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The first order hyperbolic system of four equations on the semi-axis in the
case of equal numbers of incident and scattered waves are considered when
the velocities of the scattering waves are coincident. It is determined the
criteria for inverse scattering problem (the problem of finding the potential
with respect to scattering operator) in terms of transmission matrices in
two different boundary conditions. The uniqueness of the inverse scattering
problem is studied by utilizing it to Gelfand–Levitan–Marchenko type linear
integral equation.
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1. Introduction

There are many papers dealing with the inverse problems in wave propagation,
but only a few of them deal with the solution of the inverse problems for space
and time-dependent coefficients, [2, 9, 10]. Inverse scattering problem (ISP) for
the first-order hyperbolic system with the space and time depended potentials
were studied in [12] and references therein, where the ISP for a one-dimensional
hyperbolic system on the whole line was satisfactorily studied (see also [16]). But,
there are very few studies on the ISP on the half-line regarding the numbers of
incoming and outgoing waves.

Consider the first order hyperbolic system in the following form on the half-
line x ≥ 0 in the case of equal numbers of incoming and outgoing waves:{

σ1∂tψ1 − ∂xψ1 = Q11ψ1 +Q12ψ2

σ2∂tψ2 − ∂xψ2 = Q21ψ1 +Q22ψ2
, t ∈ R, (1.1)

where ψ1 = ψ1 (x, t) and ψ2 = ψ2 (x, t) are 2−dimensional vector functions,

σ1 = diag [ξ1, ξ2] , σ2 = diag [ξ3, ξ4]
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are diagonal matrices with ξ1 ≥ ξ2 > 0 > ξ3 ≥ ξ4, Qij = Qij(x, t), i, j = 1, 2
are 2×2 matrix functions with measurable complex-valued and square-integrable
entries.

The model problem which this type of system occurs can be found in paper [1]
which deals with the inverse problem for two-velocity dynamical system:

ρ∂2t u− ∂2xu+ V (x)u = 0

with constant diagonal matrix ρ = diag[ρ21, ρ
2
2], 0 < ρ1 < ρ2, and 2 × 2 matrix

potential

V = V (x) =

[
v11(x) v12(x)
v21(x) v22(x)

]
, x > 0.

This system becomes first order system (1.1) where σ1 = diag{ρ2, ρ1}, σ2 =
diag{−ρ1,−ρ2} and

Q11 =

[
0 v21(x)

a(t+ρ2x)

0 0

]
, Q12 =

[
0 v22(x)

a(t+ρ2x)

a(t− ρ1x) 0

]
,

Q21 =

[
0 v11(x)

a(t−ρ1x)
a(t+ ρ2x) 0

]
, Q22 =

[
0 v12(x)

a(t−ρ1x)
0 0

]
with a differentiable nonzero function a(s). From the physical point of view this
class of systems is selected by the property of two types of waves (channels), which
propagate with different velocities and interact with one another. As examples
of two-velocity dynamical systems we could mention the Timoshenko beam in
elasticity theory and cable lines in electrical engineering. Various properties of
this systems were studied in [11,14,15].

The scattering problem for the system (1.1) on the semi-axis is the problem of

finding the solution ψ(x, t) =

[
ψ1 (x, t)
ψ2 (x, t)

]
of the system (1.1) with known incident

wave and the boundary condition at x = 0

ψ1(0, t) = Hψ2(0, t), (1.2)

where H is the constant transmission matrix of order 2 with detH 6= 0.
The following situations are possible for the system (1.1) on the half-line:

1) Two incident and two scattered waves with different velocities (ξ1 > ξ2 >
0 > ξ3 > ξ4) : The ISP for this situation, under consideration of two
problems for the same system but different boundary conditions (1.2) with

H = I and H = E were studied in [4], where I =

[
1 0
0 1

]
and E =

[
0 1
1 0

]
.

The ISP for the first situation and some of its 2n generalization for the
special forms of potential but more general boundary conditions is studied
in [5].

2) Two incident and two scattered waves with same velocities (ξ1 = ξ2 > 0 >
ξ3 = ξ4): The second situation and its 2n-generalization are studied in [6]
under consideration of single scattering problem.
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3) Two incident waves with same velocities and two scattering waves with dif-
ferent velocities (ξ1 = ξ2 > 0 > ξ3 > ξ4): The ISP for this situation, under
consideration of two problems with the same system but different boundary
conditions were studied in [8].

