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A class of negative order Ablowitz–Kaup–Newell–Segur nonlinear evolution equations are obtained by applying the
Lax hierarchy of the first order linear system of three equations. The inverse scattering problem on the whole axis is
examined in the case where linear system becomes the classical Zakharov–Shabat system consists of two equations and
admits a real anti-symmetric potential. Referring to these results, the N-soliton solutions for the integro-differential
version of the nonlinear Klein–Gordon equation coupled with a scalar field are obtained by using the inverse scattering
method via the Riemann–Hilbert problem.

1. Introduction

A completely integrable nonlinear equation of mathemat-
ical physics is one which has a Lax representation, or, more
precisely, can be solved by the inverse scattering method via
a Riemann–Hilbert (RH) problem, the classic examples
being the Korteweg–de Vries, sine-Gordon and nonlinear
Schrödinger equations.1) This approach is closely connected
with the nonlinear Fourier method and one of the most
powerful techniques to study integrable equations and
particularly generate soliton solutions.2) A few integrable
equations, including the multiple wave interaction equations,
the general coupled nonlinear Schrödinger equations, the
Harry Dym equation and the generalized Sasa-Satsuma
equation have been studied in Refs. 3–5 by solving the
associated RH problems.

It is applied the Ablowitz–Kaup–Newell–Segur (AKNS)
hierarchy to derive soliton solutions of some integrable
models by the inverse scattering method via RH problem.
Recently, many integrable hierarchies of soliton equations
have been extended to hierarchies of a negative order AKNS
equation by many authors.6–9) This gives an useful necessary
extension for complete integrability, which is applied to
investigate the integrability of certain generalizations of the
Klein–Gordon equations, some model nonlinear wave
equations of nonlinear Klein–Gordon equation coupled with
a scalar field.

Consider the nonlinear Klein–Gordon equation coupled
with a field v, in the following form:10)

uϰϰ � u�� � u þ 2u3 þ 2vu ¼ 0;

vϰ � v� � 4uu� ¼ 0:

(
ð1:1Þ

In the case v ≠ 0, this equation is integrable since it admits
the same bilinear form with the well-known sine-Gordon
equation.10)

The coupled nonlinear Klein–Gordon equations are
analyzed for their integrability properties in Ref. 11 where
the Hirota bilinear form is identified, from which one-soliton
solutions are derived. Then, the results are generalized to
the two, three and N-coupled Klein–Gordon equations in
Refs. 12 and 13. Another direct method for traveling wave
solutions of coupled nonlinear Klein–Gordon equations is
employed in Ref. 14.

The equation (1.1) becomes the following negative first
order equation:

rtx ¼ 2r@�1x ½ðr2Þt� þ r ð1:2Þ
by the change of variables ϰ ¼ xþ4t

2
, � ¼ 4t�x

2
, elimination of

v in second equation under the assumption that the scalar
field v tends to zero at infinity and by the substitution r ¼
1
2
u, where @�1x ¼ R 1

x dx is indefinite integral with respect
to x.

Our aim in this paper is to find the soliton solutions of
(1.2) by the inverse scattering method via RH problem. The
inverse scattering method is the most important discovery in
the theory of soliton. It provides us alternatively show the
complete integrability of the nonlinear evolution equation.
This method also enables to solve the initial value problem
for nonlinear evolution equation (1.2). Shortly we call the
equation (1.2) the coupled Klein–Gordon (CKG) equation in
future.

The CKG equation also closely relates to the Maxwell–
Bloch (MB) equation where the detuning function is a Dirac
delta. In this spirit, we recommend that more references
should be added about MB equation, such as the Lax pair for
the MB system was first found in Ref. 15 by using the results
of Refs. 16 and 17. The N-soliton solutions for the MB
equations by applying inverse scattering method via the RH
approach are in papers.18,19)

The brief outline of the paper is the followings. In
Sect. 2, we find that the CKG possesses a Lax pair of
the negative order AKNS equation. It is shown that the
auxiliary systems corresponding to CKG is classical
Zakharov–Shabat (ZS) system with real and anti-symmetric
potential. Then, in Sect. 3, we obtained the RH problem of
inverse scattering problem for the general ZS equation on
the whole line. In Sect. 4, we give solution of RH problem
under some conditions on the zeros of the elements of
scattering matrix for the general ZS system. This conditions
are violated in the case of ZS system with real and anti-
symmetric potential. In last section, the N-soliton solutions
of the CKG equation are obtained by the solution of RH
problem.

