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a b s t r a c t

We study the Hamiltonian formalism for second and fourth order nonlinear Schrödinger
equations. In the case of the second order equation, we consider cubic and loga-
rithmic nonlinearities. Since the Lagrangians generating these nonlinear equations are
degenerate, we follow the Dirac–Bergmann formalism to construct their corresponding
Hamiltonians. In order to obtain consistent equations of motion, the Dirac–Bergmann
formalism imposes some set of constraints that contribute to the total Hamiltonian along
with their Lagrange multipliers. The order of the Lagrangian degeneracy determines
the number of primary constraints. If a constraint is not a constant of motion, a
secondary constraint is introduced to force the consistency condition. We show that for
second order and fourth order nonlinear Schrödinger equations we only have primary
constraints, and the form of nonlinearity or the order of derivatives does not change the
constraint dynamics of the system. However, we observe that introducing new fields
to treat higher derivatives in the Lagrangians of these equations changes the constraint
dynamics, and secondary constraints are needed to construct a consistent set of Hamilton
equations.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The Hamiltonian can be constructed through a straightforward Legendre transformation for a regular Lagrangian.
owever, in the case of the degenerate Lagrangians, for which the field variables are not independent and are connected
o each other through some constraints, a new procedure is needed to construct a Hamiltonian, which produces consistent
quations of motion [1]. In the late ’40s and early 50’s Bergmann [2–4] and Dirac [5–7] independently developed a
amiltonian formalism for these degenerate Lagrangians, which are equivalently called singular Lagrangian systems or
onstrained Hamilton systems. The algorithm initially introduces a set of constraints, usually called primary constraints,
ith corresponding Lagrange multipliers to be determined. However, the dynamics of these constraints may also introduce
he so-called secondary constraints. Such construction is important for the quantization of gauge theories in the functional
ntegral formalism, furthermore, the constraint analysis can be used to handle higher derivative Lagrangian theories [8].

Here, we study the Hamiltonian formalism of the nonlinear Schrödinger equations (NLSEs). These equations have
egenerate Lagrangians. Mathematically, a Lagrangian is called degenerate if the determinant of the Hessian matrix is
ero [1]. Since there are constraints in the NLSEs caused by the singularity of the Hessian matrix, therefore, we use the
irac–Bergmann algorithm (DBA) for constructing the consistent Hamiltonians.
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NLSEs are classical field equations and are widely used to describe the properties of different physical systems.
n nonlinear optics, the propagation of light in fibers and waveguides with nonlinear effects are governed by both
econd-order and higher-order NLSEs [9–11]. The higher order dispersions become considerable when the pulses become
xtremely short [12]. Moreover, The Gross–Pitaevskii equation, which is a second-order NLSE, describes the general
roperties of trapped Bose–Einstein condensates [13,14]. Solutions of these equations are studied in detail in the context
f optics and condensed matter physics. The soliton solutions of these equations are widely investigated [15], and their
nstabilities due to the competition between dispersion and nonlinearity are well-known [16,17].

This article is organized as follows. We first describe the DBA used to construct consistent Hamilton equations of motion
rom a degenerate Lagrangian. Then, we apply the DBA to second-order NLSEs. We show that the Hamilton equations of
otion for these systems can be constructed only by introducing primary constraints. By analyzing the already studied
orteweg–de Vries equation, we show that introducing a new field to treat the higher-order dispersion in the equation
f motion generates secondary constraints. Eventually, we study the constraint dynamics of fourth-order NLSE.

. Dirac–Bergmann algorithm

The DBA is a set of well-defined rules to construct the Hamiltonian from a degenerate Lagrangian [1]. For a field ψ(r, t),
a Lagrangian

L =

∫
drL

[
ψi,∇ψi, (ψi)t

]
, (1)

for which equations of motion are generated from the Euler–Lagrange equation

δL
δψi

−
d
dt

δL
δ(ψi)t

− ∇
δL

δ(∇ψi)
= 0, (2)

is called degenerate if the determinant of the Hessian matrix of the Lagrangian density L becomes zero, i.e.⏐⏐⏐⏐ δ2L
δ(ψi)tδ(ψj)t

⏐⏐⏐⏐ = 0 . (3)

Here, ψt denotes the time derivative of the field ψ(r, t). Naturally, a Lagrangian is regular if the Hessian does not vanish.
It may be seen from a Lagrangian density that a linear dependency on the total time derivatives of all fields corresponds
to a degenerate Lagrangian density. The DBA introduces an initial set of primary constraints depending on the order of the
degeneracy in the system. However, the dynamics of these constraints may also introduce a set of secondary constraints.
These constraints with their corresponding multipliers contribute to the total Hamiltonian. Here, we follow the DBA step
by step and construct a Hamiltonian which generates a consistent set of equations of motion.

