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1 Introduction

In recent years, the remarkable concept of hypergeometric identities sits at the intersec-
tion of diverse studies such as exact results in supersymmetric gauge theories [1-14] and
their mathematical structures interacting with various fields in mathematics, see, e.g., [15—
18], star-triangle relation (Yang-Baxter equation) [19-28] or star-star relation [29-32] for
spin lattice models, knot theory [33], pentagon identities [33-41], Bailey pairs [23, 42-45],
quantum algebras [28, 46-48], etc.

In this work, we consider certain three-dimensional N' = 2 supersymmetric dualities
on Sg /Z,. These dualities have been studied via the gauge/YBE correspondence, which
connects dualities with integrable models in statistical models, see for a comprehensive
review [49, 50].

Here we consider three-dimensional SU(2) gauge theory with six flavors S} /Z,. The
corresponding star-triangle relation for this theory was constructed in [24]. The reduction of



the gauge symmetry to U(1) via the gauge symmetry breaking gives another solution to the
star-triangle relation which is realized as the generalized Faddeev-Volkov model [25, 28],
since the r = 1 case gives the Faddeev-Volkov model [51, 52] corresponding to N = 2
supersymmetric dual theories on S [53]. The star-star relations [54] of these two models
are constructed, and for the factorized interaction-round-a-face (IRF) spin models, IRF-
type YBE are presented in [31, 32]. The integral identity obtained by supersymmetric
duality with the gauge group U(1) can also be written as a pentagon identity [28].

We present new Bailey pairs for the hyperbolic hypergeometric integral identities. The
construction of Bailey pairs for the star-triangle relation leads to acquiring the vertex-type!
YBE via the Coxeter relations [23]. Bailey pairs for the star-star relations and the pentagon
identity mentioned above are also constructed.

The organization of the rest of this paper is as follows. In section 2, we briefly recall
the mathematical tools and introduce integral identities resulting from the equality of
the partition functions of N’ = 2 supersymmetric gauge theories on Sl‘? /Z,. In section 3,
we present the star-triangle relations, the star-star relations, and the pentagon identities
obtained via the supersymmetric dualities. In section 4, we construct Bailey pairs for each
integral identity considered in previous sections. In section 5, we conclude our results and
present some further studies. The appendix consists of the construction of the Bailey pair

for the star-triangle relation.

2 Seiberg dualities on S} /Z,

In this section, we consider Seiberg dualities [55] in three-dimensional AN/ = 2 theories [56,

57]. One of the evidences? for dualities is the equality of partition functions.?

The three-dimensional N' = 2 partition functions on the squashed lens space Sg’ /Ly
have been computed via dimensional reduction of the four-dimensional lens superconformal
index [2, 7, 26] and via the supersymmetric localization technique [3, 4]. Such theories have
been studied in [5, 24, 28, 31, 32].

2.1 3d SU(2) duality

Our starting point is a three-dimensional ' = 2 SU(2) gauge theory with six fundamentals
and six anti-fundamentals. The confined dual theory consists of only fifteen chiral multi-
plets in the totally antisymmetric tensor representation of the flavor group. The equality
of the partition functions can be written as an integral identity in terms of hyperbolic

In the vertex-type models, the spins (continuous and discrete) are located at the edges, and the inter-
actions of the spins are via vertices.

2The equality of the superconformal indices is also evidence for duality, see e.g. [12, 36, 38, 58].

3Supersymmetric partition functions are studied on sphere (e.g. [59]), squashed sphere (e.g. [13, 14, 60]),
and squashed lens space (e.g. [2-4]).



hypergeometric functions,*

[7"/ 2]

/ 151 7@ (=i(ai + 2) —iwi (ui + y); —iwrr, —iw)
Y@ (£2iz + 2w y; —iwiT, —iw)
Y@ (—i(a; + 2) — dwa(r — (u; £ y)); —iwar, —iw) dz
72 (£2iz — iws(r £ 2y); —iwar, —iw) 2ry/—wiws (2.1)

= I +®(—ia; + aj) — iwr (u; + uj); —iwnr, —iw)
1<i<j<6

x 7D (—i(a; + a;) — iwa(r — (ui + uy)); —iwar, —iw)

with the balancing conditions® are Y% ;a; = w and 3.9, u; = 0, where we introduced
w = wi + ws. Also, €(0) = €([r/2]) = 1 and €(y) = 2 otherwise. Here the function
7@ (z; w1, ws) is the so-called hyperbolic gamma function® [68-70] which is the main tool
in this study. One of the several representations’ of this special function is the following®

o dz [ sinhx(2z —w; — w2) 2z — w1 —wg])
@) (2; = — [ = — 2.2
77 w1, w2) = exp ( /0 x [2 sinh (zw1) sinh (zws) 2rwwo ’ (2.2)

where Re(w;), Re(wz) > 0 and Re(w; +w2) > Re(z) > 0. We will mainly use the reflection
property of the hyperbolic gamma function

7(2)(z;w1,w2)7(2)(w1 +ws — zywi,wy) =1, (2.3)
and the following shorthand notation
Y (2301, ws) = Y (2501, w2) 7P (— 25001, w2) (2.4)

Note that the case r = 1 (see, e.g., [69]) of the integral identity (2.1) corresponds to
the duality of supersymmetric gauge theories on Sg) .