4) Two incident waves with different velocities and two scattered waves with
same velocities (ξ1 > ξ2 > 0 > ξ3 = ξ4): The conditionally ISP for this
situation, under consideration of two problems with the same system but
different boundary conditions (1.2) with H = I and H = E were studied
in [7].

In this paper, our aim is to study the ISP of finding the potential

Q11 =

[
0 0
q21 0

]
, Q12 =

[
q13 0
q23 q24

]
, Q21 =

[
q31 0
q41 q42

]
, Q22 = 0 (1.3)

for the system (1.1) in the fourth situation under more general boundary condi-
tions.

The paper is organized as follows. In Section 2, the preliminary results on
Volterra integral operators with Hilbert–Schmidt kernel are given. In Section 3 we
construct the scattering operator on the half-line corresponding to the scattering
problem. In Section 4, we prove that the considered system has a Volterra type
of transformation operator as x → +∞, when matrix coefficients of the system
satisfy a certain triangular structure. Using such a transformation operator, in
this section it is shown that the scattering operators admit right factorization. In
Section 5, we give the formulation of the inverse scattering problem by scattering
operators of two scattering problems on the half-line. In this section, it is given
a transmission operator which relates the scattering problem on the half-line and
the scattering problem on the whole line, when the coefficients are zero for x <
0. This relation transforms the uniqueness of inverse scattering problem on the
half line to the uniqueness of inverse scattering problem on thewhole line [13]. In
this section, two examples are given showing that

(a) one scattering operator is insufficient for unambiguous reconstruction and

(b) that a condition det (H1 −H2) 6= 0 on the transmission matrices in boundary
conditions of two scattering problems are crucial.

2. Preliminaries

Throughout the paper, we shall write Ff(t) =
∫ +∞
−∞ F (t, s)f(s) ds the Fred-

holm operator with Hilbert–Schmidt kernel, A−f(t) =
∫ +∞
t A−(t, s)f(s)ds and

A+f(t) =
∫ t
−∞A+(t, s)f(s) ds the upper-triangular (upper Volterra) and lower-

triangular (lower Volterra) integral operators, respectively. We will say that the
operator I + F in the space L2(R,Cn) admits a right factorization, if it can be
represented as I+F = (I+A+)(I+A−), where the operators A− and A+ are the
lower and upper Volterra and Hilbert–Schmidt integral operators, respectively.
The left factorization I+F = (I+A−)(I+A+) is similarly defined. The left and
right factorizations are unique. If an operator F in the space L2(R,Cn) admits
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the right factorization (or left factorization) then the operators A+ and A− are
uniquely restored by F since the kernels A±(t, s) of the operators A± are the
solution of well-known Gelfand–Levitan–Marchenko type integral equation in the
following form:

For the upper-triangular A− and lower-triangular B+ integral operators, we
obtain from the right factorization I + F = (I +B+)−1(I +A−) that

A− = B+ + F +B+F.

The kernels of the integral operators A−, B+ we denote by A− (t, s) and B+ (t, s).
Now let us rewrite the operator equations through the kernels

B+ (t, s) + F (t, s) +

∫ t

−∞
B+ (t, τ)F (τ, s) dτ = 0, s ≤ t,

A− (t, s)− F (t, s)−
∫ t

−∞
B+ (t, τ)G (τ, s) dτ = 0, s ≥ t,

where G (τ, s) is the kernel of G = (I + F )−1 − I. These equations are Gelfand–
Levitan–Marchenko type and uniquely solvable which follows from factorization
of the operator I + F in the following form (see [3, 12]):

B+ =
[
F (I +QtF )−1

]
+
, A− =

[
G (I + EtG)−1

]
−
,

where Qt is the projection on semi-axis s < t :

Qtf(s) =

{
0, s > t

f(s), s < t

and Et is the projection on semi-axis s > t:

Etf(s) =

{
f(s), s > t

0, s < t
,

[K]+ and [K]− are denote the “positive part”and “negative part”of integral opera-

tor Kf(t) =
∫ +∞
−∞ K (t, s) f(s)ds respectively, i.e., [K]+ f(t) =

∫ t
−∞K (t, s) f(s)ds

and [K]− f(t) =
∫ +∞
t K (t, s) f(s)ds.

