$

respectively. We prove asymptotic equality for the eigenfunction $y_{l,n}(x)$. Asymptotic equalities for eigenfunctions $y_{1,n}(x)$, $y_{2,n}(x)$ and $y_{3,n}(x)$ are proved analogously. Since,

$$\begin{array}{l} cosz = 1 + O\left(z^2\right), z \rightarrow 0, \\ sinz = z + O\left(z^3\right) = O(z), z \rightarrow 0, \end{array} \}$$

we have:

$$\frac{1}{\rho_{l,n}} A_{22} \left(\rho_{l,n} \right) = -\frac{1}{\rho_{l,n}} \rho_{l,n} \cos \frac{p-q}{p} \rho_{l,n} = -\cos \frac{p-q}{p} \left(p \pi n + \frac{p}{p-q} \pi \left(l-3 \right) + \frac{1}{m \left(p-q \right) \pi n} + O\left(\frac{1}{n^2} \right) \right) = -\cos \left(\left(p-q \right) \pi n + \left(l-3 \right) \pi + \frac{1}{p m \pi n} + O\left(\frac{1}{n^2} \right) \right) = (-1)^{(p-q)n + (l-2) + 1} \cos \left(O\left(\frac{1}{n} \right) \right) = (-1)^{(p-q)n + l-1} + O\left(\frac{1}{n^2} \right),$$

we have

$$y_1(x, \lambda_{l,n}) = \sin \rho_{l,n} x.$$

Finally, for
$$x \in \left[0, \frac{q}{p}\right)$$

$$y_{1}(x,\lambda_{l,n}) = \left((-1)^{(p-q)n+l-1} + O\left(\frac{1}{n^{2}}\right) \right) \left(\sin\left(p\pi n + \frac{p}{p-q}\pi(l-3)\right) x + O\left(\frac{1}{n}\right) \right) =$$

$$= \left((-1)^{(p-q)n+l-1} + O\left(\frac{1}{n^{3}}\right) \right) \sin\left(p\pi n + \frac{p}{p-q}\pi(l-3)\right) x + O\left(\frac{1}{n}\right).$$

Now, let $x \in \left[\frac{q}{p}, 1\right)$.

$$\begin{split} -\frac{1}{\rho_{l,n}}A_{21}\left(\rho_{l,n}\right) &= -\cos\frac{q}{p}\left(p\pi n + \frac{p}{p-q}\pi\left(l-3\right) + \frac{1}{m\left(p-q\right)\pi n} + O\left(\frac{1}{n^2}\right)\right) + \\ &+ \left(p\pi n + \frac{p}{p-q}\pi\left(l-3\right) + \frac{1}{m\left(p-q\right)\pi n} + O\left(\frac{1}{n^2}\right)\right)m \times \\ &\times \sin\frac{q}{p}\left(p\pi n + \frac{p}{p-q}\pi\left(l-3\right) + \frac{1}{m\left(p-q\right)\pi n} + O\left(\frac{1}{n^2}\right)\right) = \\ &= (-1)^{qn+1}\cos\left(\frac{q}{p-q}\pi\left(l-3\right) + O\left(\frac{1}{n}\right)\right) + (-1)^{qn}m\left(p\pi n + \frac{p}{p-q}\pi\left(l-3\right) + \frac{1}{m\left(p-q\right)\pi n} + O\left(\frac{1}{n^2}\right)\right)\sin\left(\frac{q}{p-q}\pi\left(l-3\right) + O\left(\frac{1}{n}\right)\right) = \\ &= (-1)^{qn+1}\cos\left(\frac{q}{p-q}\pi\left(l-3\right)\right) + \left(-1\right)^{qn}m\left(p\pi n + \frac{p}{p-q}\pi\left(l-3\right)\right)\sin\left(\frac{q}{p-q}\pi\left(l-3\right)\right) + O\left(\frac{1}{n^2}\right). \end{split}$$

Hence, it was shown that

$$y_{2}\left(x,\lambda_{l,n}\right) = \left(-1\right)^{qn} \left(-\cos\left(\frac{q}{p-q}\pi\left(l-3\right)\right) + \\ + m\left(p\pi n + \frac{p}{p-q}\pi\left(l-3\right)\right)\sin\left(\frac{q}{p-q}\pi\left(l-3\right)\right) + \\ + O\left(\frac{1}{n^{2}}\right)\sin\left(p\pi n + \frac{p}{p-q}\pi\left(l-3\right)\right)\left(x-1\right) + O\left(\frac{1}{n}\right), \quad x \in \left(\frac{p}{q}, 1\right].$$

Theorem is proved.

References

- 1. Gasymov T.B., Huseynli A.A. Asymptotics of eigenvalues and eigenfunctions of a discontinuous boundary value problem. *Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb.*, 2011, **35**, pp. 21-32.
- 2. Gasymov T.B., Maharramova G.V., Mammadova N.G. Spectral properties of a problem of vibrations of a loaded string in Lebesgue spaces. *Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Mathematics*, 2018, **38** (1), pp. 62-68.
- 3. Gasymov T.B., Mammadova Sh.J. On convergence of spectral expansions for one discontinuous problem with spectral parameter in the boundary condition. *Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci.*, 2006, **26** (4), pp. 103-116.