4For the integral identity written in terms of the improved double sine function, see, e.g., [24].
SWhen the balancing condition is taken 2?21

factor e 2 ™" (M=D(Em=1) o1 the left-hand side of the integral identity (2.1), seem [24].
®Different versions of the hyperbolic gamma function can be seen as the double sine function [61, 62],

u; = mr where m is an integer, there should be a sign

the non-compact quantum dilogarithm [62-66], the modified g-gamma function [67], etc.
"For various integral representations, see, e.g. [71, 72] and one can also introduce the infinite product
representation

—2mi &

%32,2(2%017“12) ( “2 §; q)

7(2)(z;w17w2) —e e P
(e 7%15q)

)

where parameters are § = e2™*“1/%2 and q = e~ 2"*2/“1 and the Bernoulli polynomial is

22 — z(w1 + w2) N wi + 3wiws + wi

By a(zwi,w2) =
w1z 6UJ1WQ

80ne can list many areas of study for this function, but we mention fewer examples from the areas
of mathematical and theoretical physics such as knot theory [73—76] supersymmetric gauge theory [77]
integrable models of statistical mechanics [51, 52| special functions [69].



2.2 3d U(1) duality

One obtains the following integral identity via breaking the gauge symmetry [28] (see
also [19, 25]) from SU(2) to U(1) in the duality (2.1)

[r/2] 0 B
Z e(y)e%c/ HW(Q)(—i(ai —z) —iwq (u; — y); —iwir, —iw)
y=0 =1

)y (—ia; — 2) — iwa(r — (u; — y)); —iwar, —iw)

)y B (—i(b; + z) — iw1 (v; + y); —iwrT, —iw)

2)(—i (b, i — (vs T —iw)
XY (—i(b; + z) — dwa(r — (v; +y)); —iwer, ZW)T\/TM

3
= H 7 (=i(a; + bj) — w1 (u; + v5); —iwir, —iw)

ij=1

xy @ (ia; + by) — iwa(r — (w; + v5)); —iwar, —iw)) ,

where the balancing conditions are Zf’zl a; +b; = w and Z?ZI u; + v; = 0 and the sign
factor is C = —2y + Zg’zl(ui —v;). It is possible to shift the discrete parameters u; and v;
and obtain a new balancing condition 325 ; u; +v; = . In this case C' = 0 in (2.5).

3 Integrability conditions and the basic 2-3 Pachner move

3.1 Star-triangle relation

In the transfer matrix method [78] for Ising-type models, it is sufficient to write a star-
triangle relation to obtain the integrability property of the lattice spin model. Here we
are interested in Ising-like models with discrete m; and continuous z; spin variables. We
denote the discrete and continuous spins together in the form of o; := (x;, m;).

The Boltzmann weights of the models discussed here have the reflection property
W(0s,05) = W(oj,0:) and the crossing symmetry W, a,(0i,05) = Wy_q, s—a, (04, 05),
which means that one can write vertical interactions in terms of horizontal interactions.
Hence, we can write the star-triangle relation as the following

Z/dﬂfo S(00) Way,a1(01,00)Wan,a,(02,00)Was,as (03, 00)

mo (3.1)
=R Wn—oq,ﬂ—&l (0-17 JQ)Wn—az,ﬁ—&Q (0-17 0-3)W77—04375—543 (0-27 03) ;

where the constraints on the spectral parameters are aj + ag + ag = ) (note that these are

continuous and in our cases 77 = —%) and @1 + &2 + &3 = [ (note that these are discrete

and in our cases 5 = 0) with crossing parameters n and 3. The functions S(op) and R are

the self-interaction contribution and the spin-independent functions, respectively.
The identity (2.1) turns to the star-triangle relation” when new variables

a; = —a; + I, Qi3 = —04 — Ti,

up = =0 + Yi 5 Uiy3 = =04 = Yi,

In [24], it is firstly appeared as normalized and with only continuous spectral parameters.



are introduced. The Boltzmann weights can be written as
Wa,a: (i, 75, Y3, yj) =
VD (—i(—oy 4z £ 25) — w1 (=6 + yi £ y;); —iwr T, —iw)
x v (—i(—a; 4 z; + xj) —iwa(r — (—&; + yi £ yj)); —iwar, —iw) (3.3)
x YD (—i(—a; —x; + xj) —iwi(—0; — yi £ yj); —iwir, —iw)
x YD (—i(—a; — x; + xj) —iwa(r — (=& — y; £ y;)); —iwer, —iw) .

