On the solution of the operator Riccati equations and invariant subspaces in the weighted Bergman space of the unit ball

Ramiz Tapdigoglu ${ }^{\text {a,b }}$, Mehmet Gürdal ${ }^{\text {c,* }}$, Nur Sarı ${ }^{\text {c }}$
${ }^{a}$ Azerbaijan State University of Economics (UNEC), Baku, Azerbaijan
${ }^{b}$ Department of Mathematics, Khazar University, Baku, Azerbaijan
${ }^{\text {c }}$ Department of Mathematics, Suleyman Demirel University, 32260, Isparta, Turkey

Abstract

We consider the Riccati operator equations on the weighted Bergman space $A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)$ of the unit ball \mathbb{B}_{n} in \mathbb{C}^{n} and investigate the properties of their solutions. Our discussion uses the Berezin symbols method.

1. Introduction and background

Through the paper, \mathbb{B}_{n} will denote the unit ball in \mathbb{C}^{n}. Let v be the normalized Lebesgue volume measure on \mathbb{B}_{n}. For $-1<\alpha<+\infty$, we denote by v_{α} the measure on \mathbb{B}_{n} defined by

$$
d v_{\alpha}(z)=c_{\alpha}\left(1-|z|^{2}\right)^{\alpha} d v(z)
$$

where $c_{\alpha}=\frac{\Gamma(n+\alpha+1)}{n!\Gamma(\alpha+1)}$ is a normalizing constant such that $v_{\alpha}\left(\mathbb{B}_{n}\right)=1$. For $1 \leq p<\infty$, we write $\|\cdot\|_{\alpha, p}$ for the norm in $L^{p}\left(\mathbb{B}_{n}, d v_{\alpha}\right)$ and $\langle., .\rangle_{\alpha}$ for the inner product on $L^{2}\left(\mathbb{B}_{n}, d v_{\alpha}\right)$. Recall that the Bergman space $A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)$ is the space of holomorphic functions which are square-integrable with respect to measure $d v_{\alpha}$ on \mathbb{B}_{n}. It is known that (see, for instance, Hedenmalm, Korenblum and Zhu [17]) the reproducing kernel K_{w}^{α} and normalized reproducing kernel k_{w}^{α} of the space $A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)$ are given by

$$
K_{w}^{\alpha}(z):=\frac{1}{(1-\langle z, w\rangle)^{n+\alpha+1}}
$$

and

$$
k_{w}^{\alpha}(z):=\frac{\left(1-|w|^{2}\right)^{\frac{n+\alpha+1}{2}}}{(1-\langle z, w\rangle)^{n+\alpha+1}}
$$

[^0]respectively, for $z, w \in \mathbb{B}_{n}$. The reproducing property means that
$$
\left\langle f, K_{w}^{\alpha}\right\rangle_{\alpha}=f(w)
$$
for every $f \in A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)$ and all $z, w \in \mathbb{B}_{n}$. The orthogonal projection P_{α} of $L^{2}\left(\mathbb{B}_{n}, d v_{\alpha}\right)$ onto $A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)$ is given by
$$
\left(P_{\alpha} f\right)(w):=\left\langle f, K_{w}^{\alpha}\right\rangle_{\alpha}=\int_{\mathbb{B}_{n}} f(z) \frac{1}{(1-\langle w, z\rangle)^{n+\alpha+1}} d v_{\alpha}(z),
$$
for $f \in L^{2}\left(\mathbb{B}_{n}, d v_{\alpha}\right)$ and $w \in \mathbb{B}_{n}$. Given $h \in L^{1}\left(\mathbb{B}_{n}, d v_{\alpha}\right)$, the Toeplitz operator
$$
T_{h}: A_{\alpha}^{2}\left(\mathbb{B}_{n}\right) \rightarrow A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)
$$
and multiplication operator
$$
M_{h}: A_{\alpha}^{2}\left(\mathbb{B}_{n}\right) \rightarrow L^{2}\left(\mathbb{B}_{n}, d v_{\alpha}\right)
$$
are defined, respectively, by
\[

$$
\begin{equation*}
\left(T_{h} f\right)(z)=\int_{\mathbb{B}_{n}} \frac{f(w) h(w)}{(1-\langle z, w\rangle)^{n+\alpha+1}} d v_{\alpha}(w) \tag{1}
\end{equation*}
$$