3. Scattering Problem

Consider the problem (1.1), (1.2) with the potential in the form of (1.3). A
nonstationary scattering problem for the system (1.1), (1.3) on the semi-axis can

be formulated as follows: It is required to find a solution ψ(x, t) =

[
ψ1 (x, t)
ψ2 (x, t)

]
of

(1.1) such that the solution satisfies the asymptotic relation

ψ1 (x, t) = =σ1xa(t) + o(1), x→ +∞, (3.1)
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and the boundary condition (1.2), where H is given n×n matrix of constants,with
detH 6= 0 and a(t) defines the profile of the incident waves,

=σ1x = diag(Tξ1x, Tξ2x),=σ2x = diag(Tξ3x, Tξ3x)

are shift operators, such that Tξixh(t) = h(t+ ξix), i = 1, 2, 3.

We shall consider generalized solutions of system (1.1), which are ordinary
functions measurable in x and t. Here, with respect to variable t, these functions
belong to the space L2

(
R,C4

)
and their L2-norms are uniformly bounded with

respect to x. We refer to such solutions as admissible.

The scattering problem (1.1)–(3.1) is equivalent to following systems of inte-
gral equation:

ψ1(x, t) = =σ1xa(t) +

∫ +∞

x
=σ1(x−s)[q11ψ1 + q12ψ2](s, t) ds,

ψ2(x, t) = =σ2xb(t) +

∫ +∞

x
=σ2(x−s)[q21ψ1 + q22ψ2](s, t) ds, (3.2)

where

b(t) = Ha(t) +

∫ +∞

0

{
H=−σ1s[q11ψ1 + q12ψ2](s, t)

−=−σ2s[q21ψ1 + q22ψ2](s, t)
}
ds. (3.3)

Theorem 3.1. If the coefficients of the system (1.1) is given by (1.3), then
for a given arbitrary incident wave vector a(t) ∈ L2

(
R,C2

)
there exists a unique

admissible solution of the scattering problem (1.1), (1.2), (3.1) and the second
component of the solution satisfies the asymptotic relation

ψ2 (x, t) = =σ2xb(t) + o(1), x→ +∞, (3.4)

where b(t) ∈ L2

(
R,C2

)
defines the profile of the scattered waves.

The proof of this theorem is omitted since system (3.2)–(3.3) is Volterra in-
tegral equation by t with square-integrable kernel and the similar assertion is
proved in [5, Theorem 1]. In the view of Theorem 1, for every vector function
a(t) ∈ L2

(
R,C2

)
, which represents incident waves, when the system (1.1) satisfies

the conditions (2.3), (2.4) there exist a unique solution ψ (x, t) =

[
ψ1 (x, t)
ψ2 (x, t)

]
. For

this solution there exist scattered waves b(t) ∈ L2

(
R,C2

)
according to (3.2). By

comparing the incident and scattered waves,we can define the scattering operator
SH by

b = SHHa. (3.5)

Operator SH is an n × n matrix operator and defined on L2

(
R,C2

)
. We

call this operator as the scattering operator that corresponds to the scattering
problem (1.1), (1.3), (3.1) on the semi-axis.
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4. Volterra properties of scattering operator

In solving inverse scattering problems the Volterra type integral representa-
tion of the solution plays an important role. Such representation can be taken
from transformation operator as x → +∞. The properties of the scattering op-
erators will be given in detail after studing the transformation operator.