The spin-independent weight function R depending only on spectral parameters is the
same for both models

3
R = [[7?(2iq; + 2iwidy; —iwir, —iw)y? (2ia; — iws(r + 265); —iwar, —iw) . (3.4)
j=1

However, a self-interaction contribution is not trivial in the SU(2) model (the iden-
tity (2.1)) and has the following form

S(on) = i 5)
0 @) (£2iu £ 2iwin; —iwir, —iw)y @ (£2iu — iws (1 & 2n); —iwor, —iw) '

where €(n) disappears if one changes boundaries of the summation as in [28] (see appendix
in [26]).
The same procedure is applied to (2.5)!° by re-defining variables as

az‘z—Oji—i—ﬂCz‘, biz—(iéi—xz‘, (3.6)
U = —0; + Yi Vi = —Q — Yi,
then, the Boltzmann weights become

Wai,&i (;Uiv .’I;j, y”ﬁ y]) =
e WAy O (i~ + @y — 1) — dwr(— @ + yi — yy); —iwrT, —iw)
x @) (—i(—
X YO (—i(—q; — x4 1) —dwi (—&i — yi + y5); —iwrT, —iw)
— (_

x v (=i

i(—a + 2y — x5) —iwa(r — (=& + yi — yj)); —iwar, —iw) (3.7)

i — x; + ) —iwa(r — (=& — yi +yj5)); —iwar, —iw),

where the exponent term vanishes if we change the balancing condition mentioned in (2.5).
This model has no self-interaction term and the spin-independent function is the same
as (3.4).

3.2 Star-star relation

One can obtain another fundamental integrability condition in statistical mechanics which
is the star-star relation!! [54] in the existence of star-triangle relation. In some lattice spin

'0This star-triangle relation for generalized Faddeev-Volkov model appeared in [25, 28] has only continuous
spectral parameters.

"Eor the star-star relation in the context of supersymmetric partition functions for dualities, and sym-
metries of beta hypergeometric integrals, see [30, 79, 80].



models, Boltzmann weights satisfy the star-star relation but not the star-triangle relation
see e.g. [54, 81, 82].

The star-star relation has the following form

Z / dmOWal,&l (017 UO) Wag,dg (007 02) Wag,&3 (037 UO) Wa4,6¢4 (007 04)
mo

_ Wanai—as28-81-a5(91,02)Wan—ay —as.28-a1 a4 (91, 94) (3.8)
W277—a3—044,5—6¢3—6¢4 (047 0-3)W27]—042—a3,25—d2—&3 (027 03) '

<3 / dzoWes 4y (50, 01) Wag.as (02, 00) Wer 4 (00, 03) Way s (04, 90)
mo

where the spectral parameters satisfy the conditions Z?Zl a; = 2n and Zf 16 =20

Using the hyperbolic hypergeometric integral identity (2.1) (the star-triangle relation)
one can obtain the following integral identity [32] presented as a star-star relation

/ [T, Y (—ila; £ 2) — iwr (u; £ y); —iwir, —iw)
)(:|:2’LZ + w1 2y; —iw T, —iw)
" 7(2)(—z(ai + 2) —iws(r — (u; £ y)); —twor, —iw)  dz
Y@ (£2iz — dwo(r £ 2y); —iwar, —iw) rv/—wiws
~ hi<icj<a Y (=i(a; + aj) — iwr (u; + uy); —iwir, —iw)

H5<z<j<87 ) (—ia; + aj) — iwy (@ + G5); —iwrr, —iw)

(@
o [Ti<icj<a ’7(2)( i(a; + aj) —iwa(r — (u; + uyj));
)

(3.9)
—iwor, —iw)
[Ts<icjcs Y@ (—ia: + aj) iws(r — (G + j)); —iwar, —iw)
[7“/2] / HZ 1 fy —i(a; £ x) — w1 (@; £m); —iwir, —iw)
7(2)(i2zx + w1 2m; —iwy T, —iw)
y 7(2)(—1(% + ) —iwe(r — (4; £ m)); —iwar, —iw) dx
() (£2iz — iws(r & 2m); —iwsr, —iw) rv/—wiwy’
with the balancing conditions -5_; a; = 2w and 32%_, u; = 0, and parameters are identified
as
a;=a;+s, w=u;+p, if 1=1,2,34
P R (3.10)
di:ai_SJ ﬂ,lzuz—p, lf 125,67778,

where

s=3 (v o) =3 (- )

2
Y oy (3.11)



The following identity is the star-star relation [31] of the generalized Faddeev-Volkov

model

X /P (=i(b; + 2) — iwa(r — (v; + y)); —iwsr, —iw)

o 4
e(y) / T2 (—i(a; — 2) — iwi (u; — y); —iwir, —ic)
=1

x YD (—i(a; — 2) —iwa (1 — (u; — y)); —iwar, —iw)

X 7(2)(—i(bi + 2) —iwi (v + y); —iwir, —iw)

dz
Ty —WiWw2

_ e%i Z?:l(uifvi) ?,j:l 7(2)(—2' a; + bj) — w1 (u, + Uj); —iw1T, —iw)

us s

o5 2isa(@i=0) 7 s v (—i(d; + bi) — dwy (d; + 6;); —iwr, —iw)
H?,j:l Y@ (—i(a; + bj) — iwa(r — (ui + v;)); —iwar, —iw)
H;l,j:?) Y@ (—i(d; + bi)

(3.12)

—dwe(r — (U; + 0;)); —iwar, —iw)

)
, - , , dx
) — dwa(r — (0; +m)); —iwar, _lw)r\/ﬁ ,

where the balancing conditions are Zf}:l a; + b; = 2w and 23:1 u; +v; = 0, and we used

the following choice of parameters,

where

di=ai+s, bj=b+s, G=u+p U=uvi+p, if i=12, (3.13)
ai=a;—s, bj=bi—s, di=u;—p, U =v;—p, if i=234, '
1 1
s=—(w+ar+ax+b+b)==(w—as—as—bs—by),
2 2 3.14
p:—i(ul—i—uQ—i—vl—l—vg):§(U3+U4+v3+v4).