\]

and

$$
M_{h}(f)=h f
$$

Recall that for a bounded linear operator A on Bergman space $A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)$, its Berezin symbol (transform) is defined by (see [2-5, 9, 15, 17])

$$
\widetilde{A}(z):=\left\langle A k_{z}(w), k_{z}(w)\right\rangle, z, w \in \mathbb{B}_{n} .
$$

Since by the Cauchy-Schwarz inequality

$$
|\widetilde{A}(z)| \leq\left\|A k_{z}(w)\right\|\left\|k_{z}(w)\right\| \leq\|A\|
$$

for all $z \in \mathbb{B}_{n}$, the Berezin symbol \widetilde{A} is a bounded complex-valued function on \mathbb{B}_{n}. The present paper is motivated mostly by the papers [10, 16]. Namely, in the present article, by using the Berezin symbol technique, we study the operator Riccati equation

$$
\begin{equation*}
X A X+X B-C X-D=0 \tag{2}
\end{equation*}
$$

with coefficient operators A, B, C, D in $\mathcal{B}\left(A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)\right)$.
We also investigate invariant subspaces of a Toeplitz operator on the weighted Bergman space $A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)$ in terms of Berezin symbols.

Note that Berezin symbol of operators plays important role in operator theory (see $[5,9,17]$). In particular, it is important in the characterization of compact operators (see Nordgren and Rosenthal [15]), including compact Toeplitz operators (see [1, 17], and references therein). The method of Berezin symbols is motivated by its connection with quantum physics, see Berezin [2,3].

2. Riccati equation on the set of Toeplitz operators

For $f \in L^{1}\left(\mathbb{B}_{n}, d v_{\alpha}\right)$, we define the Berezin transform (symbol) of f to be the function \widetilde{f}, i.e.,

$$
\begin{equation*}
\widetilde{f}(z):=\int_{\mathbb{B}_{n}} f(w)\left|k_{z}^{\alpha}(w)\right|^{2} d v_{\alpha}(w) \tag{3}
\end{equation*}
$$

If f is bounded, then \widetilde{f} is a bounded function on \mathbb{B}_{n}.
According to the definition of Berezin transform, the mean oscillation of f in the weighted Bergman metric is the function $M O(f)(z)$ defined on \mathbb{B}_{n} by (see, [6])

$$
M O(f)(z):=\widetilde{|f|^{2}}(z)-|\widetilde{f}(z)|^{2}
$$

For $z \in \mathbb{B}_{n}$, let φ_{z} be the automorphism of \mathbb{B}_{n} such that $\varphi_{z}(0)=z$ and $\varphi_{z}=\varphi_{z}^{-1}$. Thus, we have the change-of-variable formula

$$
\int_{\mathbb{B}_{n}} h\left(\varphi_{z}(w)\right)\left|k_{z}^{\alpha}(w)\right|^{2} d v_{\alpha}(w)=\int_{\mathbb{B}_{n}} h(w) d v_{\alpha}(w)
$$

for every $h \in L^{1}\left(\mathbb{B}_{n}, d v_{\alpha}\right)$.
For $f \in L^{1}\left(\mathbb{B}_{n}, d v_{\alpha}\right)$, the Berezin transform of Toeplitz operator T_{f} coincides the Berezin transform of the function f, that is $\widetilde{T}_{f}(z)=\widetilde{f}(z)$ for all $z \in \mathbb{B}_{n}$. For more properties and facts of the Berezin transform, see, for example, Engliš [5], Nordgren and Rosenthal [15] and Zhu [17].

Recall that $B M O_{\partial}:=B M O_{\partial}\left(\mathbb{B}_{n}\right)$ is defined to be the space of functions f such that

$$
\|f\|_{B M O_{\partial}}:=\sup _{z \in \mathbb{B}_{n}} M O(f)(z)<+\infty .
$$

Let $V M O_{\partial}:=V M O_{\partial}\left(\mathbb{B}_{n}\right)$ be the subspace of $B M O_{\partial}$ consisting of functions f with

$$
\lim _{z \rightarrow \partial \mathbb{B}_{n}}\left(\widetilde{|f|^{2}}(z)-|\widetilde{f}(z)|^{2}\right)=0
$$