After confirming the degeneracy of the Lagrangian, the number of the primary constraints are determined from the
difference between dimension and rank of the Hessian matrix [18,19]. These primary constraints are naturally chosen to
be the canonical momenta definitions, i.e.

πψi =
δL
δ(ψi)t

. (4)

Each primary constraint ci contributes to the total Hamiltonian with its corresponding Lagrange multiplier λi. With the
additional contribution of constraint Hc =

∑
i λici, the total Hamiltonian can be written as

H
[
ψi, πψi

]
=

∫
dr (HL + Hc) , (5)

where HL =
∑

i πψi (ψi)t − L is the canonical Hamiltonian density.
The next step in the DBA is to determine the multipliers λi. Consistent equations of motion can be constructed from

hese constraints only if they are constant of motion, in the other words, the Poisson bracket of the constraint with the
otal Hamiltonian is zero, i.e. {ci,H} = 0. Practically, if this Poisson bracket contains any multiplier, the result can be set
to zero. Accordingly, a set of vanishing Poisson brackets will give a set of linear equations for certain multipliers, which
can be solved to obtain those multipliers. However, if a constraint is not a constant of motion, in other words, the Poisson
bracket of the constraint with the total Hamiltonian does not contain any multiplier, the result should be forced to vanish
which generates a new constraint, namely, the secondary constraint c̃j. Secondary constraints are not distinct in nature
rom primary constraints, and their contribution to the total Hamiltonian is determined similarly but with a new set of
agrange multipliers λ̃j. Thus, the new constraint Hamiltonian density can be written as

Hc =

∑
i,j

(
λici + λ̃jc̃j

)
, (6)

f the consistency conditions for the new set of constraints, {c̃i,H} = 0, are not established a new set of constraints, namely
tertiary constraints, are defined and their contributions are added to H accordingly. This procedure is carried on until
c
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all multipliers are determined. Eventually, the total Hamiltonian H is obtained after multiplier substitutions. Hamilton
quations of motion are calculated as follows

(ψi)t =
δH
δ(πψi )

, (πψi )t = −
δH
δψi

. (7)

Throughout this procedure, to construct a Hamiltonian with consistent equations of motion, we have altered the total
amiltonian by utilizing constraints. Instead, one may alter the structure of the Poisson bracket equivalently and define
irac brackets. However, in this manuscript, for the sake of simplicity and a better understanding of the main DBA, we
re not going into the details of this procedure. In order to get a close insight into the DBA, in the following sections, we
pply this procedure to different Lagrangians and construct their corresponding Hamiltonians.

. Nonlinear Schrödinger equation

Nonlinear Schrödinger equations are classical field equations and are widely used to describe the properties of the
ifferent physical systems from the propagation of light in nonlinear optics [9,10] to trapped Bose–Einstein conden-
ates [13,14]. In this section, we will construct a Lagrangian for each of the two mostly used different equations of motion,
enerally called the cubic and the logarithmic nonlinear Schrödinger equations.

.1. Cubic nonlinear Schrödinger equation

The cubic nonlinear Schrödinger equation

iut + uxx + 2|u|2u = 0, (8)

is one of the most studied nonlinear equations in physics [10,13,14]. Here, ut and uxx are first-order time and second-
rder spatial derivatives of a classical field u(x, t). This equation is completely integrable as a Hamiltonian system, it
as solved exactly by the method of the inverse scattering by Zakharov and Shabat [20] (see also [15,21]). First, we
onstruct a Lagrangian that gives the nonlinear Schrödinger equation as an equation of motion. Since the expression
8) contains an imaginary part, one needs a Lagrangian with complex terms. Note that the Hamilton’s equations and
orresponding Poisson brackets for the nonlinear Schrödinger equation are written in the complex form in integrability
iterature, see, e.g. [21]. Here, we are interested in the construction of a real-valued Lagrangian system, therefore, we
actorize the nonlinear Schrödinger equation to imaginary and real parts by setting u(x, t) = φ(x, t)eiθ (x,t) which leads us
o two equations of motion

φt = −θxxφ − 2φxθx,

φθt = 2φ3
+ φxx − φθ2x .