3.3 The pentagon identity

Pentagon relation [34, 35] has a meaning of the 2-3 Pachner move [83] for triangulated

three-dimensional manifolds and can be formally written as

BBB = BB. (3.15)

Here we write the equation (2.5) as an integral pentagon identity [28]. It can be

interpreted as a topological invariant of corresponding 3-manifold via 3d-3d correspon-

dence [84, 85] building bridges between three dimensional N/ = 2 supersymmetric gauge

theories and triangulated 3-manifolds.



Then the hyperbolic hypergeometric solution to the pentagon identity can be obtained
by the following definition

Y@ (—izy — dwyug; —iwrr, —iw)y P (—izg — dwe(r — up); —iwsr, —iw))
Y@ (=i(21 + 22) — dwr (ug + ug); —iwir, —iw))

B(z1,u1; 22, u2) =

Y@ (—izy — dwyug; —iwyr, —iw)y P (—izg — dwa (1 — ug); —iwser, —iw)

V@) (—i(21 + 22) — iwa(r — uy — ug); —iwsr, —iw) ’

(3.16)
and the equation (2.5) turns to the integral pentagon identity
1 lr/2) oo 3
T\/Tmygoe 2 _Oodzi:r[lB(ai—z,ui—y;bi+z,vi+y) (3.17)

= B(aj + b2, u1 + vo; ag + bz, ug + v3)B(ar + b3, us + v3;as + by, uz + v1),

where the sign factor and the balancing conditions are the same as in (2.5).

4 Bailey pairs

Influenced by Rogers’ work in proving combinatorial identities which are now known as
the Rogers-Ramanujan identities, W.N. Bailey introduced the following lemma to abstract
the notions underlying the proofs [86],

Lemma 4.1. If the series {a}n>0, {B}n>0, {0}n>0, {V}n>0, {u}n>0 and {v},>0 satisfy

n
/Bn = § Oy Up—rUntr ,

r=0
and
0o
Tn = Z 5rurfnvr+n s
r=n
then

) 0
Z QnYn = Z Bn(sn .

The proof relies on a simple rearrangement of the series and is trivial as noted by
Bailey, hence will be omitted. Theorem 4.1 is commonly referred to as the Bailey lemma
and for specific choices of the mentioned series, various identities in mathematics can be
derived [87-90].

Following Bailey’s work, Andrews [91] formulated a method of deriving infinitely many
identities from a known one iteratively. Given two sequences of functions {a}; and {5}
for k € {0,...,n}, with the relation

Bk:Fk(a07"‘7an)7 (41)



one can construct the functions

B =Gi(By B0V i€ Zso, (4.2)
o) = H, (ag;'—n, o ag;‘—n) , i € Zo, (4.3)

that also satisfy (4.1) for every i € Zsg. Then the functions {a®};, {3}, are called a
Bailey pair, and they form a chain of infinite length. This notion can be generalized from
chains to lattices and higher-dimensional chains, see, e.g. [92-94]. Apart from their purely
mathematical implications, Bailey pairs are also used in superconformal field theories [95,
96] and exactly solvable models of statistical mechanics. The latter will be the focus of
our interest in the next sections. For a detailed study of the history of the Bailey lemma,

see [97].

4.1 Star-triangle relation

Definition 4.1. The functions a(x,m;t,p) and B(z,m;t,p), © € C, m € Z form an
integral Bailey pair with respect to parameters t € C and p € Z if the following relation is
satisfied,

B(z,m;t,p) = M(tap)z,m;x,ja(xaj;tap) s (4'4)
where M(t,p)zmz; s an integral-sum operator that integrates and sums over the contin-

uous variable x € C and the discrete variable j € Z of a(x, j;t,p), respectively.

Suppose we have another operator D(s,q;y,!;x, k) of continuous s,y,z € C and dis-
crete variables ¢, [, k € Z, such that it satisfies the relation

D(s,q;y,l;2,k)D(=s, —q;y,l;2,k) = 1 (4.5)

that we will refer to as the reflection relation, and D(0,0;y,l;z,k) = 1. Moreover, we
assume that the operators M and D satisfy the “star-triangle relation”, given as

M(S, Q)w,k;z,mD(S + t, q+Dp;y, l; 2, m)M(tvp)z,m;x,j

, (4.6)
=D(t,p;y, w, k)M (s +t,q + P)w ki D(s, ¢y, 152, 7).

Utilizing M and D operators, the next lemma addresses the question of forming infinitely
many Bailey pairs after finding a particular one.