Also, we denote by $B A:=B A\left(\mathbb{B}_{n}\right)$ (see [14]) the space of functions f with

$$
\|f\|_{B A}:=\sup _{z \in \mathbb{B}_{n}}\left[\widetilde{|f|^{2}}(z)\right]^{1 / 2},
$$

and finally, we define $V A:=V A\left(\mathbb{B}_{n}\right)$ (see [14]) as the subspace of $B A$ consisting of functions f satisfying

$$
\lim _{z \rightarrow \partial \mathbb{B}_{n}} \widetilde{|f|^{2}}(z)=0
$$

It is easy to see that if $f \in V A$ then $f \in V M O_{\partial}$. For each $f \in V A$, it can be obtained by Hölder inequality that

$$
|\widetilde{f(z)}|=\int_{\mathbb{B}_{n}}|f(w)|\left|k_{z}(w)\right|^{2} d v_{\alpha}(w) \leq\left[\widetilde{|f|^{2}}(z)\right]^{1 / 2}<+\infty .
$$

Recall also that $H^{\infty}=H^{\infty}\left(\mathbb{B}_{n}\right)$ is the space of holomorphic functions f on \mathbb{B}_{n} such that

$$
\|f\|_{H^{\infty}}:=\sup _{z \in \mathbb{B}_{n}}|f(z)|<+\infty .
$$

For a function $\varphi \in B M O_{\partial}\left(\mathbb{B}_{n}\right)$, we define the Toeplitz operator T_{φ} with symbol φ on $A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)$ by

$$
T_{\varphi} f=P_{\alpha}(\varphi f)=\int_{\mathbb{B}_{n}} \frac{f(w) \varphi(w)}{(1-\langle z, w\rangle)^{n+\alpha+1}} d v_{\alpha}(w)(\operatorname{see}(1))
$$

for all $f \in A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)$. For more information about Toeplitz operators, the reader can find, for example, in [1, 5, 7, 12, 13, 17].

For $\varphi \in H^{\infty}, T_{\varphi}$ is just the operator of multiplication by φ on the space $A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)$, i.e., $T_{\varphi} f=\varphi f, f \in A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)$. Then we have that

$$
\begin{aligned}
\left\langle T_{\varphi}^{*} k_{z}^{\alpha}, f\right\rangle & =\left\langle k_{z}^{\alpha}, T_{\varphi} f\right\rangle=\left\langle k_{z}^{\alpha}, \varphi f\right\rangle \\
& =\overline{\left\langle\varphi f, k_{z}^{\alpha}\right\rangle}=\overline{(\varphi f)(z)}=\left\langle\overline{\varphi(z)} k_{z}^{\alpha}, f\right\rangle
\end{aligned}
$$

hence, $T_{\varphi}^{*} k_{z}^{\alpha}=\overline{\varphi(z)} k_{z}^{\alpha}$ for all $z \in \mathbb{B}_{n}$.
In this section, we study Riccati operator equation (2) on the set of Toeplitz operators $T_{\varphi} \in \mathcal{B}\left(A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)\right)$ in terms of Berezin symbols, which firstly studied by Karaev [10] in the Hardy Hilbert space $H^{2}(\mathbb{D})$ over the unit disc \mathbb{D} of \mathbb{C}. In the sequel, this approach attracted attention of several authors in $[7,8,11,12,14]$. The following extension of Engliš's result, [5], is essential in what follows, so, we start with the proof of the following auxiliary lemma.

Lemma 2.1. Let $\varphi \in V M O_{\partial}\left(\mathbb{B}_{n}\right)$. Then

$$
\lim _{z \rightarrow \partial \mathbb{B}_{n}}\left\|T_{\varphi} k_{z}^{\alpha}-\widetilde{\varphi}(z) k_{z}^{\alpha}\right\|_{A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)}=0
$$

Proof. Indeed, it is easy to see that

$$
\begin{aligned}
\left\|T_{\varphi} k_{z}^{\alpha}-\widetilde{\varphi}(z) k_{z}^{\alpha}\right\|_{A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)}^{2} & =\left\langle T_{\varphi} k_{z}^{\alpha}-\widetilde{\varphi}(z) k_{z}^{\alpha}, T_{\varphi} k_{z}^{\alpha}-\widetilde{\varphi}(z) k_{\alpha}^{z}\right\rangle \\
& =\left\|T_{\varphi} k_{z}^{\alpha}\right\|^{2}-\overline{\widetilde{\varphi}}(z)\left\langle T_{\varphi} k_{z}^{\alpha}, k_{z}^{\alpha}\right\rangle-\widetilde{\varphi}(z)\left\langle k_{z}^{\alpha}, T_{\varphi} k_{z}^{\alpha}\right\rangle+|\widetilde{\varphi}(z)|^{2}
\end{aligned}
$$