2. Negative First Order AKNS Equations

Consider the spectral problem for 3 � 3 linear system
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’1x

’2x

’3x

264
375 ¼ Xðp; qÞ

’1

’2

’3

264
375; ð2:1Þ

where Xðp; qÞ ¼ i
�1� p1 p2
q1 �2� 0

q2 0 �2�

� �
with λ is a nonzero

eigenvalue, ’1, ’2, and ’3 are linearly independent
eigenfunctions, i2 ¼ �1, �1 and �2 are real constants with
�1 � �2 ¼ � < 0, p1 ¼ p1ðx; tÞ, p2 ¼ p2ðx; tÞ, q1 ¼ q1ðx; tÞ,
and q2 ¼ q2ðx; tÞ are the rapidly decreasing at infinity
complex valued coefficients.

The auxiliary spectral problem described as follows:

’1t

’2t

’3t

264
375 ¼ Tðp; qÞ

’1

’2

’3

264
375; ð2:2Þ

where Tðp; qÞ ¼ a b c
d e f
k l m

� �
and a, b, c, d, e, f, k, l, and m are

scalar functions, independent of ’1, ’2, and ’3.

From (2.1) and (2.2), the zero curvature equation Xt �
Tx þ ½X; T� ¼ 0 yields

ax ¼ ip1d þ ip2k � iq1b � iq2c; fx ¼ iq1c � ip2d;

bx ¼ i��b � ip1� þ ip1e þ ip2l þ ip1t; lx ¼ iq2b � ip1k;

cx ¼ i��c þ ip1 f � ip2� þ ip2m þ ip2t; mx ¼ iq2c � ip2k;

dx ¼ �i��d þ iq1a � iq1e � iq2 f þ iq1t;

kx ¼ �i��k � iq1l þ iq2a � iq2m þ iq2t;

ex ¼ iq1b � ip1d; ð2:3Þ
where � ¼ �1 � �2. Let the following transformations be
applied to the system (2.3):

a ¼ Aðx; tÞ
�

; b ¼ Bðx; tÞ
�

; c ¼ Cðx; tÞ
�

;

d ¼ Dðx; tÞ
�

; e ¼ Eðx; tÞ
�

; f ¼ Fðx; tÞ
�

;

k ¼ Kðx; tÞ
�

; l ¼ Lðx; tÞ
�

; m ¼ Mðx; tÞ
�

:

As a result the following equations are obtained:

Ax ¼ ip1D þ ip2K � iq1B � iq2C; Ex ¼ iq1B � ip1D;

Bx ¼ ip1E � ip1A þ ip2L; B ¼ �1

�
p1t; Lx ¼ iq2B � ip1K;

Cx ¼ ip1F þ ip2M � ip2A; C ¼ �1

�
p2t; Mx ¼ iq2C � ip2K;

Dx ¼ iq1A � iq1E � iq2F; D ¼ 1

�
q1t;

Kx ¼ �iq1L þ iq2A � iq2M; K ¼ 1

�
q2t;

Fx ¼ iq1C � ip2D:

ð2:4Þ

The following negative first order AKNS equations are
obtained for important cases of spectral problem (2.1).

Proposition 1. If the coefficients of (2.1) satisfies the
properties p1 ¼ q1 and p2 ¼ q2 then the system of equations
(2.4) becomes the following negative order pair of equations:

p1tx ¼ p1½2@�1x ðp21Þt þ @�1x ðp22Þt þ c1� þ p2½@�1x ðp1p2Þt þ c2�;
p2tx ¼ p2½@�1x ðp21Þt þ 2@�1x ðp22Þt þ c3� þ p1½@�1x ðp1p2Þt þ c4�;

ð2:5Þ
where ck, k ¼ 1; 2; 3; 4 are arbitrary constants and @�1x ¼R1
x dx is indefinite integral with respect to x.