Lemma 4.2 (Bailey Lemma). Suppose a(x, m;t,p) and 5(x,m;t,p) form an integral Bai-
ley pair with respect tot € C and p € Z. Then, the sequences of functions o' (z, k; t+s, p+q)
and ' (x, kit + s,p+q), k € Z, defined by

o (z,k;t+5,p+q) = D(s,q;y, 12, k)a(x, k;t,p) (4.7)
5/(3:7 k,t—i—s,p—i—q) = D(_tv _p;yvl;xa k)M(‘g?Q)z,k;z,mD(S+tap+q;yvl;Z7m)6(z7m;t7p) 3
(4.8)

form a Bailey pair with respect to the new parameters t+s and p+q where s,y € C, q,l € Z
are arbitrary and the operator D(s,q;y,l;x, k) is described as above.



Proof. The proof follows easily from the definitions. We substitute o/(x, j;t+s,p+¢q) and
B'(z,k;t + s,p+ q) into the relation defining a Bailey pair. We want to show,

B(w,k;t+s,p4+q) = M(t+ 8,0+ Quka;o (T, 55+ 5,0+ q), (4.9)
D(—t,—p;y, w, k)M(S, Q) wkzmD(s + t,p+ q;y, 1; 2,m)B(z, m; t,p) (4.10)
= M(S + t>p + Q)w,k;x,jD(87 q;Y, l; :L‘,j)Oé(l‘,j; tap) .

Using the reflection relation displayed above for D operators, the problem reduces to the
star-triangle relation,

M(s’ q)ka5zva<S + t’ q + b Y, la 2, m)M(tap)Z,m@J‘ (4 11)
= D(t,p;y, Lw, k)M (s +t,q + D)wra,; D(s, Gy 2, §)

which we have assumed to be true for M and D operators. ]

We will be constructing such M and D operators satisfying the star-triangle relation in
virtue of the integral identities (2.1) on SU(2) and (2.5) on U(1) in the following sections to
construct Bailey pairs. We should mention that there is no systematic way of constructing
Bailey pairs.

4.1.1 SU(2) gauge symmetry
Let us first construct the operators that will be used to satisfy (4.6). We can basically
build the operators via the characteristic properties of hypergeometric functions.
D(t,p;y, l;w, k) =7 (—i(t+ytw-+wp) —iw (pEk+ro+1); —iwyr, —iw)
x v (—i(t—ytw+w(l—p))—iw (pk+r(1—0)—1); —iw T, —iw)
x v (—i(t—ytw—+wp)—iws (r—(pEtk+ro+1)); —iwsr, —iw)
x ) (—i(t—ytw+w(l—p))—iws(r—(ptk+r(1—0)—1)); —iwor, —iw).

(4.12)
Obviously, one can see that
D(t,p;y, w, k)D(—=t, —p;y, w, k) =1, (4.13)
and
D(0,0;y,l;w, k) =1. (4.14)
Now we can construct the integral sum operator as follows
1 M2 e
M(t,p)ema; = =+ Z / 7(2)(—1'(—15 +ztx)—iw(m—p+tj);—iwr, —iw)
C(t,p) = /oo
x YD (—i(—t + 2z + &) — iwa(r — (m — p £ §)); —iwar, —iw)
x YD (—i(=t — 2 £ &) — w1 (—m — p £ j); —iwrr, —iw)
dA
x YD (—i(=t — 2 £ &) — iw,(r — (—m — p £ §)); —iwsr, _iw)%[ % ,
(4.15)
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where the measure of this integral operator is written as the following

€(j)dz
d;x| = , 4.16
(dja v @) (£2iz £ 2iw; j; —iwr, —iw) YD (£2iz — iws(r & 27); —iwsr, —iw) (4.16)
and the contribution of the spin-independent function is
C(t,p :7(2) —i(—2t) — iw1(—2p); —iwyr, —iw
(t,p) (—i(—2t) (—2p) ) (4.17)

x 4D (—i(=2t) —iwa(r — (=2p)); —iwar, —iw) .

Using these operators and the identity (4.6), one can find the parameters as follows

aip = —stw, a3 =s+t+y-+wp,
as=s+t—y+w(l—p), ase=—-tLx,

y+w(l—p) (4.18)
uip =—q+xk, uz=q+p+Il+ro,

us=q+p—Il+r(l—o), use=—ptm,
4.1.2 U(1) gauge symmetry

For U(1) gauge symmetry we need to redefine the operators such that

D(t,p;y, l;w, k) =7 (—i(t+y+w+wp) —iw (p+k+ro—+1); —iw T, —iw)
x @ (—i(t—y—w—+w(l—p))—iwi (p—k+7r(1—0)—1); —iwi T, —iw)
XA (—i(t—y+w+wp) —iws (r— (p+k+ro-+1)); —iwsr, —iw)
x @ (—i(t—y—w+w(l—p))—iws(r— (p—k+r(1—0)—=1)); —iwyr, —iw) .