Since $\widetilde{T}_{\varphi}(z)=\widetilde{\varphi}(z)$, we have

$$
\left\|T_{\varphi} k_{z}^{\alpha}-\widetilde{\varphi}(z) k_{z}^{\alpha}\right\|_{A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)}^{2}=\left\|T_{\varphi} k_{z}^{\alpha}\right\|^{2}-|\widetilde{\varphi}(z)|^{2}
$$

On the other hand,

$$
\left\|T_{\varphi} k_{z}^{\alpha}\right\|^{2}=\left\|P_{\alpha}\left(\varphi k_{z}^{\alpha}\right)\right\|^{2} \leq\left\|\varphi k_{z}^{\alpha}\right\|_{L^{2}\left(\mathbb{B}_{n}, d V_{\alpha}\right)}^{2}=\widetilde{|\varphi|^{2}}(z)
$$

Then

$$
\left\|T_{\varphi} k_{z}^{\alpha}-\widetilde{\varphi}(z) k_{z}^{\alpha}\right\|_{A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)}^{2} \leq \widetilde{|\varphi|^{2}}(z)-|\widetilde{\varphi}(z)|^{2}
$$

For $\varphi \in V M O_{\partial}$, we have

$$
\widetilde{|\varphi|^{2}}(z)-|\widetilde{\varphi}(z)|^{2} \rightarrow 0, z \rightarrow \partial \mathbb{B}_{n} \text { non-tangentially }
$$

which proves the lemma.
In next theorem, we consider the case that Toeplitz operator is a solution of the Riccati equation (2) on the space $A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)$.

Theorem 2.2. Suppose that $B=T_{\varphi}^{*}, C=T_{\psi}$ such that φ, ψ are nonconstant functions on H^{∞}, and let A and D be bounded linear operators on $A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)$. If $h \in V A\left(\mathbb{B}_{n}\right)$ and the corresponding Toeplitz operator T_{h} is a solution of the operator Riccati equation (2), then

$$
\begin{equation*}
\lim _{z \rightarrow \partial \mathbb{B}_{n}}\left(\widetilde{A}(z) \widetilde{h}^{2}(z)+(\overline{\varphi(z)}-\psi(z)) \widetilde{h}(z)-\widetilde{D}(z)\right)=0 \tag{4}
\end{equation*}
$$

Proof. In fact, since T_{h} is a solution of equation (2), then

$$
T_{h} A T_{h}+T_{h} T_{\varphi}^{*}-T_{\psi} T_{h}-D=0
$$

Then, $\left[T_{h} A T_{h}+T_{h} T_{\varphi}^{*}-T_{\psi} T_{h}-D\right]^{\sim}(z)=0$ for all $z \in \mathbb{B}_{n}$, that is

$$
\left\langle\left(T_{h} A T_{h}+T_{h} T_{\varphi}^{*}-T_{\psi} T_{h}-D\right) k_{z}^{\alpha}, k_{z}^{\alpha}\right\rangle=0, \forall z \in \mathbb{B}_{n}
$$