(9)

The Lagrangian density whose variations with respect to φ and θ determine the φt and θt in accordance with Eq. (9)
as the following form

Lnls [φ, φx, θx, θt ] = −
1
2
θtφ

2
+

1
2
φ4

−
1
2
φ2
x −

1
2
θ2x φ

2. (10)

Since the determinant of the Hessian matrix for this Lagrangian is zero, i.e.

det

⎡⎢⎣ δ2L
δφt δφt

δ2L
δφt δθt

δ2δL
δθt δφt

δ2L
δθt δθt

.

⎤⎥⎦ = 0, (11)

he Lagrangian is degenerate. The Hessian matrix has a rank of zero so the difference between the dimensionality of
he matrix and its rank imposes two primary constraints. As we mentioned in the previous section, the corresponding
quations for canonical momenta of fields θ and φ

πφ = 0, πθ = −
1
2
φ2, (12)

re natural choices for the two needed primary constraints. Therefore, we set two primary constraints as

c1 = πφ, c2 = πθ +
1
2
φ2. (13)

y adding the contribution of the constraints Hc to the canonical HL, we can construct the total Hamiltonian density as
ollows

Hnls = HL + Hc

= πθθt + πφφt − Lnls + λ1c1 + λ2c2. (14)
3



A. Pazarci, U.C. Turhan, N. Ghazanfari et al. Communications in Nonlinear Science and Numerical Simulation 121 (2023) 107191

I

N

w

w
e

3

s
w

F

B
t
E

After the substitution of the canonical momenta and the constraints, we have

Hnls = −
1
2
φ4

+
1
2
φ2
x +

1
2
θ2x φ

2
+ λ1πφ + λ2

(
πθ +

1
2
φ2

)
. (15)

n order to determine the multipliers λ1 and λ2, we check the so-called consistency conditions, which basically determine
the preservation of the constraints under time variation. These consistency conditions, established by the Poisson brackets
of the constraints with the total Hamiltonian, Hnls =

∫
dxHnls

{c1,Hnls} = 2φ3
+ φxx − φθ2x − λ2φ,

{c2,Hnls} = λ1φ + φ2θxx + 2φφxθx,
(16)

lead us to the determination of the multipliers λ1 and λ2

λ1 = −θxxφ − 2φxθx, (17a)

λ2 = 2φ2
− θ2x +

φxx

φ
. (17b)

By substituting the determined multipliers into the total Hamiltonian density and doing the necessary cancellations, we
obtain

Hnls =
1
2
φ4

+ πφ (−φθxx − 2φxθx)+ πθ

(
2φ2

− θ2x +
φxx

φ

)
. (18)

ow, we can calculate the equations of motion from the total Hamiltonian

φt = −θxxφ − 2φxθx, (19a)

φθt = 2φ3
+ φxx − φθ2x , (19b)(

πφ
)
t = 0, (19c)

(πθ )t = 2φφxθx + φ2θxx. (19d)

The first two Eqs. (19a) and (19b) are the same as the equations of motion (9), from which we constructed the Lagrangian
(10). If we substitute the canonical momenta into the total Hamiltonian with the integrand (18) and perform integration
by parts, we obtain

Hnls =

∫
dx

(
1
2
φ2
x +

1
2
φ2θ2x −

1
2
φ4

)
, (20)

hich is a redefined version of

Hnls =

∫
dx

(
1
2
|ux|

2
−

1
2
|u|4

)
, (21)

ith u = φeiθ . The expression (21) is used in the integrability community as the Hamiltonian of the nonlinear Schrödinger
quation.

.2. Logarithmic nonlinear Schrödinger equation

For the Logarithmic nonlinear Schrödinger equation [22]

iut + uxx + u ln |u|2 = 0, (22)

imilar to the cubic nonlinear Schrödinger equation, to obtain a real valued Lagrangian we set u(x, t) = φ(x, t)eiθ (x,t),
hich leads us to two equations of motion

φt = −2φxθx − φθxx,

φθt = φxx − φθ2x + 2φ lnφ.
(23)

rom these equations of motions, we construct the logarithmic Lagrangian density

Llnls [φ, φx, θx, θt ] = −
1
2
φ2θt −

1
2
φ2
x −

1
2
φ2θ2x + φ2 lnφ −

1
2
φ2. (24)

y being degenerate, having a rank zero Hessian matrix, and giving the same canonical momenta Eq. (12), qualitatively,
his logarithmic Lagrangian density is similar to the cubic one Eq. (10). Therefore, we choose the same primary constraints
q. (13) and write the total Hamiltonian as follows