(4.19)
Obviously, one can again catch the reflection property of the operator such that
D(t,p;y, w, k)D(—t, —p;y, w, k) =1, (4.20)
and similarly
D(0,0;y,l;w, k) =1. (4.21)

Also for the integral-sum operator, we need a slight change such that

[r/2]
1 o0
M(t,p)zmie; = > e)) / YD (—i(—t + 2z + 2) — w1 (m — p + J); —iwir, —iw)

C(t,p) j=0 —00
x YD (—i(—t 4 2 4 x) — iwa(r — (M — p + 7)); —iwar, —iw)
x YD (—i(—t — 2 — x) — iwy (—m — p — §); —iwir, —iw)
x v (—i(—t — 2 — &) — iwp(r — (=m — p — §)); —iwar, —iw)
y dx

2r/—wwa

(4.22)

where C(t,p) has the same definition in (4.17).
As we have demonstrated in the previous section, we can re-group these multipliers
at the right-hand side of the U(1) gauge symmetry integral identity. By using the same
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methodology that was used to re-arrange the parameters of the SU(2) gauge symmetry
integral identity we can write the parameters of the U(1) gauge symmetry integral identity
as follows

a;,bp = —stw, ag=s+t+y+wp,

bo=s4+t—y+w(l—p), az,bs3=—-t+zx,
2 Yy ( P) 3,03 (4‘23)
up, vy = —qtk, ug=q+p+l+ro,

vo=q+p—I1l+r(l—0), ug,v3=-ptm.

4.2 Star-star relation

We will now be discussing Bailey pairs generated from an initial explicit pair. Noting
that M (t,p)zm:z; is an integral-sum operator acting on a sequence of functions f;(x), the
relation (4.4) suggests to start with a(z, j;t,p) = §;nd(x —u) where n € Z, u € C are new
parameters.

Then, 3(z,m;t,p) of the following form

/B(zv m; tap) = M(tap)z,m,w,]éjnd(x - U)

(4.24)
= M(t7p; Z7m; u?”) b

forms a Bailey pair with a(x, j;¢,p). From here, we generate new pairs with the Bailey

lemma,
oz, kit+s;p4+q) = D(s,q;y, Lz, k), ks t,p) (4.25)
Bz, kit+s:p+q) = D(—t,—p;y, L2, k) M(S,Q) 2 kizmD(s+t, 0+ ¢y, 1; 2,m) (2, m; t,p) .

(4.26)

The relation (4.4) does not give us a particularly interesting result as it yields the star-
triangle relation, which we have used to prove the Bailey lemma

M(s,q)wkzmD(s + 1,0+ q;y, s 2, m)M(t, p; 2z, m; u,n)

4.27
=D(t,p;y, w, k)M (s +t,p+ q;w, k;u,n)D(s,q;y, 1, u,n). (420)

An immediate consequence of (4.27) is the functions @(z,m;s,q) and B(w, k; s, q) defined
by

a(z,m;s,q) = D(s+t,p+ q;y,l;2,m)M(t,p; z,m;u,n), (4.28)
B(w, ks s,q) = D(t,p;y, l;w, k)M (s +t,p + g;w, k;u,n)D(s, ¢y, 1, u, ), (4.29)

form a Bailey pair with respect to parameters s € C, ¢ € Z. Applying the lemma once
again, we find

&' (z,m;s+c,q+d) = D(c,d;a,b;2,m)D(s+t,p+q;y,1; z,m)M(t,p; z,m;u,n),  (4.30)

B'(m,j;s—i—c,q—i—d) = D(_87 _q;a7b;x7j)M(Cv d)w,j;w,kD(S+cvq+d;a7b;wak)

4.31
X D(t,p;y, lw, k)M (s+t,p+q;w, k;u,n)D(s,q;y,1,u,n), (431)
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where a,c € C and b,d € Z are arbitrary. The relation
B’(m,j; ste,qg+d) =M(s+c,q+d)sjmd (z,m;s+c,q+d), (4.32)
yields a non-trivial integral identity

M(c,d)z,jwrD(s + ¢, q + d;sa,byw, k)D(t, p;y, w, k)M (s + t,p + ¢ w, k;u,n)
= D(_Sa —q5Y, lv u, TL)D(S, q;a, b7 xu?)
X M(s+c,q+d)zjmD(c,dya,b;z,m)D(s +t,p+ q;y,1; 2, m)M(t,p; z,m;u,n),
(4.33)

which can be recognized as the star-star relation.

4.2.1 SU(2) gauge symmetry

Now we need to construct this identity as an integral form. For constructing bailey pairs’
operators, we will just write the same form of the operators that were used for SU(2) gauge
symmetry. However, we have one more operator

An

C(t,p)
X /P (—i(—t 4 2z £ u) — iws(r — (m — p £ n)); —iwar, —iw) (4.34)

M(t,p; z,m;u,n) = 7(2)(—i(—t +ztu) —iwi(m—p=En); —iwr, —iw)

x YD (—i(—t — 2 £ u) — iwi (—m — p £ n); —iwir, —iw)

x P (—i(—t — 2 £ u) — iwe(r — (—m — p £ n)); —iwar, —iw),

where
v €n) 1
" 2ry/—wiws Y (£2iu £ 2w n; —iwir, —iw)y @ (£2iu — iws(r £ 2n); —iwar, —iw)
(4.35)
and C(t,p) is still (4.17).
Then one can write down the parameters as follows:
ajp=—ctux, az=8s+c+a+wp, ag=s+c—a+w(l—p),
as=t+y+wp, ag=t—y+wl—p), arg=—(s+t)*u, (4.36)
uo=—-d=£j, us=q+d+b+ro, ug=q+d—-b+r(l—o), '

us=p+l+ro, ug=p—Il+r(l-0), urg=—(p+q) £n.