Proof. It is clearly seen that Ax ¼ �Ex �Mx, B ¼ �D, C ¼
�K, and Fx ¼ Lx in the system (2.4). This system be-
comes

B ¼ � 1

�
p1t; C ¼ � 1

�
p2t;

Ex ¼ � i
� ðp21Þt; Fx ¼ � i

� ðp1p2Þt; Mx ¼ � i
� ðp22Þt;

Bx ¼ ip1ð2E þMÞ þ ip2F;

Cx ¼ ip1F þ ip2ðE þ 2MÞ:
For the compatibility of these equations the functions p1

and p2 must be satisfied the system (2.5), where @�1x ¼ R1x dx
is indefinite integral with respect to x. □

Proposition 2. If the coefficients of (2.1) satisfies the
properties p1 ¼ �q1 and p2 ¼ �q2 then the system of
equations (2.4) becomes the following negative order pair
of equations:

p1tx ¼ �p1½2@�1x ðp21Þt þ @�1x ðp22Þt þ c1�
� p2½@�1x ðp1p2Þt þ c2�; ð2:6Þ

p2tx ¼ �p2½@�1x ðp21Þt þ 2@�1x ðp22Þt þ c3�
� p1½@�1x ðp1p2Þt þ c4�;

where ck, k ¼ 1; 2; 3; 4 are arbitrary constants and @�1x ¼R1
x dx is indefinite integral with respect to x.

Proof. It is clearly seen that Ax ¼ �Ex �Mx, B ¼ D,
C ¼ K, and Fx ¼ Lx in the system (2.4). This system
becomes

B ¼ � 1

�
p1t; C ¼ � 1

�
p2t;

Ex ¼ i
� ðp21Þt; Fx ¼ i

� ðp1p2Þt; Mx ¼ i
� ðp22Þt;

Bx ¼ ip1ð2E þMÞ þ ip2F;

Cx ¼ ip1F þ ip2ðE þ 2MÞ:
For the compatibility of these equations the functions p1

and p2 must be satisfied the system (2.6), where @�1x ¼ R1x dx
is indefinite integral with respect to x. □
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Proposition 3. If the coefficients of (2.1) satisfies the
properties p1 ¼ q�1 and p2 ¼ q�2 then the system of equations
(2.4) becomes the following negative order pair of equations:

p1tx ¼ p1½2@�1x ðjp21jÞt þ @�1x ðjp22jÞt þ c1�
þ p2½@�1x ðp1p�2Þt þ c2�; ð2:7Þ

p2tx ¼ p2½@�1x ðjp21jÞt þ 2@�1x ðjp22jÞt þ c3�
þ p1½@�1x ðp�1p2Þt þ c4�;

where ck, k ¼ 1; 2; 3; 4 are arbitrary constants and @�1x ¼R1
x dx is indefinite integral with respect to x.

Proof. It is clearly seen that Ax ¼ �Ex �Mx, B ¼ �D�,
C ¼ �K�, and Fx ¼ �L�

x in the system (2.4). This system
becomes

B ¼ � 1

�
p1t; C ¼ � 1

�
p2t;

Ex ¼ � i
� ðjp21jÞt; Fx ¼ � i

� ðp�1p2Þt; Mx ¼ � i
� ðjp22jÞt;

Bx ¼ ip1ð2E þMÞ � ip2F
�;

Cx ¼ ip1F þ ip2ðE þ 2MÞ:
For the compatibility of these equations the functions p1

and p2 must be satisfied the system (2.7), where @�1x ¼ R 1
x dx

is indefinite integral with respect to x. □

Proposition 4. If the coefficients of (2.1) satisfies the
properties p1 ¼ �q�1 and p2 ¼ �q�2 then the system of
equations (2.4) becomes the following negative order pair
of equations:

p1tx ¼ �p1½2@�1x ðjp21jÞt þ @�1x ðjp22jÞt þ c1�
� p2½@�1x ðp1p�2Þt þ c2�; ð2:8Þ

p2tx ¼ �p2½@�1x ðjp21jÞt þ 2@�1x ðjp22jÞt þ c3�
� p1½@�1x ðp�1p2Þt þ c4�;

where ck, k ¼ 1; 2; 3; 4 are arbitrary constants and @�1x ¼R1
x dx is indefinite integral with respect to x.

Proof. It is clearly seen that Ax ¼ �Ex �Mx, B ¼ D�, C ¼
K�, and Fx ¼ �L�

x in the system (2.4). This system becomes

B ¼ � 1

�
p1t; C ¼ � 1

�
p2t;

Ex ¼ i
� ðjp21jÞt; Fx ¼ i

� ðp�1p2Þt; Mx ¼ i
� ðjp22jÞt;

Bx ¼ ip1ð2E þMÞ � ip2F
�;

Cx ¼ ip1F þ ip2ðE þ 2MÞ:
For the compatibility of these equations the functions p1

and p2 must be satisfied the system (2.8), where @�1x ¼ R 1
x dx

is indefinite integral with respect to x. □

The following corollary of Proposition 2 is valid.