Hlnls =
1
φ2
x +

1
φ2θ2x +

1
φ2

− φ2 lnφ + λ1πφ + λ2

(
πθ +

1
φ2

)
. (25)
2 2 2 2
4
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Similarly, the two consistency conditions, defined by the Poisson brackets of the primary constraints with the total
Hamiltonian, produce multipliers

λ1 = −φθxx − 2φxθx, (26a)

λ2 =
φxx

φ
− θ2x + 2 lnφ. (26b)

After the substitution of the multipliers, the total Hamiltonian density can be written as

Hlnls =
1
2
φ2

+ πφ (−φθxx − 2φxθx)+ πθ

(
φxx

φ
− θ2x + 2 lnφ

)
. (27)

nd eventually, the equations of motion can be obtained as

φt = −2φxθx − φθxx, (28a)

φθt = φxx − φθ2x + 2φ lnφ, (28b)

(πφ)t = 0, (28c)

(πθ )t = 2φφxθx + φ2θxx. (28d)

imilar to the case of the cubic nonlinearity, by substituting the canonical momenta and doing integration by parts the
otal Hamiltonian is obtained,

Hlnls =

∫
dx

(
1
2
φ2

+
1
2
φ2
x +

1
2
φ2θ2x − φ2 lnφ

)
, (29)

hich can be written as

Hlnls =

∫
dx

(
1
2
|ux|

2
+

1
2
|u|2 −

1
2
|u|2 ln |u|2

)
(30)

ith u = φeiθ .
We observe that changing the form of the nonlinearity in a degenerate Lagrangian does not generate different

onstraint dynamics, since its dynamics are set by the order and form of time and spatial derivatives. This result is best
anifested by constraint dynamics of the Korteweg–de Vries (KdV) and the fourth-order nonlinear Schrödinger equations.
or both of these equations of motion, secondary constraints are needed to construct the Hamiltonian from a degenerate
agrangian.

. Korteweg–deVries equation

The KdV equation

ut − 6uux + uxxx = 0, (31)

s a useful example of a degenerate Lagrangian for which we need some secondary constraints to construct the
amiltonian. Since studying this example helps to understand the constraint dynamics of fourth-order NLSE, we briefly
eview the Hamiltonian formalism of this system. The constraint dynamics of the KdV equation have already been studied
n [23] (see also [24,25]). With substitution u(x, t) = φx(x, t), the Lagrangian density for Eq. (31) can be written as

LKdV [ψ, φx, ψx, φt ] =
1
2
φtφx + φ3

x + φxψx +
1
2
ψ2, (32)

ere, an extra field ψ(x, t) = φxx(x, t) is introduced to avoid higher order derivatives in the Lagrangian. Although there
are procedures handling the higher-order degenerate Lagrangians, introducing this extra field eases the Hamiltonian
formalism of the original higher-order Lagrangian. The variations of this Lagrangian density (32) with respect to φ and ψ
ive two equations of motion as follows

φxt + 6φxφxx + ψxx = 0,
ψ − φxx = 0.

(33)

he second equation here gives the extra defined field. Similar to the previous examples, the rank of the Hessian matrix is
ero, and its difference from the dimension of the Hessian matrix imposes two primary constraints which can be chosen
o be the equations for canonical momenta

c1 = πψ , c2 = πφ −
1
2
φx. (34)

he total Hamiltonian constructed by these primary constraints is

HKdV = −φ3
− φxψx −

1
ψ2

+ λ1c1 + λ2c2. (35)
x 2
5
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Despite all similarities between the Hessian matrix properties of KdV Lagrangian and each of nonlinear Schrödinger
Lagrangians, (10) and (24), the consistency condition of the constraint c1 does not contain any multiplier, which means we
annot obtain an expression for any multiplier. Thus, we should force the constraint to be a constant of motion. Explicitly
peaking, the Poisson bracket of the constraint c1 and the total Hamiltonian

{c1,H} = ψ − φxx, (36)

hould be set to zero. Therefore, we need to add the secondary constraint c̃3 = ψ − φxx, along with its corresponding
multiplier λ̃1 to the total Hamiltonian density