For the right-hand side of the integral identity, we can write the simple equality between
the parameters as follows,
a; = a; — S, U; = Uj —q, if i= 1,2,3,4,

(4.37)
di:ai+5, az:uz+Qa if i:5’6’778'

4.2.2 U(1) gauge symmetry

For this part, all we need to do is just re-use the operators that were designed to reach the
Bailey pair reconstruction of star-triangle form for the U(1) gauge symmetry.
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Again, we need the following operator for the construction
1 e(n)
C(t7p) Ty —WwiWw?2

M(t,p;z,m;x,j) =

X /P (—i(—t 4 2z + x) — iwi (m — p + j); —iwrr, —iw)
X YD (—i(=t + 2+ ) — iwa(r — (m — p+ J)); —iwar, —iw) (4.38)
X /P (—i(—t — 2 — &) —iwi (—m — p — ); —iwr T, —iw)
X B (—i(—t — 2 — x) —iwp(r — (=m — p — §)); —iwsr, —iw)
where C(t,p) still lives as in (4.17).
Then one can write down the parameters as follows:
al,bp = —c+x, aa=8+c+a+wp, bp=s+c—a+w(l—p),
as=t+y+wp, bs3=t—y+w(l—p), ag,by=—(s+t)tu, (4.39)
uy,v1 = —d=%7, up=q+d+b+ro, vy=q+d—-b+r(l—o0),

u3=p+l+ro, vs=p—Il+r(l—o), u,vi=—(p+q)*xn,

For the right-hand side of the integral identity, we can write the simple equality between
the parameters as follows:

C:Lz‘:az'—S, ?z‘:bi—S, @:Lz'zui—qa l:)izvz'—q, if 1::172> (4.40)
a; =a; +s, bj=b;+s, U =u+q, V;=v+gq, if i=34.

4.3 Pentagon identity

We will now consider a different definition of Bailey pairs and its relation to a pentagon
identity on U(1). The discussion will be a slight generalization of [33] (see also [45]) with
discrete parameters.

Definition 4.2. The functions a(z,n;t,p) and f(x,n;t, p) with variables x € C andn € Z
are said to form a pentagon Bailey pair with respect to parameters t € C and p € Z if the
following relation is satisfied

(o]
ﬁ(m,n;t,p):Z/ dzB(t+x—z,p+n—mjt—x+2z,p—n+m)a(z,m;t,p), (4.41)
m —00

where B(z1,u1; 22, uz) s defined as in (3.16).

Theorem 4.3. Suppose oz, m;t,p) and [(x,n;t,p) form a pentagon Bailey pair with
respect tot € C and p € Z. Then, the sequences of functions o/(z,m;t + s,p + q) and
B'(w,k;t+s,p+q), weC, keZ, defined by

o/ (z,m,t+s,p+q) =B(z+t+y,m+p+1;2s,2q)a(z,m;t,p), (4.42)
o0
B (w, k;t+s,p+q) :Z/ de B(s+w—z,q+k—n;y+z,l+n) (4.43)
n —00
xB(s+2t+y+w,q+2p+1l+k;s—w+x,q—k+n)s(z,n;t,p),

form a Bailey pair with respect to t + s and p + q, where y,s € C, l,q € Z.
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Proof. We need to show the relation defining 8'(w, k;t + s,p+ ¢q) and o/ (z,m,t + s,p+ q)
is satisfied,

oo
B (w, k;t+s,p+q) :Z/ dzB(t+s+w—z,p+q+k—mit+s—w+z,p+q—k+m)
m — o0
x o (z,m;t+s,p+q). (4.44)

Substituting (4.42) and (4.43) for o/(z,m,t+s,p+q) and '(w, k;t+s,p+q), we arrive at

o0
Z/ de B(s+w—x,p+k—nyy+z,1l+n)
n —00
XB(s+2t+y+w,q+2p+1l+kis—w+x,q—k+n)
o0
XZ/ dzB(t+z—z,p+n—m;t—x+ z,q—n+m)a(z,m;t,p) (4.45)
—00
" o0
:Z/ dzB(t+s+w—z,p+q+k—mit+s—w+z,p+q—k+m)
m —00
x B(z +t+y,m+p+1;2s,2q)a(z,m;t,p).

Rearrangement of some terms yields

Z/ dzoz(z,m;t,p)Z/ deB(s+w—z,p+k—njy+z,l+mn)

xB(s+2t+y+w,q+2p+1+k;s—w+z,9g—k+n)
xBt+z—z,p+n—mit—xz+z,qg—n+m)

o0
:Z/ dz a(z,m;t,p)B(t+s+w—z,p+q+k—mjt+s—w+z,p+qg—k+m)
m —0o0

XB(z+t+y,m+p+1;2s,2q).
(4.46)
With the choice of B(z1,u1; 22,u2) in (3.16), we see that (4.46) is indeed satisfied with the
following parametrization,

a1 = s+ w, b1:y7 u1:q+k‘, Ulzla
ay=w—2s+2t+vy), bo=s—w, upo=—29+2p+1), va=q—k, (4.47)
as =1+ z, bs=t—2, uz=p+m, U3 =p—m.