Corollary 1. In the case p1 ¼ p2 ¼ p and c1 ¼ c2 ¼ c3 ¼
c4 ¼ � 1

4
this nonlinear evolution equation has the form

ptx ¼ �4p
Z þ1

x

ðp2Þt dx þ p:

This equation becomes CKG equation by the substitution
p ¼ irffiffi

2
p with real valued rðxÞ. The spectral problem (2.1) for

this equation is the classical Zakharov–Shabat system with
real and anti-symmetric potential r ¼ rðxÞ.

Remark 1. Referring to the results for inverse scattering
problem for the Manakov system (see Appendix of the
paper20)), the soliton solutions for negative order AKNS
equation (2.7) can be examined similarly to the pair of
nonlinear Schrodinger equations which is made in Ref. 20 for
two-dimensional stationary self-focusing of electromagnetic
waves.

3. Riemann–Hilbert Problem for Zakharov–Shabat
System

In this section, we recall the necessary results from Ref. 21
on inverse scattering problem for classical Zakharov–Shabat
system:

u1x ¼ �i�u1 � ru2;

u2x ¼ ru1 þ i�u2

(
ð3:1Þ

with real coefficient r ¼ rðxÞ.
If �p1 ¼ �p2 ¼ q1 ¼ q2 ¼ p are taken in (2.1), we obtain

’1x ¼ i�1�’1 � ipð’2 þ ’3Þ;
’2x ¼ ip’1 þ i�2�’2;

’3x ¼ ip’1 þ i�2�’3:

8><>:
This system becomes

v1x ¼ i�1�v1 þ ipv2;

v2x ¼ 2ipv1 þ i�2�v2;

(
by the substitutions

ffiffiffi
2

p
’1 ¼ u1, ’2 þ ’3 ¼ �u2, ��1 ¼

�2 ¼ �, � ¼ ��, and p ¼ irffiffi
2

p transforms this system to
classical ZS system with real and anti-symmetric potential.

As is shown in previous section, the CKG equation admits
the Lax representation which the components are ZS system
with real and anti-symmetric potential and the another
component is the form:

u1t

u2t

" #
¼

Aðx; tÞ
�

Bðx; tÞ
�

Cðx; tÞ
�

�Aðx; tÞ
�

2664
3775 u1

u2

" #
; ð3:2Þ

where the compatibility condition becomes
Ax ¼ �rðC þ BÞ;
Bx ¼ 2Ar; Cx ¼ 2Ar;

rt ¼ �2iB; rt ¼ �2iC:
This system produce the equation

A ¼ i

Z þ1

x

rrt dx þ c0 ð3:3Þ

and

rtx ¼ 2r

Z þ1

x

ðr2Þt dx � 4ic0r

where is CKG equation when c0 ¼ i
4
.

We have seen that requering r ! 0 as jxj ! 1 gives us a
large class of equations with the property that Aðx;tÞ

� ! A�ð�Þ,
Bðx;tÞ
� ! 0, Cðx;tÞ

� ! 0 as jxj ! 1. It is clear from (3.3) that
A�ð�Þ ¼ i

4�.
Consider more general spectral problems of the following

form:

� iUx ¼ XU; �iUt ¼ TU; ð3:4Þ
with
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X ¼ �� þ P; T ¼ � h

�
� þ Q; � ≠ 0; h ¼ const > 0

where

� ¼ diagð�1; 1Þ;

P ¼ � 0 ip

iq 0

" #
; Q ! 0 as jxj ! 1:

The cases �p ¼ q ¼ r, h ¼ 1
4
, and Q ! 0 as jxj ! 1 of the

systems (3.4) yields the (3.1), (3.2).
In this section, we present the scattering and inverse

scattering methods for the system (3.4) using the RH
formulation. Impose the condition on the complex valued
functions qðxÞ and pðxÞ that decay sufficiently rapidly as
jxj ! 1.

In the RH formulation, we treat U in the spectral problems
(3.4) as a fundamental matrix. From (3.4), we note that, when
x; t ! �1, one has the asymptotic behavior: U � E ¼
ei��x�

ih
��t. This motivates us to

� ¼ Ue
�i��xþih

��t

;

to have the canonical normalization for the associated RH
problem:

� ! I2; when x; t ! �1;

where I2 ¼ diagð1; 1Þ. This way, the spectral problems in
(3.4) equivalently lead to

�x ¼ i�½�;�� þ P
^
�; ð3:5Þ

�t ¼ � ih

�
½�;�� þ Q

^
�;

where P
^
¼ iP and Q

^
¼ iQ. Noting trðP

^
Þ ¼ trðQ

^
Þ ¼ 0, we

have

det� ¼ 1 ð3:6Þ
by Abel’s formula.