HKdV = −φ3
x − φxψx −

1
2
ψ2

+ λ1c1 + λ2c2 + λ̃3c̃3. (37)

he secondary constraint here is the result of the new field ψ which is defined to treat the higher order term in the
agrangian. The consistency conditions lead us to the full determination of the multipliers

λ1 = −φ5x − 6φxφ3x − 6φ2
xx, (38a)

λ2 = −φ3x − 3φ2
x , (38b)

λ̃3 = ψ − φxx. (38c)

ccordingly, the total Hamiltonian density is obtained

HKdV =
1
2
φ3
x +

1
2
ψ2

+ φxψx +
1
2
φ2
xx − πφ

(
φ3x + 3φ2

x

)
− πψ

(
φ5x + 6φ2

xx + 6φxφ3x
)
, (39)

nd the equations of motion are calculated as follows,

φt + 3φ2
x + φ3x = 0, (40a)

φxt + 6φxφxx + φ4x = 0, (40b)

ψt + 6φ2
xx + 6φxφ3x + φ5x = 0, (40c)

ψ − φxx = 0. (40d)

ere, the second equation is the spatial derivative of the first equation, which is consistent with the third equation by
ubstituting the fourth equation. Note that the secondary constraint c̃3 is the result of introducing the new field ψ to
avoid the higher order derivatives in the Lagrangian. The constraint here generates the equation through which the field
has been introduced.

5. Fourth-order nonlinear Schrödinger equation

The fourth order nonlinear Schrödinger equation

iut + uxx + u4x + 2|u|2u = 0. (41)

describes the propagation of ultrashort pulses in nonlinear optics [12]. As in the case of second order NLSEs, to write
a real-valued Lagrangian for this equation, we set u(x, t) = φ(x, t)eiθ (x,t), which leads us to the following equations of
motion

φt = −2θxφx + 4θ3x φx − φθxx + 6φθ2x θxx − 6θxxφxx − 4φxθ3x − 4θxφ3x − φθ4x,

φθt = 2φ3
− φθ2x + φθ4x − 12φxθxθxx − 3φθ2xx + φxx − 6φxxθ

2
x − 4φθxθ3x + φ4x.

(42)

We write down a Lagrangian density

Lfnls [φ, φx, θx, φxx, θxx, θ3x, θt ] = −
1
2
θtφ

2
+

1
2
φ4

−
1
2
φ2
x −

1
2
θ2x φ

2
+

1
2
θ4x φ

2
+3θ2x φ

2
x −2φ2θxθ3x −

3
2
θ2xxφ

2
+

1
2
φ2
xx, (43)

whose variation with respect to φ and θ leads us to the equations of motion given by (42). The dynamics of this singular
Lagrangian give three primary constraints. Similar to the case of KdV, we write down a Lagrangian with a newly introduced
field γ = θxx, for which the variations with respect to fields φ, θ , and γ generate Eqs. (42) along with φ2(γ − θxx) = 0.
Accordingly, the Lagrangian density can be written as

Lfnls = −
1
2
θtφ

2
+

1
2
φ4

−
1
2
φ2
x −

1
2
θ2x φ

2
+

1
2
θ4x φ

2
+ θ2x φ

2
x − γxθxφ

2
− 2γ θxφxφ −

1
2
γ 2φ2

− 2θ2x φxxφ +
1
2
φ2
xx. (44)

he rank of the Hessian matrix generated from this degenerate Lagrangian density is again zero. Thus, we need three
rimary constraints. Note that here the dimension of the Hessian matrix is three. We set the equations for the canonical
omenta as primary constraints, such that

c1 = πφ, c2 = πθ +
1
φ2, c3 = πγ . (45)
2
6
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Following the DBA, we check the consistency conditions to cope with the uncertainty in the Hamilton equations. The
Poisson bracket of the constraints c1 and c2 with the total Hamiltonian Hfnls =

∫
dxHfnls give the Lagrange multipliers

2 and λ1, respectively. However, The consistency condition of the constraint c3 does not contain any multiplier, which
eans that the result should be set as a new constraint. In other words the Poisson bracket of the constraint c3 and the

total Hamiltonian

{c3,H} = φ2(γ − θxx). (46)

produces a secondary constraint. We define this secondary constraint as c̃4 = γ − θxx. By adding the contribution of the
primary and secondary constraints, the total Hamiltonian density becomes