Therefore

$$
\begin{aligned}
0 & =\left\langle T_{h} A T_{h} k_{z}^{\alpha}, k_{z}^{\alpha}\right\rangle+\left\langle T_{h} T_{\varphi}^{*} k_{z}^{\alpha}, k_{z}^{\alpha}\right\rangle-\left\langle T_{\psi} T_{h} k_{z}^{\alpha}, k_{z}^{\alpha}\right\rangle-\left\langle D k_{z}^{\alpha}, k_{z}^{\alpha}\right\rangle \\
& =\left\langle A T_{h} k_{z}^{\alpha}, T_{h}^{*} k_{z}^{\alpha}-\widetilde{T_{h}^{*}}(\lambda) k_{z}^{\alpha}\right\rangle+\widetilde{T}_{h}(\lambda)\left\langle A T_{h} k_{z}^{\alpha}, k_{z}^{\alpha}\right\rangle \\
& +\left\langle T_{h}\left(T_{h}^{*} k_{z}^{\alpha}-\widetilde{T_{\varphi}^{*}}(\lambda) k_{z}^{\alpha}\right), k_{z}^{\alpha}\right\rangle+\widetilde{T_{\varphi}^{*}}(z) \widetilde{T}_{h}(z) \\
& -\left\langle T_{\psi}\left(T_{h} k_{z}^{\alpha}-\widetilde{T_{h}}(\lambda) k_{z}^{\alpha}\right), k_{z}^{\alpha}\right\rangle-\widetilde{T}_{\psi}(\lambda) \widetilde{T}_{h}(z)-\widetilde{D}(z) \\
& =\left\langle A T_{h} k_{z}^{\alpha}, T_{h}^{*} k_{z}^{\alpha}-\widetilde{T_{h}^{*}}(\lambda) k_{z}^{\alpha}\right\rangle \\
& +\widetilde{T}_{h}(\lambda)\left[\left\langle A\left(T_{h} k_{z}^{\alpha}-\widetilde{T}_{h}(\lambda) k_{z}^{\alpha}\right), k_{z}^{\alpha}\right\rangle+\widetilde{T}_{h}(\lambda) \widetilde{A}(z)\right] \\
& +\left\langle T_{\varphi}^{*} k_{z}^{\alpha}-\widetilde{T_{\varphi}^{*}}(\lambda) k_{z}^{\alpha}, T_{h}^{*} k_{z}^{\alpha}\right\rangle+\widetilde{T_{\varphi}^{*}}(\lambda) \widetilde{T}_{h}(z)-\left\langle T_{h} k_{z}^{\alpha}-\widetilde{T}_{h}(\lambda) k_{z}^{\alpha}, T_{\psi}^{*} k_{z}^{\alpha}\right\rangle \\
& -\widetilde{T}_{\psi}(\lambda) \widetilde{T}_{h}(z)-\widetilde{D}(z) \\
& =\left[\widetilde{A}(z) \widetilde{h}^{2}(z)+(\overline{\varphi(z)}-\psi(z) \widetilde{h}(z)-\widetilde{D}(z)]+\left\langle A T_{h} k_{z}^{\alpha}, T_{h}^{*} k_{z}^{\alpha}-\overline{\widetilde{h}}(z) k_{z}^{\alpha}\right\rangle\right. \\
& +\widetilde{h}(z)\left\langle T_{h} k_{z}^{\alpha}-\widetilde{h}(z) k_{z}^{\alpha}, A^{*} k_{z}^{\alpha}\right\rangle+\left\langle\overline{\varphi(z)} k_{z}^{\alpha}-\overline{\psi(z)} k_{z}^{\alpha}, T_{h}^{*} k_{z}^{\alpha}\right\rangle,
\end{aligned}
$$

which by Lemma 2.1 yields

$$
\begin{aligned}
\mid \widetilde{A}(z) \widetilde{h}^{2}(z)+ & (\overline{\varphi(z)}-\psi(z)) \widetilde{h}(z)-\widetilde{D}(z) \mid \leq\left\|A T_{h}\right\|\left\|T_{h}^{*} k_{z}^{\alpha}-\widetilde{\widetilde{h}}(z) k_{z}^{\alpha}\right\| \\
& +\left\|T_{h}\right\|\|A\|\left\|T_{h} k_{z}^{\alpha}-\widetilde{h}(z) k_{z}^{\alpha}\right\| \rightarrow 0 \text { as } z \rightarrow \partial \mathbb{B}_{n}
\end{aligned}
$$

This implies the desired assertion (4), which proves the theorem.
Corollary 2.3. Suppose that the limits $\widetilde{A}(\xi):=\lim _{z \rightarrow \partial \mathbb{B}_{n}} \widetilde{A}(z)$ and $\widetilde{D}(\xi):=\lim _{z \rightarrow \partial \mathbb{B}_{n}} \widetilde{D}(z)$ exist for almost all points $\xi \in \partial \mathbb{B}_{n}$, and verify

$$
\begin{equation*}
(\bar{\varphi}(\xi)-\psi(\xi))^{2}+4 \widetilde{A}(\xi) \widetilde{D}(\xi)=0 \tag{5}
\end{equation*}
$$

for almost all points $\xi \in \partial \mathbb{B}_{n}$. Let $h \in V A\left(\mathbb{B}_{n}\right)$. If T_{h} is a solution of Riccati equation (2), then

$$
\lim _{z \rightarrow \xi \in \partial \mathbb{B}_{n}} \widetilde{h}^{2}(z)=-\frac{\widetilde{D}(\xi)}{\widetilde{A}(\xi)}
$$

for almost all $\xi \in \partial \mathbb{B}_{n}$.