Finding the bounded solution to the system (1.1) with the given asymptotic
=σ1xa(t), =σ2xb(t) as x → +∞ is equivalent to the solvability of the following
system of integral equations in L2

(
R,C4

)
:

ψ1 (x, t) = =σ1xa(t) +

∫ +∞

x
=σ1(x−s) [q11ψ1 + q12ψ2] (s, t) ds,

ψ2 (x, t) = =σ2xb(t) +

∫ +∞

x
=σ2(x−s) [q21ψ1 + q22ψ2] (s, t) ds. (4.1)

Theorem 4.1. Let the coefficients of system (1.1) be given by (1.3). Then for
any a(t), b(t) ∈ L2

(
R,C2

)
there exist a unique admissible solution of the system

(1.1), and the solution admits the representation

ψ1 (x, t) = =σ1xa(t) +

∫ +∞

t
A11 (x, t, s)=σ1xa(s) ds

+

∫ t

−∞
A12 (x, t, s)=σ2xb(s) ds, (4.2)

ψ2 (x, t) = =σ2xb(t) +

∫ +∞

t
A21 (x, t, s)=σ1xa(s) ds

+

∫ t

−∞
A22 (x, t, s)=σ2xb(s) ds, (4.3)

where A11 = A11 (x, t, s), A12 = A12 (x, t, s), A21 = A21 (x, t, s), A22 =
A22 (x, t, s) is 2 × 2 matrix kernels. These kernels are determined uniquely by
the coefficients (1.3) of system (1.1) and for the fixed x these kernels are the
Hilbert–Schmidt kernels.

Proof. The system (4.1) has unique solution since it is the system of Volterra
integral equations by x with square-integrable kernel. If the solution of (4.1) can
be represented as in the form of (4.2) for each a, b ∈ L2, then substituting (4.2)
in (4.1) we obtain the system of equations for the kernels under assumption that
qkj = 0

(k, j) = {(1, 1); (1, 2); (1, 4); (2, 2); (3, 2); (3, 3); (3, 4); (4, 3); (4, 4)}

we have

[A]kj (x, t, τ) =
ξj

ξj−ξk
qkj

(
x+

τ − t
ξj−ξk

, t− ξk

ξj−ξk
(τ − t)

)
+

4∑
p=1

∫ x+ τ−t
ξj−ξk

x
qkp (s, t+ ξk (x− s) , τ + ξn+j (x− s))
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× [A]pj

(
s, t+ ξk (x− s) , τ − ξk

ξj
(x− s)

)
ds,

τ ≤ t, (k, j) ∈
{

(k, j) :
ξk
ξj
< 1, k, j = 1, 2, 3, 4

}
, (4.4)

[A]kj (x, t, τ) =
4∑
p=1

∫ +∞

x
qkps, t+ ξk (x− s) , τ + ξn+j (x− s))

× [A]pj (s, t+ ξk (x− s) , τ − x+ s) ds,

τ ≤ t, (k, j) ∈ {(k, j) : ξk = ξj , k, j = 1, 2, 3, 4} ,

where [A]ij denotes the i, j element of the matrix function A =

[
A11 A12

A21 A22

]
. The

system of integral equation (4.4) is Volterra by x with square-integrable kernel
that is why unique solvable.

For i = 1, 2, let us denote that

Ai1− (x) f(t) =

∫ +∞

t
Ai1 (x, t, s) f(s) ds, Ai1− = Ai1− (0) ,

Ai2+ (x) f(t) =

∫ t

−∞
Ai2 (x, t, s) f(s) ds, Ai2+ = Ai2+ (0) .

The formulas (4.2) can be written in the form of

ψ1 (x, t) = [I +A11− (x)]=σ1xa(t) +A12+ (x)=σ2xb(t),
ψ2 (x, t) = A21− (x)=σ1xa(t) + [I +A22+ (x)]=σ2xb(t). (4.5)

Using the representation (4.5) and the boundary conditions (1.2) we obtain that

A21−a (t) + (I +A22+) b (t) = H [(I +A11−) a (t) +A12+b (t)]

or

(I +A22+ −HA12+) b (t) =
(
I +HA11−H

−1 −A21−H
−1)Ha (t) (4.6)

By Theorem 4.1, the kernels of the integral operators A12+, A22+, A11− and A21−
are Hilbert–Schmidt kernels. Therefore the kernels of the integral Volterra opera-
tors A+ = A22+−HA12+ and A− = HA11−H

−1−A21−H
−1 are Hilbert–Schmidt

kernels. Then the operators Ak+ and Ak− are Hilbert–Schmidt operators. Taking
into account the definition (3.5) of scattering operator, we obtain from (4.6) the
right factorization of scattering operator, as