Hfnls = γxθxφ
2
+ 2γ θxφxφ +

1
2
γ 2φ2

+ 2θ2x φxxφ − θ2x φ
2
x −

1
2
θ4x φ

2
+

1
2
θ2x φ

2
+

1
2
φ2
x −

1
2
φ2
xx −

1
2
φ4

+ λ1πφ + λ2

(
πθ +

1
2
φ2

)
+ λ3πγ + λ̃4 (γ − θxx) . (47)

ince there are no tertiary constraints for Lagrangian (44), we are able to obtain all the multipliers from consistency
onditions, as follows

λ1 = −2
[
2γxφx + φxx (γ + 2θxx)− 2θ3x φx + θx (φx + 2φ3x)

]
− φ

[
γxx +

(
1 − 6θ2x

)
θxx

]
+

2φ2
x

φ
(θxx − γ ) , (48a)

λ2 =
1
φ

[
2γ θxxφ − γ 2φ − 12θxθxxφx − 6θ2x φxx +

(
θ4x − θ2x − 4θ3xθx − 4θ2xx

)
φ + φxx + φ4x + 2φ3] , (48b)

λ3 = −2
(
−γxxθxx − 2γxθ3x + γ 2

x + γ γxx − γ θ4x − 2θ3xθ3x − 6θ2xxθ
2
x + θ3xθx + 2θ5xθx + θ2xx + 6θ23x + 8θxxθ4x − 2φ2

x

)
+

1
φ2

{
24

(
θ2xx + θxθ3x

)
φ2
x + 2φx

(
6θ2x φ3x + 30θxxθxφxx − φ3x − φ5x

)
+ φxx

[(
6θ2x − 1

)
φxx − φ4x

]}
+

1
φ

[
−6θ2x φ4x − 12θx (3θ3xφxx + θ4xφx)− 36θ2xxφxx − 36θxx (θ3xφx + θxφ3x)+ φ4x + φ6x

]
(48c)

+
2φ2

x

φ3

(
−6θ2x φxx − 12θxxθxφx + φxx + φ4x

)
+ 4φφxx,

λ̃4 = φ2 (θxx − γ ) . (48d)

After the substitution of the multipliers, the total Hamiltonian can be written as

Hfnls =
1

2φ3

(
a7φ7

+ a6φ6
+ a5φ5

+ a4φ4
+ a3φ3

+ a2φ2
+ a1φ + a0

)
, (49)

ith coefficients given as

a7 = 1, (50a)

a6 = 0, (50b)

a5 = 4πθ + 6γ θxx − 2γ 2
− 6θ2xx + 2γxθx − 4θxθ3x, (50c)

a4 = 4γ θxφx − 2φxxθ
2
x − 12φxθxxθx − 2πφ

[
γxx +

(
1 − 6θ2x

)
θxx

]
+ 8πγφxx + φxx + φ4x, (50d)

a3 = φ2
x − 2θ2x φ

2
x − φ2

xx + 2πθ
(
−γ 2

+ 2γ θxx + θ4x − θ2x − 4θ3xθx − 4θ2xx
)

(50e)

− 4πφ
(
γφxx − 2φxθ

3
x + φxθx + 2φ3xθx + 2γxφx + 2θxxφxx

)
− 4πγ

(
γ γxx − γ θ4x − 2θ3xθ3x − 6θ2xxθ

2
x + θ3xθx + 2θ5xθx + γ 2

x − 2φ2
x + θ2xx + 6θ23x − γxxθxx − 2γxθ3x + 8θxxθ4x

)
,

a2 = πθ
(
12θxφxθxx − φxx + 6θ2x φxx − φ4x

)
+ 4πφ

(
θxxφ

2
x − γφ2

x

)
(50f)

+ 2πγ
[
−6φ4xθ

2
x − 12θx (3φxxθ3x + φxθ4x)− 36θ2xxφxx − 36θxx (φxθ3x + θxφ3x)+ φ4x + φ6x

]
,

a1 = 2πγ
{
24

(
θ2xx + θxθ3x

)
φ2
x + 2

(
6φ3xθ

2
x + 30θxxφxxθx − φ3x − φ5x

)
φx + φxx

[(
6θ2x − 1

)
φxx − φ4x

]}
, (50g)

a0 = 4πγφ2
x

(
−6φxxθ

2
x − 12φxθxxθx + φxx + φ4x

)
. (50h)