Proof. Indeed, since T_{h} satisfies equation (2), we have obtain by Theorem 2.2 that

$$
\lim _{z \rightarrow \partial \mathbb{B}_{n}}\left(\widetilde{A}(z) \widetilde{h}^{2}(z)+(\overline{\varphi(z)}-\psi(z)) \widetilde{h}(z)-\widetilde{D}(z)\right)=0
$$

Further,

$$
\begin{aligned}
& \lim _{z \rightarrow \partial \mathbb{B}_{n}} \widetilde{A}(z)\left[\widetilde{h}^{2}(z)+\frac{\overline{\varphi(z)}-\psi(z) \widetilde{h}}{\widetilde{A}(z)}-\frac{\widetilde{A}(z) \widetilde{D}(z)}{\widetilde{A}^{2}(z)}\right] \\
& =\lim _{z \rightarrow \partial \mathbb{B}_{n}} \widetilde{A}(z)\left[\widetilde{h}^{2}(z)+\frac{\overline{\varphi(z)}-\psi(z)}{\widetilde{A}(z)} \widetilde{h}(z)+\frac{(\overline{\varphi(z)}-\psi(z))^{2}}{4 \widetilde{A}^{2}(z)}\right] \\
& =\lim _{z \rightarrow \partial \mathbb{B}_{n}} \widetilde{A}(z)\left(\widetilde{h}(z)+\frac{\overline{\varphi(z)}-\psi(z)}{2 \widetilde{A}(z)}\right)^{2}=0 .
\end{aligned}
$$

In particular,

$$
\lim _{z \rightarrow \xi \in \partial \mathbb{B}_{n}} \widetilde{h}(z)=\frac{\psi(\xi)-\overline{\varphi(\xi)}}{2 \widetilde{A}(\xi)}
$$

hence we have that

$$
\lim _{z \rightarrow \xi \in \partial \mathbb{B}_{n}} \widetilde{h}^{2}(z)=-\frac{\widetilde{D}(\xi)}{\widetilde{A}(\xi)}
$$

for almost all $\xi \in \partial \mathbb{B}_{n}$, as desired.

3. Invariant subspaces of compact Toeplitz operators on $A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)$

Note that the solvability of the Riccati operator equation in concrete operator classes is an important problem of operator theory in the Hilbert space H. For example, the existence of a nontrivial solution of equation (2) for fixed $A \in \mathcal{B}(H), B=D=0$ and $C=A$ on the $\operatorname{set} \mathcal{P}_{h}$ of all orthogonal projections $P \in \mathcal{B}(H)$ is equivalent to the positive solution of the famous Invariant Subspace Problem in the infinite dimensional separable complex Hilbert space, since $T E \subset E$ if and only if

$$
\begin{equation*}
\left(I-P_{E}\right) T P_{E}=0 \tag{6}
\end{equation*}
$$

where $P_{E}: H \rightarrow E$ is an orthogonal projection onto the closed subspace $E \subset H$. In this section, we discuss the structure of invariant subspaces of Toeplitz operator T_{f} on the weighted Bergman space $A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)$ in terms of Berezin symbols.

For any $p \geq 1, V M O_{\alpha}^{p}$ denotes the subspace $B M O_{\alpha}^{p}$ consisting of functions f such that

$$
\lim _{z \rightarrow \partial \mathbb{B}_{n}}\left\|f \circ \varphi_{z}-\widetilde{f}(z)\right\|_{\alpha, p}=0
$$

The following theorem is contained in [6].
Theorem 3.1. ([6]) Suppose $f \in V M O_{\alpha}^{1}$ and $|f| /(1-|z|)^{4(n+\alpha+1)}$ is bounded on the unit ball \mathbb{B}_{n}. Then T_{f} is compact operator on $A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)$ if and only if $\widetilde{f}(z) \rightarrow 0$ as $z \rightarrow \partial \mathbb{B}_{n}$.

Our next result is the following.