SH = (I +A+)−1 (I +A−) . (4.7)

If (I +A+)−1 = I+B+, where B+ is Hilbert–Schmidt integral Volterra operator,
then the scattering operators SH have the form SH=I + F, where F = B+ +
A− +B+A−. Thus the operator F is Hilbert–Schmidt integral operator.
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Remark 4.2. The equalities (4.5) demonstrate that the system (1.1) with the
coefficients (1.3) has the transformation operators as x→ +∞ is in the following
form

P =

[
I +A11− (x) A12+ (x)
A21− (x) I +A22+ (x)

]
,

where Ai1− (x) and Ai2+ (x) are 2 × 2 matrix Volterra integral operators such
that the kernels satisfy the integral equation (4.4).

5. Inverse scattering problem

Let SH be a scattering operator for the system (1.1) with the coefficients
giving by (1.3). Inverse scattering problem for the system (1.1) is the problem of
finding 4× 4 matrix potential[

Q11(x, t) Q12(x, t)
Q21(x, t) Q22(x, t)

]
, x > 0

(contains 7 nonzero functions) by the 2× 2 matrix integral operator F = SH − I
(its kernel contains 4 functions on line and 8 function on half-line). The follow-
ing Example shows that one scattering operator is insufficient for unambiguous
reconstruction.

Example 5.1. Let us consider the scattering problem for the system (1.1)–
(1.3) in its an explicitly solvable case q31(x, t) = 0, q42(x, t) = 0. Let us denote

ψ1 (x, t) =

[
ϕ1 (x, t)
ϕ2 (x, t)

]
, ψ2 (x, t) =

[
ϕ3 (x, t)
ϕ4 (x, t)

]
, a (t) =

[
a1 (t)
a2 (t)

]
, b (t) =

[
b3 (t)
b4 (t)

]
.

This problem can be explicitly solvable as

ϕ1(x, t) = a1(t+ ξ1x) +

∫ +∞

x
(q14ϕ3)(s, t+ ξ1(x− s)) ds,

ϕ2(x, t) = a2(t+ ξ2x) +

∫ +∞

x
(q21ϕ1 + q23ϕ3)(s, t+ ξ2(x− s)) ds,

ϕ3(x, t) = b3(t+ ξ3x),

ϕ4(x, t) = b4(t+ ξ3x) +

∫ +∞

x
(q41ϕ1)(s, t+ ξ3(x− s)) ds,

where [
I − h11B1+ − h12(B3+ +B4+)

]
b3(t)

= h11a1(t) + h12a2(t) + h12A1−a1(t),

b4(t) +
[
B2+ − h21B1+ − h22(B3+ +B4+)

]
b3(t)

= h21a1(t) + h22a2(t) + (h22A1− −A2−) a1(t).
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Here Bk−, k = 1, 2, 3, 4 and A1−, A2− are lower and upper Volterra integral oper-
ators with the kernels respectively,

B1−(s, t) =
1

ξ1 − ξ3
q13

(
s− t
ξ3 − ξ1

, t− ξ1
ξ3 − ξ1

(s− t)
)
,

B3−(s, t) =
1

ξ2 − ξ3
q23

(
s− t
ξ3 − ξ2

, t− ξ2
ξ3 − ξ2

(s− t)
)
,

B2−(s, t) =
1

ξ1 − ξ3

∫ +∞

0
q41(τ, t− ξ3τ)q13

×
(
s− t− (ξ1 − ξ3)τ

ξ3 − ξ1
, t− ξ3τ +

ξ1(t− s)
ξ3 − ξ1

)
dτ,

B2−(s, t) =
1

ξ1 − ξ3

∫ s−t
ξ3−ξ2

0
q21(τ, t− ξ2τ)q13

×
(
s− t+ (ξ2 − ξ1)τ

ξ3 − ξ1
, t− (ξ1 − ξ2τ +

ξ1(t− s+ (ξ1 − ξ2)s)
ξ3 − ξ1

)
dτ, s ≤ t,

and

A1+(s, t) =
1

ξ1 − ξ2
q21

(
s− t
ξ1 − ξ2

, t− ξ2
ξ1 − ξ2

(s− t)
)
,

A2+(s, t) =
1

ξ1 − ξ3
q41

(
s− t
ξ1 − ξ3

, t− ξ3
ξ1 − ξ31

(s− t)
)
, s ≤ t.