In order to show the consistency we produce all desired equations of motion of this Hamiltonian which are obtained as

φt = −2θxφx + 4θ3x φx − φθxx + 6φθ2x θxx − 6θxxφxx − 4φxθ3x − 4θxφ3x − φθ4x, (51a)

φθt = 2φ3
− φθ2x + φθ4x − 12φxθxθxx − 3φθ2xx + φxx − 6φxxθ

2
x − 4φθxθ3x + φ4x, (51b)

γt = (θt )xx = (θxx)t , (51c)

(π ) = 0, (51d)
φ t

7
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6

i
e
t
i
T

C

U
N
S
r

D

a

D

R

(πγ )t = 0. (51e)

By substituting the canonical momenta the total Hamiltonian can be written as

Hfnls =

∫
dx

(
2θxθxxφxφ + 2θ2x φxxφ − θ2x φ

2
x −

1
2
θ4x φ

2
+

1
2
θ2x φ

2
+

1
2
θ2xxφ

2
+ θxθ3xφ

2
+

1
2
φ2
x −

1
2
φ2
xx −

1
2
φ4

)
. (52)

Eventually, the total Hamiltonian as a functional of the original field u = φeiθ is obtained as [26]

Hfnls =

∫
dx

(
1
2
|ux|

2
−

1
2
|u|4 −

1
2
|uxx|

2
)
. (53)

. Conclusion

The Dirac–Bergmann algorithm is used to construct the Hamiltonian from degenerate Lagrangians. The algorithm
ntroduces a set of constraints and their corresponding Lagrange multipliers in order to obtain consistent Hamilton
quations of motion. By studying different degenerate Lagrangians, we conclude that, for nonlinear Schrödinger equations,
he form of nonlinearity or the order of spatial derivatives does not change the dynamics of the constraints. However,
ntroducing a new field to treat the higher-order derivatives appearing in the Lagrangian generates secondary constraints.
he constraints naturally are the same as the definition of the new fields.

RediT authorship contribution statement

Ali Pazarci: Conceptualization, Methodology, Computations, Writing – original draft, Writing – review & editing.
mut Can Turhan: Conceptualization, Methodology, Computations, Writing – original draft, Writing – review & editing.
ader Ghazanfari: Conceptualization, Methodology, Computations, Writing – original draft, Writing – review & editing,
upervision. Ilmar Gahramanov: Conceptualization, Methodology, Computations, Writing – original draft, Writing –
eview & editing, Supervision.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
ppeared to influence the work reported in this paper.

ata availability

No data was used for the research described in the article.

eferences

[1] Sundermeyer K. Constrained dynamics with applications to Yang-Mills theory, general relativity, classical spin, dual string model.
Springer-Verlag; 1982.

[2] Bergmann PG. Non-linear field theories. Phys Rev 1949;75:680–5, URL https://link.aps.org/doi/10.1103/PhysRev.75.680.
[3] Bergmann PG, Brunings JHM. Non-linear field theories II. Canonical equations and quantization. Rev Modern Phys 1949;21:480–7, URL

https://link.aps.org/doi/10.1103/RevModPhys.21.480.
[4] Bergmann PG, Penfield R, Schiller R, Zatzkis H. The Hamiltonian of the general theory of relativity with electromagnetic field. Phys Rev

1950;80:81–8, URL https://link.aps.org/doi/10.1103/PhysRev.80.81.
[5] Dirac PAM. Generalized Hamiltonian dynamics. Canad J Math 1950;2:129–48.
[6] Dirac PAM. The Hamiltonian form of field dynamics. Canad J Math 1951;3:1–23.
[7] Anderson JL, Bergmann PG. Constraints in covariant field theories. Phys Rev 1951;83:1018–25, URL https://link.aps.org/doi/10.1103/PhysRev.83.

1018.
[8] Gitman D, Tyutin IV. Quantization of fields with constraints. Springer Science & Business Media; 2012.
[9] Scott A. Encyclopedia of nonlinear science. Taylor & Francis Inc; 2004.