Let us now consider the formulation of an associated RH
problem with the variable x. In the scattering problem, we
first introduce the matrix solutions ��ðx; �Þ of (3.5) with the
asymptotic conditions

�� ! I2; when x ! �1; ð3:7Þ
respectively. The subscripts above refer to which end of the
x-axis the boundary conditions are required. Then, by (3.6),
we have det�� ¼ 1 for all x 2 R. Since U� ¼ ��E are both
solutions of (3.4), they must be linearly related, and so we
can have

��E ¼ �þESð�Þ; � 2 R; � ≠ 0 ð3:8Þ
where

Sð�Þ ¼ s11 s12

s21 s22

" #
; � 2 R; � ≠ 0

is the scattering matrix. Note that detðSð�ÞÞ ¼ 1 since
detð��Þ ¼ 1. Using the method of variation of parameters
as well as the boundary condition (3.7), we can turn the x-part
of (3.4) into the following Volterra integral equations for ��:

��ð�; xÞ ¼ I2 þ
Z x

�1
ei��ðx�yÞ P

^ðyÞ��ð�; yÞei��ðy�xÞ dy; ð3:9Þ

�þð�; xÞ ¼ I2 �
Z x

1
ei��ðx�yÞ P

^ðyÞ�þð�; yÞei��ðy�xÞ dy:

Thus, �� allows analytical continuations off the real axis
� 2 R (� ≠ 0) as long as the integrals on their right hand
sides converge. It is direct to see that the integral equation for
the first column of �� contains only the exponential factor
e2i�ðx�yÞ, which, due to y < x in the integral, decays when μ is
in the upper half-plane C

þ ¼ fz 2 Cj ImðzÞ > 0g, and the
integral equation for the second column of �þ contains only
the exponential factor e�2i�ðx�yÞ, which, due to y > x in the
integral, also decays when μ is in the upper half-plane C

þ.
Thus, these two columns can be analytically continued to the
upper half-plane � 2 C

þ. Similarly, we find that the second
column of �� and the first column of �þ can be analytically
continued to the lower half-plane � 2 C

� ¼ fz 2 Cj ImðzÞ <
0g. Let us express

�� ¼ ð��
1 ;�

�
2 Þ;

that is, ��
k stands for the kth column of U� (1 � k � 2).

Then the matrix solution

Pþ ¼ Pþðx; �Þ ¼ ð��
1 ;�

þ
2 Þ ¼ ��H1 þ�þH2

is analytic in � 2 C
þ, and the matrix solution

ð�þ
1 ;�

�
2 Þ ¼ �þH1 þ��H2

is analytic in � 2 C
�, where H1 ¼ diagð1; 0Þ and H2 ¼

diagð0; 1Þ. In addition, from the Volterra integral equation
(3.9), we find that

Pþðx; �Þ ! I2; when � 2 C
þ ! 1;

and

ð�þ
1 ;�

�
2 Þ ! I2; when � 2 C

� ! 1:

Next we construct the analytic counterpart of Pþ in the
lower half-plane C

�. Note that the adjoint equation of the
x-part of (3.4) and the adjoint equation of (3.5) read as

ieUx ¼ eUX;

and

ie�x ¼ �½e�;�� þ e�P:

It is easy to see that the inverse matrices eU� ¼ ðU�Þ�1 ande�� ¼ ð��Þ�1 solve these adjoint equations, respectively. If
we express e�� as follows:

e�� ¼
e��;1e��;2

" #
;

that is, e��;k stands for the kth row of e�� (1 � k � 2). Then
by similar arguments, we can show that adjoint matrix
solution

P� ¼
e��;1e�þ;2

" #
¼ H1

e�� þ H2
e�þ ¼ H1ð��Þ�1 þ H2ð�þÞ�1

is analytic for � 2 C
�, and the other matrix solutione�þ;1e��;2

" #
¼ H1

e�þ þH2
e�� ¼ H1ð�þÞ�1 þ H2ð��Þ�1

is analytic for � 2 C
þ. In the same way we see that

P�ðx; �Þ ! I2; when � 2 C
� ! 1;
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e�þ;1e��;2