It is clear from the definition of the scattering operator SH :H

[
a1
a2

]
→
[
b3
b4

]
that

it admits right side factorization in the following form

SH =

[
I − h11B1+ − h12(B3+ +B4+) 0
B2+ − h21B1+ − h22(B3+ +B4+) I

]−1
×
[

h11I + +h12A1− h12I
h21I + h22A1− −A2− h22I

]
H−1.

Then h11B1+ − h12(B3+ + B4+), B2+ − h21B1+ − h22(B3+ + B4+), h12A1− and
h22A1− − A2− can be uniquely determined by SH . If h12 = 0 with detH =
h11h22 6= 0 then it is clear to see that the coefficients are not uniquely determined
by the scattering operator on the semi-axis.

Consider two scattering problems on semi-axis for the system (1.1), (1.3).

First scattering problem: It is required to find a solution ψ1 (x, t) =

[
ψ1
1 (x, t)
ψ1
2 (x, t)

]
of the system (1.1) such that the asymptotic relation

ψ1
1 (x, t) = =σ1xa(t) + o(1), x→ +∞,

and boundary condition

ψ1
2 (0, t) = H1ψ

1
1 (0, t) , detH1 6= 0
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are satisfied.
Second scattering problem: It is required to find a solution ψ2 (x, t) =[

ψ2
1 (x, t)
ψ2
2 (x, t)

]
of the system (1.1) such that the asymptotic relation

ψ2
1 (x, t) = =σ1xa(t) + o(1), x→ +∞,

and boundary condition

ψ2
2 (0, t) = H2ψ

2
1 (0, t) , detH2 6= 0

are satisfied. We are going to investigate the solution of the inverse scattering
problem considering the first and the second scattering problems together under
the following assumption

det (H1 −H2) 6= 0. (5.1)

According to the Theorem (3.1) for arbitrary a(t) ∈ L2

(
R,C2

)
first and second

scattering problems have unique bounded solutions. Moreover, these solutions
satisfy the following asymptotic relations

ψk2 (x, t) = =σ2xbk(t) + o(1), x→ +∞, k = 1, 2,

where bk(t) ∈ L2

(
R,C2

)
defines the profile of the scattered waves. The scatter-

ing operators corresponding to the first and the second scattering problems are
denoted by SH1 and SH2 :

SHk : Hka(t)→ bk(t), k = 1, 2. (5.2)

The operators SH1 and SH2 are evidently matrix operators on L2

(
R,C2

)
. In

the subsequent sections, the operators SHk (k = 1, 2) will be studied in the space
L2

(
R,C2

)
, i.e., under SHk we will understand the closure in L2

(
R,C2

)
by the

operator SHk contracted on L2

(
R,C2

)
. It is proved in (4.7) that the scattering

operators admits right factorizations:

SHk = (I +Ak+)−1 (I +Ak−) (5.3)

where Ak+ = A22+ −HkA12+ and Ak− = HkA11−H
−1
k − A21−H

−1
k , k = 1, 2. It

is known (see [5]) that the transmission matrix operator

T

[
a (t)
b (t)

]
=

[
ψ1 (0, t)
ψ2 (0, t)

]
.

is a scattering operator on the whole-axis for a system of first order hyperbolic
equations, with the coefficients of system (1.1) equal to zero for x < 0. From the
representation (4.2) we determine that

T =

[
I +A11− A12+

A21− I +A22+

]
. (5.4)

Since the inverse scattering problem for the system of hyperbolic equations on the
whole-axis is solved in [13], then using from (5.4) to obtain the following result
about scattering problem for the system (1.1) on semi-axis.
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Theorem 5.2. Let SH1 and SH2 be two scattering operators on the semi-
axis for the system (1.1) with the coefficients giving by (1.3), where the matrices
H1, H2 satisfy condition (5.1). Then the coefficients (1.3) of the system (1.1) are
uniquely determined by the scattering operators SH1 and SH2.