[10] Powers P, Haus J. Fundamentals of nonlinear optics. 2nd ed. CRC Press; 2017.
[11] Bialynicki-Birula I, Mycielski J. Nonlinear wave mechanics. Ann Phys 1976;100(1–2):62–93.
[12] Hosseini K, Samadani F, Kumar D, Faridi M. New optical solitons of cubic-quartic nonlinear Schrödinger equation. Optik 2018;157:1101–5, URL

https://www.sciencedirect.com/science/article/pii/S0030402617315449.
[13] Pethick CJ, Smith H. Bose–Einstein condensation in dilute gases. 2nd ed. Cambridge University Press; 2008.
[14] Pitaevskii L, Stringari S. Bose-Einstein condensation and superfluidity. Oxford University Press; 2016.
[15] Novikov S, Manakov SV, Pitaevskii LP, Zakharov VE. Theory of solitons: the inverse scattering method. Springer Science & Business Media;

1984.
[16] Karpman V. Solitons of the fourth order nonlinear Schrödinger equation. Phys Lett A 1994;193(4):355–8, URL https://www.sciencedirect.com/

science/article/pii/0375960194909644.
[17] Karpman VI. Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrödinger-type equations. Phys Rev E

1996;53:R1336–9, URL https://link.aps.org/doi/10.1103/PhysRevE.53.R1336.
[18] Deriglazov AA. Classical mechanics, hamiltonian and lagrangian formalism. Springer; 2010.
[19] Lusanna L. Dirac–bergmann constraints in physics: Singular Lagrangians, Hamiltonian constraints and the second noether theorem. Int J Geom

Methods Mod Phys 2018;15(10):1830004.
8

http://refhub.elsevier.com/S1007-5704(23)00109-0/sb1
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb1
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb1
https://link.aps.org/doi/10.1103/PhysRev.75.680
https://link.aps.org/doi/10.1103/RevModPhys.21.480
https://link.aps.org/doi/10.1103/PhysRev.80.81
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb5
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb6
https://link.aps.org/doi/10.1103/PhysRev.83.1018
https://link.aps.org/doi/10.1103/PhysRev.83.1018
https://link.aps.org/doi/10.1103/PhysRev.83.1018
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb8
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb9
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb10
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb11
https://www.sciencedirect.com/science/article/pii/S0030402617315449
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb13
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb14
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb15
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb15
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb15
https://www.sciencedirect.com/science/article/pii/0375960194909644
https://www.sciencedirect.com/science/article/pii/0375960194909644
https://www.sciencedirect.com/science/article/pii/0375960194909644
https://link.aps.org/doi/10.1103/PhysRevE.53.R1336
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb18
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb19
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb19
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb19


A. Pazarci, U.C. Turhan, N. Ghazanfari et al. Communications in Nonlinear Science and Numerical Simulation 121 (2023) 107191
[20] Shabat A, Zakharov V. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov
Phys—JETP 1972;34(1):62.

[21] Zakharov VE, Manakov SV. On complete integrability of the nonlinear schroedinger equation. Teor. Mat. Fiz. 1974;19:332–43.
[22] Bialynicki-Birula I, Mycielski J. Nonlinear Wave Mechanics. Ann Physics 1976;100:62.
[23] Nutku Y. Hamiltonian formulation of the KdV equation. J Math Phys 1984;25(6):2007–8.
[24] Nutku Y. Lagrangian approach to integrable systems yields new symplectic structures for KdV. In: NATO advanced research workshop on

integrable hierarchies and modern physical theories (NATO ARW - UIC 2000). 2000, arXiv:hep-th/0011052.
[25] Nutku Y, Pavlov M. Multi-Lagrangians for integrable systems. J Math Phys 2002;43(3):1441–59.
[26] Karpman V. Influence of high-order dispersion on self-focusing. I. Qualitative investigation. Phys Lett A 1991;160(6):531–7, URL https:

//www.sciencedirect.com/science/article/pii/037596019191063J.
9

http://refhub.elsevier.com/S1007-5704(23)00109-0/sb20
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb20
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb20
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb21
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb22
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb23
http://arxiv.org/abs/hep-th/0011052
http://refhub.elsevier.com/S1007-5704(23)00109-0/sb25
https://www.sciencedirect.com/science/article/pii/037596019191063J
https://www.sciencedirect.com/science/article/pii/037596019191063J
https://www.sciencedirect.com/science/article/pii/037596019191063J

	Hamiltonian formalism for nonlinear Schrodinger equations
	Introduction
	Dirac–Bergmann algorithm
	Nonlinear Schrodinger Equation
	Cubic nonlinear Schrodinger equation
	Logarithmic nonlinear Schrodinger equation

	Korteweg–deVries equation
	Fourth-order nonlinear Schrodinger equation
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