" #
! I2; when � 2 C

þ ! 1:

Now we have constructed two matrix functions Pþ and
P�, which are analytic in Cþ and C�, respectively. It is direct
to see that on the real line, the two matrix functions Pþ and
P� related by

P�ðx; �ÞPþðx; �Þ ¼ Gðx; �Þ; � 2 R; � ≠ 0 ð3:10Þ
where

Gðx; �Þ ¼ EðH1 þH2SÞðH1 þ S�1H2ÞE�1 ð3:11Þ

¼ E
1 �s12
s21 s11s22 � s12s21

" #
E�1:

Equations (3.10) and (3.11) are exactly the associated
matrix RH problem we wanted to present. The asymptotics

P�ðx; �Þ ! I2; when � 2 C
� ! 1; ð3:12Þ

provide the canonical normalization condition for the
established RH problem.

To finish the direct scattering transform, we take the
derivative of (3.8) with time t and use the vanishing
conditions of the potentials, we can show that S satisfies

St ¼ � ih

�
½�; S�; � ≠ 0;

which gives the time evolution of the scattering coefficients:

s11;t ¼ s22;t ¼ 0;

s12;t ¼ s12ð�; 0Þe�2iht
� ;

s21;t ¼ s21ð�; 0Þe2iht
� :

4. N-Soliton Solutions

The RH problem with zeros generate soliton solutions. The
uniqueness of the associated RH problem (3.10) does not hold
unless zeros of detPþ and detP� in the upper and lower half-
planes are specified and the kernel structures of P� at these
zeros are determined. Following the definitions of P� as well
as the scattering relation between �þ and ��, we find that

detPþðx; �Þ ¼ s11ð�Þ; detP�ðx; �Þ ¼ s22ð�Þ;
due to det S ¼ 1.

Theorem 1. Suppose that s11 has zeros f�k 2 C
þ; 1 �

k � Ng, and s22 has zeros fb�k 2 C
�; 1 � k � Ng. Then the

N-soliton solution to the system of (3.4) is

p ¼ �2i
XN
k;l¼1

vk;1ðM�1Þklbvl;2;
q ¼ 2i

XN
k;l¼1

vk;2ðM�1Þklbvl;1;
ð4:1Þ

where
vkðx; tÞ ¼ ei�k�x�

ih
�k
�tvk;0; 1 � k � N;

bvkðx; tÞ ¼bvk;0e�ib�k�xþ ihb�k�t; 1 � k � N;
ð4:2Þ

with column vk;0 and rowbvk;0, 1 � k � N arbitrary constant
vectors, vk ¼ ðvk;1; vk;2ÞT and bvk ¼ ðbvk;1;bvk;2Þ and M ¼
ðMklÞN�N is a square matrix whose entries are

Mkl ¼ bvkvl
�l �b�k ; 1 � k; l � N:

Proof. For simplicity, we assume that zeros, �k and b�k,
1 � k � N, are simple. Then, each of kerPþð�kÞ, 1 � k � N,
contains only a single column vector, denoted by vk,
1 � k � N; and each of kerP�ðb�kÞ, 1 � k � N, a row vector,
denoted bybvk, 1 � k � N:

Pþð�kÞvk ¼ 0; bvkP�ðb�kÞ ¼ 0; 1 � k � N: ð4:3Þ
The RH problem (3.10) with the canonical normalization
condition (3.12) and the zero structure (4.3) can be solved
explicitly, and thus one can readily reconstruct the potential P
as follows. Note that Pþ is a solution to the spectral problem
(3.4). Therefore, as long as we expand Pþ at large μ as

Pþðx; �Þ ¼ I2 þ 1

�
Pþ
1 ðxÞ þ O

1

�2

� �
; � ! 1

inserting this expansion into (3.5) and comparing Oð1Þ terms
lead to

P
^
¼ �i½�; Pþ

1 �;
which implies that

P ¼ �½�; Pþ
1 � ¼

0 2ðPþ
1 Þ12

�2ðPþ
1 Þ21 0

" #
;

where Pþ
1 ¼ ððPþ

1 ÞklÞ1�k; l�2. Further, the potentials p and q,
can be computed as

p ¼ 2iðPþ
1 Þ12; q ¼ �2iðPþ

1 Þ21: ð4:4Þ
To obtain soliton solutions, we set G ¼ I2 in the RH problem
(3.10). This can be achieved if we assume s12 ¼ s21 ¼ 0,
s11s22 ¼ 1, which means that there is no reflection in the
scattering problem. The solution to this specific RH problem
can be given as follows:

Pþð�Þ ¼ I2 �
XN
k;l¼1

vkðM�1Þklbvl
� �b�l ;

P�ð�Þ ¼ I2 þ
XN
k;l¼1

vkðM�1Þklbvl
� � �l

; ð4:5Þ

where M ¼ ðMklÞN�N is a square matrix whose entries read

Mkl ¼ bvkvl
�l �b�k ; 1 � k; l � N:

Noting that the zeros �k andb�k are constants, i.e., space and
time independent, we can easily find the spatial and temporal
evolutions for the vectors, vkðx; tÞ and bvkðx; tÞ, 1 � k � N.
For example, let us take the x-derivative of both sides
of the equation Pþð�kÞvk ¼ 0. By using (3.5) and then
Pþð�kÞvk ¼ 0, we get

Pþð�k; xÞ dvk
dx

� i�k�vk

� �
¼ 0; 1 � k � N;

which implies

dvk
dx

¼ i�k�vk; 1 � k � N:

The time dependence of vk:

J. Phys. Soc. Jpn. 92, 104001 (2023) M. I. Ismailov and C. Sabaz

104001-5 ©2023 The Physical Society of Japan

J. Phys. Soc. Jpn.
Downloaded from journals.jps.jp by 82.194.16.145 on 09/28/23



dvk
dt

¼ � ih

�k
�vk; 1 � k � N;

can be determined similarly through an associated RH
problem with the variable t. Summing up, we obtain (4.2).
Finally, from (4.5), we get

Pþ
1 ¼ �

XN
k;l¼1

vkðM�1Þklbvl;
and thus by (4.4), the N-soliton solution to the system of (3.4)
is (4.1). □

5. Zakharov–Shabat System with Real and Anti-
symmetric Potential

As is shown in third chapter that, in the cases of real
and anti-symmetric potential �p ¼ q ¼ r the systems (3.4)
becomes the (3.1), (3.2) which compatibility condition of
these systems is the CKG equation.

Theorem 2. In the case of real and anti-symmetric
potential �p ¼ q ¼ r, if h ¼ 1

4
and Q ! 0 as jxj ! 1 in

the systems (3.4) then the following statements hold:
a) The s11 and s22 have equal number zeros f�k 2

C
þ; 1 � k � Ng on upper half plane and fb�k 2 C

�; 1 �
k � Ng lower half plane, respectively and b�k ¼ ��k.

b) The N-soliton solution to the system of CKG is

r ¼ 2i
XN
k¼1

vk;1ðM�1Þkkvk;2; ð5:1Þ

where vk ¼ ðvk;1; vk;2ÞT, 1 � k � N with

vkðx; tÞ ¼ ei�k�x�
i

4�k
�tvk;0; 1 � k � N; ð5:2Þ

where vk;0 1 � k � N are arbitrary constant column vector
and M ¼ ðMklÞN�N is a square matrix whose entries are

Mkk ¼ ½vk�Tvk
2�k

; 1 � k � N: ð5:3Þ

Proof. Let the eigenfunctions Φ, Ψ, b�, and b� be defined
with the following boundary conditions for the eigenvalue μ
in ZS system

� � 1

0

 !
e�i�x; � � 0

1

 !
ei�x;

x ! �1 x ! þ1

b� � 0

�1

 !
ei�x; b� � 1

0

 !
e�i�x:

x ! �1 x ! þ1
For these eigenfunctions, Wð�;b�Þ ¼ �1 and Wð�;b�Þ ¼
�1, where W is the Wronskian. Therefore, the eigenfunctions
Ψ and b� are linearly independent. Hence the functions Φ andb� can be written as

� ¼ s11ð�Þb� þ s12ð�Þ�;b� ¼ s22ð�Þ� þ s21ð�Þb�:

The scattering matrix is usually defined as

S ¼ s11 s12

s21 s22

 !
:

Using Wð�;�Þ ¼ �1 equation,

�s11ð�Þs22ð�Þ þ s12ð�Þs21ð�Þ ¼ �1;
is obtained. The functions ei�x�, e�i�x� admits analytical
continuation into upper half-plane of μ and e�i�xb�, ei�xb�
admits analytical continuation into lower half-plane of μ. It
follows from s11ð�Þ ¼ Wð�;�Þ is analytic in the upper half-
plane and s22ð�Þ ¼ �Wðb�;b�Þ is analytic in the lower half-
plane; moreover, they tends to unity as j�j ! 1.