Theorem 3.2. Suppose $f \in V M O_{\alpha}^{1},|f| /(1-|z|)^{4(n+\alpha+1)}$ is bounded on \mathbb{B}_{n} and $\widetilde{f}(z) \rightarrow 0$ as $z \rightarrow \partial \mathbb{B}_{n}$. Let $E \subset A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)$ be a closed subspace of $A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)$. If $T_{\varphi} E \subset E$, i.e., E is invariant under the Toeplitz operator T_{f}, then

$$
\begin{equation*}
\left|\left(T_{f} K_{z}^{\alpha, E}\right)(z)-\widetilde{f}(z) K_{z}^{\alpha, E}(z)\right|=o\left(\left(1-|z|^{2}\right)^{-(n+\alpha+1)}\right) \text { as } z \rightarrow \partial \mathbb{B}_{n} \tag{7}
\end{equation*}
$$

where $K_{z}^{\alpha, E}$ denotes the reproducing kernel of the subspace E, which is equal $P_{E} K_{z}^{\alpha}$.
Proof. Suppose $T_{f} E \subset E$. Then it means that $\left(I-P_{E}\right) T_{f} P_{E}=0$, and hence $P_{E} T_{f} P_{E}-T_{f} P_{E}=0$, that is P_{E} is a solution of equation (6) where $T=T_{f}$. It is then clear from the above equality that

$$
\widetilde{T_{f} P_{E}}(z)-\widetilde{P_{E} T_{f} P_{E}}(z)=0
$$

for all $z \in \mathbb{B}_{n}$. So, we have that

$$
\begin{aligned}
0 & =\left\langle P_{E} k_{z}^{\alpha}, T_{f}^{*} k_{z}^{\alpha}\right\rangle-\left\langle T_{f} P_{E} k_{z}^{\alpha}, P_{E} k_{z}^{\alpha}\right\rangle \\
& =\left\langle P_{E} k_{z}^{\alpha}, T_{\bar{f}} k_{z}^{\alpha}-\overline{\bar{f}}(z) k_{z}^{\alpha}\right\rangle+\frac{\widetilde{f}(z)}{K_{z}^{\alpha}(z)}\left\langle K_{z}^{\alpha, E}, K_{z}^{\alpha}\right\rangle-\frac{1}{K_{z}^{\alpha}(z)}\left\langle T_{f} K_{z}^{\alpha, E}, K_{z}^{\alpha, E}\right\rangle .
\end{aligned}
$$

By considering that $T_{f} E \subset E$, and therefore $T_{f} K_{z}^{\alpha, E} \in E$, we have that

$$
\left\langle T_{f} K_{z}^{\alpha, E}, K_{z}^{\alpha, E}\right\rangle=\left(T_{f} K_{z}^{\alpha, E}\right)(z)
$$

for all $z \in \mathbb{B}_{n}$. On the other hand, we obtain from Theorem 3.1 and the Cauchy-Schwarz inequality that

$$
\begin{aligned}
& \lim _{z \rightarrow \xi \in \partial \mathbb{B}_{n}} \frac{1}{K_{z}^{\alpha}(z)}\left|\left(T_{f} K_{z}^{\alpha, E}\right)(z)-\widetilde{f}(z) K_{z}^{\alpha, E}(z)\right| \\
= & \lim _{z \rightarrow \xi \in \partial \mathbb{B}_{n}}\left(1-|z|^{2}\right)^{(n+\alpha+1)}\left|\left(T_{f} K_{z}^{\alpha, E}\right)(z)-\widetilde{f}(z) K_{z}^{\alpha, E}(z)\right| \\
= & \lim _{z \rightarrow \xi \in \partial \mathbb{B}_{n}}\left|\left\langle P_{E} k_{z}^{\alpha}, T_{\bar{f}} k_{z}^{\alpha}-\widetilde{\bar{f}}(z) k_{z}^{\alpha}\right\rangle\right| \\
\leq & \lim _{z \rightarrow \xi \in \partial \mathbb{B}_{n}}\left\|P_{E} k_{z}^{\alpha}\right\|\left\|T_{\bar{f}} k_{z}^{\alpha}-\widetilde{\bar{f}}(z) k_{z}^{\alpha}\right\| \\
\leq & \lim _{z \rightarrow \xi \in \partial \mathbb{B}_{n}}\left\langle T_{\bar{f}} k_{z}^{\alpha}-\overline{\widetilde{f}}(z) k_{z}^{\alpha}, T_{\bar{f}} k_{z}^{\alpha}-\overline{\widetilde{f}}(z) k_{z}^{\alpha}\right\rangle^{\frac{1}{2}} \\
= & \lim _{z \rightarrow \xi \in \partial \mathbb{B}_{n}}\left(\left\|T_{\bar{f}} k_{z}^{\alpha}\right\|^{2}-|\widetilde{f}(z)|^{2}\right)^{1 / 2}\left(\text { since } T k_{z}^{\alpha}-\widetilde{T}(z) k_{z}^{\alpha} \perp k_{z}^{\alpha} \text { for any } T \in B\left(A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)\right)\right) .
\end{aligned}
$$