Proof. Let SHk (k = 1, 2) be given scattering operators on the semi-axis. Let
us define the operator T by (5.4). For operators SH1and SH2 the following for-
mulas are correct with respect to (5.2):

I +HkA11−H
−1
k −A21−H

−1
k = (I +A22+ −HkA12+)SHk , k = 1, 2.

From this it follows that

I +A22+ −HkA12+ =
(
I +HkA11−H

−1
k −A21−H

−1
k

)
S−1Hk , k = 1, 2.

Since the operators SHk = I + F k, k = 1, 2 admit right factorization, equations
(5.3) are uniquely solvable with respect to the factorization multiplications I +
HkA11−H

−1
k −A21−H

−1
k and I +A22+ −HkA12+, k = 1, 2. Thus we obtain that

HkA12+ −A22+ = Γk+,

A21−H
−1
k −HkA11−H

−1
k = Γk−, (5.5)

where Γk+ =
[
Fk (I +QtFk)

−1
]
+

, Γk− =
[
Gk (I + EtGk)

−1
]
−
, k = 1, 2. Consid-

ering det (H1 −H2) 6= 0, then from (5.5) we get

A12+ = (H1 −H2)
−1 (Γ1+ − Γ2+) ,

A22+ = H1 (H1 −H2)
−1 (Γ1+ − Γ2+)− Γ1+,

A11− = (H1 −H2)
−1 (Γ2−H2 − Γ1−H1) ,

A21− = Γ1−H1 +H1 (H1 −H2)
−1 (Γ2−H2 − Γ1−H1) .

The theorem is proved.

The following example shows that the condition (5.1) on the transmission
matrices in boundary conditions of two scattering problems is crucial.

Example 5.3. Consider scattering problem for the system in Example (5.1)
with boundary condition of the form

ψ2 (0, t) = H̃ψ1 (0, t) , H̃ =

[
h̃11 0

h̃21 h̃22

]
with detH̃ = h̃11h̃22 6= 0. It is clear from Example 5.1 that the scattering operator
has the form

SH̃ =

[
I − h̃11B1+ 0

B2+ − h̃21B1+ − h̃22(B3+ +B4+) I

]−1
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×
[

h̃11I h̃12I

h̃21I + h̃22A1− −A2− h̃22I

]
H̃−1.

The operators h11B1+, B2+−h21B1+−h22(B3++B4+) and h22A1−−A2− can be
uniquely determined by SH̃since it admits left factorization. But the coefficients
are not uniquely determined by the scattering operator SH̃ .

If det
[
H − H̃

]
6= 0 then the coefficients are unique determined by the scat-

tering operators SH and SH̃ . If det
[
H − H̃

]
= 0 by h11 6= h̃11, h22 = h̃22 then

the unique restoration of coefficients are also violated.

6. Conclusion

This paper considers the ISP for the first order hyperbolic system of four
equations on the semi-axis in the case of two incident and two scattered waves.
The transmission matrix in boundary condition is general nonsingular matrix but
the matrix coefficients of the system satisfy some triangular structures. Such type
of systems occur in elasticity theory and cable lines in electrical engineering. The
ISP for the first order hyperbolic system of 2n (n > 2) equations on the semi-axis
in the case of equal number of incident and scattered waves partially studied in [5],
but the problem were not generally studied. The same sort of uniqueness results
should be true in general case, which suggests a line for further investigation.
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Обернена задача розсiювання для лiнiйної системи
чотирихвильової проблеми взаємодiї на пiвпрямiй iз

загальною крайовою умовою
Mansur I. Ismailov

Розглянуто гiперболiчну систему чотирьох рiвнянь першого порядку
на пiвосi у випадку рiвної кiлькостi падної i розсiяних хвиль за умо-
ви, що швидкостi розсiяних хвиль збiгаються. Установлено критерiї для
оберненої задачi розсiювання (задачi знаходження потенцiалу за опера-
тором розсiювання) в термiнах матриць передачi у двох рiзних крайових
умовах. Вивчено єдинiсть оберненої задачi розсiювання за допомогою
зведення задачi до лiнiйного iнтегрального рiвняння типу Ґельфанда–
Левiтана–Марченка.

Ключовi слова: обернена задача розсiювання, загальнi крайовi умо-
ви, гiперболiчна система першого порядку, оператор перетворення
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