The function s11ð�Þ has a zero in the upper half plane and
s22ð�Þ has a zero in the lower half plane. If the zeros of s11ð�Þ
are called �k, k ¼ 1; 2; . . . ; N then at � ¼ �k, Φ and Ψ
proportional such that

� ¼ ck�:

Similarly, if the zeros of s22ð�Þ are calledb�k, k ¼ 1; 2; . . . ;bN
then at � ¼b�k, b� and b� proportional such thatb� ¼ bckb�:

In this case, s12 and s21 can be expanded to ck ¼ s12ð�kÞ andbck ¼ s21ðb�kÞ. In this case, s11ð�Þ and s22ð�Þ are analytic on
the real axis, and are also analytic in the upper half plane and
the lower half plane. This means that s11ð�Þ has only a finite
number of zeros for Imð�Þ ≧ 0.

The special type of relationship between p and q, i.e.,
p ¼ �q, a case of special interest. If, in ZS system, we put

p ¼ �q
then involution arises in the solutions of ZS system. In other
words, if � ¼ ð�1

�2
Þ and � ¼ ð�1

�2
Þ are the solutions of ZS

system with real μ then the columns

b�ðx; �Þ ¼ �2ðx;��Þ
��1ðx;��Þ

 !
and b�ðx; �Þ ¼ �2ðx;��Þ

��1ðx;��Þ

 !
also are solutions and implies that symmetry relations

� s22ð�Þ ¼ s11ð��Þ; s21ð�Þ ¼ s12ð��Þ
and bN ¼ N; b�k ¼ ��k; bck ¼ ck:

Because bN ¼ N, the s11 and s22 have equal number zeros
f�k 2 C

þ; 1 � k � Ng on upper half plane and fb�k 2 C
�;

1 � k � Ng lower half plane, respectively and b�k ¼ ��k.
If we take into account

�k ¼ �b�k
in (4.1) by suitable choosing of the arbitrary column vk;0 and
rowbvk;0, 1 � k � N constant vectors, for example, in the case
Mkl ¼ 0, 1 � k; l � N; k ≠ l, andbvk;0 ¼ ½vk;0�T, (4.1) becomes

� p ¼ q ¼ 2i
XN
k¼1

vk;1ðM�1Þkkvk;2:
□

Example 1. Single soliton solution of CKG equation: Let
N ¼ 1 in formulas (5.1) and (5.2). Then

r ¼ 2iv1;1ðM�1Þ11v1;2 ð5:4Þ
and

v1;1 ¼ e�i�1xþ
i

4�1
t!1 þ !2;

v1;2 ¼ !1 þ ei�1x�
i

4�1
t!2;

ð5:5Þ

are obtained, where !1 and !2 are constants.
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The formula (5.3) becomes

ðM�1Þ11 ¼
2�1

ðe�i�1xþ i
4�1

t!1 þ !2Þ2 þ ð!1 þ ei�1x�
i

4�1
t!2Þ2

ð5:6Þ
since N ¼ 1. If we take (5.5) and (5.6) into account (5.4) we
obtain

r ¼ 4i�1e
i�1x� i

4�1
t

1 þ e2i�1x�
i

2�1
t
: ð5:7Þ

The case N ¼ 1 means that s11ð�Þ have only one zero on the
imaginary axis. Let s11ð�Þ have zero at the point �1 ¼ i�1
where �1 > 0. Then (5.7) or

rðx; tÞ ¼ � 4�1e
�1xþ t

4�1

1 þ e2�1xþ
t

2�1

presents a single soliton moving a velocity 1
4�2

1

.

6. Conclusion

In this paper, we study the soliton solutions of the CKG
equation coupled with a scalar field which shares the same
bilinear form with the sine-Gordon equation. We found a Lax
pair of the CKG, of the negative order AKNS type. The
spectral problem is the ZS system with real and anti-
symmetric potential. This makes possible to use the inverse
scattering method’s technique via RH problem for obtaining
and analyzing the soliton solutions of the CKG. This method
provides us to show the complete integrability of the CKG
equation. On the other side the various extensions and
generalizations of the inverse scattering method via RH
problem have been discovered, it seems that many different
integrable Klein–Gordon type equations still remains to be
found.
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