Since $\lim _{z \rightarrow \partial \mathbb{B}_{n}} \widetilde{f}(z)=0$, by Theorem 3.1, T_{f} is compact on $A_{\alpha}^{2}\left(\mathbb{B}_{n}\right)$. On the other hand, the normalized reproducing kernel k_{z}^{α} converges weakly to 0 as z tends $\partial \mathbb{B}_{n}$, and therefore $\left\|T_{\bar{f}} k_{z}^{\alpha}\right\| \rightarrow 0$ as $z \rightarrow \partial \mathbb{B}_{n}$. Thus, we deduce from the latter inequality that

$$
\lim _{z \rightarrow \partial \mathbb{B}_{n}}\left(1-|z|^{2}\right)^{(n+\alpha+1)}\left|\left(T_{f} K_{z}^{\alpha, E}\right)(z)-\widetilde{f}(z) K_{z}^{\alpha, E}(z)\right|=0
$$

which gives (7). The proof is completed.

References

[1] S. Axler, D. Zheng, The Berezin transform on the Toeplitz algebra, Studia Math. 127 (1998), 113-136.
[2] F. A. Berezin, Convariant and contravariant symbols for operators, Math. USSR-Izv. 6 (1972), 1117-1151.
[3] F. A. Berezin, Quantization, Math. USSR-Izv. 8 (1974), 1109-1163.
[4] I. Chalendar, E. Fricain, M. Gürdal, M. T. Karaev, Compactness and Berezin symbols, Acta Sci. Math. (Szeged) 78 (2012), 315-329.
[5] M. Engliš, Toeplitz operators and the Berezin transform on H^{2}, Linear Algebra Appl. 223/224 (1995), 171-204.
[6] X. Feng, K. Zhang, J. Dong, X. Liu, C. Guan, Multiplication operator with BMO symbols and Berezin transform, J. Funct. Spaces 2015, Article ID 754646, 4 pages http://dx.doi.org/10.1255/2015/754646.
[7] M. Gürdal, F. Şöhret, Some results for Toeplitz operators on the Bergman space, Appl. Math. Comput. 218 (2011), 789-793.
[8] M. Gürdal, U. Yamancı, M. Garayev, Some results for operators on a model space, Front. Math. China 13 (2018), 287-300.
[9] H. Hedenmalm , B. Karenblum, K. Zhu, Theory of Bergman spaces, Graduate Texts in Math., vol. 199, Springer-Veuleg, 2000.
[10] M. T. Karaev, On the Riccati equations, Monatsh. Math. 155 (2008), 161-166.
[11] M. T. Karaev, M. Gürdal, M. B. Huban, Reproducing kernels, Engliš algebras and some applications, Studia Math. 232 (2016), 113-141.
[12] M. T. Karaev, M. Gürdal, On the Berezin symbols and Toeplitz Operators, Extracta Math. 25 (2010), 83-102.
[13] S. Kılıç, The Berezin symbol and multipliers of functional Hilbert spaces, Proc. Amer. Math. Soc. 123 (1995), 3687-3691.
[14] J. Liu, H. Xie, Some properties of solutions to the Riccati equations in connection with Bergman spaces, Rocky Mountain J. Math. $\mathbf{5 0}$ (2020), 651-657.
[15] E. Nordgren, P. Rosenthal, Boundary values of Berezin symbols, in: Oper. Theory Adv. Appl., Birkhäuser, 73 (1994), 362-368.
[16] S. Saltan, On the weak limit of compact operators on the reproducing kernel Hilbert space and related questions, An. Şt., Univ. Ovidius Constanta 24 (2016), 253-260.
[17] K. Zhu, Operator Theory in Function Spaces, Second edition, Math. Surveys and Monographs, 138, Amer. Math. Soc., Providence, 2007.

[^0]: 2020 Mathematics Subject Classification. Primary 47B35
 Keywords. Bergman space, Riccati operator equation, Berezin symbol, Toeplitz operator, Invariant subspace, Reproducing kernel
 Received: 29 December 2021; Accepted: 21 March 2023
 Communicated by Fuad Kittaneh

 * Corresponding author: Mehmet Gürdal

 Email addresses: tapdigoglu@gmail.com (Ramiz Tapdigoglu), gurdalmehmet@sdu.edu.tr (Mehmet Gürdal), nursari32@hotmail.com (Nur Sarı)