and we arrive at the pentagon relation (3.17). Hence, 8'(w, k;t + s,p+ q) and o' (z,m,t +
s,p + q) satisfy the Bailey lemma. ]

5 Conclusions

We have studied novel Bailey pairs constructed from the 3d N' = 2 dual supersymmetric
gauge theories on the lens space Sg’ /Z,. The equality of the supersymmetric partition
functions of the dual theories on the lens space leads to non-trivial hyperbolic hypergeo-
metric integral identities. The integral identities have previously been discussed in terms
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of lattice spin models (Ising-like and IRF-type) in statistical mechanics and pentagon iden-
tity as a 2 — 3 Pachner move [28, 31, 32, 41]. In this work, we have constructed Bailey
pairs that generate these integral identities. These Bailey pair constructions allow us to
study the vertex-type integrable models [23], knot invariants [33], supersymmetric quiver
gauge theories [43], etc. One can use the Bailey pair construction to generate integral
identities for supersymmetric dualities. One possible future direction is to examine other
supersymmetric IR dualities in this context.

In the context of integrable lattice spin models, we construct the Boltzmann weights
with two types of spectral parameters,'? and these discrete and continuous types of pa-
rameters are preserved in Bailey pair constructions. It would be interesting to see the
implications of this result.

One can obtain the rational beta integral identities, namely the equality of supersym-
metric gauge partition functions on S? by limiting » — oo in the integral identities for
dualities on S} /Z,, see [26, 100]. In this work, we constructed Bailey pairs for the integral
identities with the balancing conditions Zle u; = r and Z?:1 u; + v; = r. Since the limit
r — oo is problematic for the balancing conditions, it would be interesting to analyze the
limiting procedure in our cases.
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A Constructing the Bailey pair for the star-triangle relation

Let us construct the governing equation (4.6) for the star-triangle relation of the operators
and the required identity for the Bailey pairs. We take the following steps. First, we
replace the definitions of the operators on the left-hand side for a particular model. Then,
the specific change of variables makes the integral part of the specific identity. Before
obtaining the right side of (4.6), the integral identity allows us to calculate one of the
integrals on the left. Finally, we call back the old variables to write the right side in proper
operator form. One thing to be careful of is the spin-independent functions in the integral
operator. We will mention it again when it appears in the calculation.
Let’s use the following shorthand notations in the calculations

(2, g5 w1, we) = 7P (—iz — dwiy; —iwrr, —iw) Y (—iz — dwa(r — y); —iwar, —iw) , (A1)
where w = wy + w9 and
h(Ez, £y; w1, wa) = (2, ¥s w1, w2)yn(—2, —y; w1, w2) (A.2)
Recall that [d;z] is defined in (4.16).

2Tn the literature there are models with two rapidity parameters, see, e.g. [98, 99].
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Let us explicitly show how to equate the star-triangle equation (4.6). If one replaces
the definitions of the operators, then obtains the following at the left-hand side

M(S, @)w,k;z;mD(s +t,q +p;y, l; 2, m)M(t,D) 2 mie; =
/2 [r/2]

T

[d o [dm 2]
C'( C (t,p J:oe / 2ry/—wiws £ Z /Oo 2ry/—wiwa

)
XY(—s+w=xz,+k — gLt mywi,we) Yp(—s —w =+ z,—k — ¢ £ m;wi,wo) (A.3)
XY(s+t+ytz+wp,q+ptm+ro+lw,ws)
XYp(s+t—ytz+w(l—p)g+pEtm+r(l—o0)—1w,ws)
XYp(—t+ztxz,m—ptj)w,w) Wm(—t—zLtz,—m—p=Lj)w,w),

where C(t, p) = yp(—2t, —2p; w1, w2) in new notations as in (4.17).
One can rewrite equation (A.3) under the given re-parametrization

a1 = —s=+w, a3 =s+t+y+wp,
ag=s+t—y+w(l—p), asg=—-tLtx,
1 y+tw(l—p), asg (A1)
’LLLQZ—(]:&I{?, U3:q—|‘p+l+7’07
up=q+p—Il+r(l-o0), use=—-ptm.
Then, (A.3) becomes
r/ . o) [ . [r/2] 00 [dmz]
= € —_—
j;o (7) / 2r\/—w1w2 Z /oo 2r/—wiwa (A5)

H?:1 Yh(a; £ 2, u; £m;wr, wo)

X .
Yrlar + az, uy + uz;wi,w2)vh(as + as, us + ug; w1, wa2)

One can integrate with respect to z and sum on m by using the integral identity (2.1) and
the result is

_ [%? (j /°° [li<icj<en(ai + aj, u; + uj;wi, w2) [dpma] '
— —oo Yr(a1 + ag, u1 + ug; wi, wo)yn(as + ag, us + ug; w1, wa) 2r/—wiwo
(A.6)
If one replaces the parameters (A.4) with their values found before, it is easy to see
that (A.6) turns into

= D(t,piy, w, k)M (s +t,q + P)wka i D(s, a:y, L2, 5) - (A7)
This is the right-hand side of the star-triangle relation (4.6).
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