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ON THE UNIFORM CONVERGENCE OF SPECTRAL

EXPANSIONS FOR A SPECTRAL PROBLEM WITH A

BOUNDARY CONDITION RATIONALLY DEPENDING ON

THE EIGENPARAMETER

Sertac Goktas, Nazim B. Kerimov, and Emir A. Maris

Abstract. The spectral problem

−y′′ + q(x)y = λy, 0 < x < 1,

y(0) cos β = y′(0) sinβ, 0 ≤ β < π;
y′(1)
y(1)

= h(λ),

is considered, where λ is a spectral parameter, q(x) is real-valued contin-
uous function on [0, 1] and

h(λ) = aλ+ b−

N∑

k=1

bk

λ− ck
,

with the real coefficients and a ≥ 0, bk > 0, c1 < c2 < · · · < cN , N ≥ 0.
The sharpened asymptotic formulae for eigenvalues and eigenfunctions

of above-mentioned spectral problem are obtained and the uniform con-
vergence of the spectral expansions of the continuous functions in terms
of eigenfunctions are presented.

1. Introduction

Consider the spectral problem

(1.1) −y′′ + q(x)y = λy, 0 < x < 1,

(1.2) y(0) cosβ = y′(0) sinβ, 0 ≤ β < π,

(1.3) y′(1)/y(1) = h(λ),

where λ is a spectral parameter, q(x) is real-valued continuous function on [0, 1]
and

h(λ) = aλ+ b−
N∑

k=1

bk
λ− ck

,
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with the real coefficients and a ≥ 0, bk > 0, c1 < c2 < · · · < cN , N ≥ 0. When
h(λ) = ∞, then the boundary condition (1.3) is interpreted as a Dirichlet
boundary condition y(1) = 0. The case N = 0 makes h(λ) as affine by λ.

As is known, solutions that obtained by using the Fourier method of partial
differential equations are represented by a series. Therefore, the investigation
of the convergence of these series is of great importance. In this study, we
investigate the uniform convergence properties of the Fourier series expansions
in terms of eigenfunctions of the boundary value problem (1.1)-(1.3).

It was proven in [2] that the eigenvalues of the problem (1.1)-(1.3) are real,
simple and form a sequence λ0 < λ1 < · · · accumulating only at +∞ and with
λ0 < c1. Moreover, if ωn is the number of zeros in the interval (0,1) of the
eigenfunction yn, corresponding to eigenvalue λn, then ωn = n − mn, where
mn is the number of points ci ≤ λn. In particular, ω0 = 0 and ωn = n−N when
λn > cN . Further, following asymptotic formulae will be valid for sufficiently
large n:

(1.4) λn = ((n+ ν) π)2 +O(1),

(1.5) ν =





− 1
2 −N if a 6= 0, β 6= 0,

−N if a 6= 0, β = 0,
−N if a = 0, β 6= 0,
1
2 −N if a = 0, β = 0.

It was proven in [11] that if a 6= 0 and k0, k1, . . . , kN are pairwise different
nonnegative integers, then the system

(1.6) yn (x) (n = 0, 1, . . . ;n 6= k0, k1, . . . , kN )

is a basis in Lp (0, 1) (1 < p <∞); moreover if p = 2, then this basis is uncon-
ditional. If a = 0 and k1, k2, . . . , kN are pairwise different nonnegative integers,
then the system

(1.7) yn (x) (n = 0, 1, . . . ;n 6= k1, k2, . . . , kN )

is a basis in Lp (0, 1) (1 < p <∞); moreover if p = 2, then this basis is uncondi-
tional. Further, if a 6= 0 and λn 6= cj ; for all n = 0, 1, . . . and j = 1, . . . , N , then
the system un (x) (n = 0, 1, . . . ;n 6= k0, k1, . . . , kN ) which is biorthogonally con-
jugate to the system (1.6) is defined by

(1.8) un (x) =
An,k0,...,kN

(x)

Bn∆
,

where

(1.9) An,k0,...,kN
(x) =

∣∣∣∣∣∣∣∣∣∣∣

yn(x) yn(1)
yn(1)
λn−c1

· · · yn(1)
λn−cN

yk0
(x) yk0

(1)
yk0

(1)

λk0
−c1

· · · yk0
(1)

λk0
−cN

...
...

...
. . .

...

ykN
(x) ykN

(1)
ykN

(1)

λkN
−c1

· · · ykN
(1)

λkN
−cN

∣∣∣∣∣∣∣∣∣∣∣

,
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(1.10) Bn = ‖yn‖2 +
(
a+

N∑

k=1

bk

(λn − ck)
2

)
y2n (1) ,

(1.11) ∆ =

∣∣∣∣∣∣∣∣

yk0
(1)

yk0
(1)

λk0
−c1

· · · yk0
(1)

λk0
−cN

...
...

. . .
...

ykN
(1)

ykN
(1)

λkN
−c1

· · · ykN
(1)

λkN
−cN

∣∣∣∣∣∣∣∣
.

Suppose that some of the numbers cj (j = 1, . . . , N) are eigenvalues of the
problem (1.1)-(1.3). For example, λkt

= cs for some t and s. Then, all the
elements in (t+2)th row of the determinant (1.9) vanish, except the first element

and (s+2)th element; the first element ykt
(x) does not change but

ykt
(1)

λkt
−cs

is

replaced by − y′

kt
(1)

bs
. Moreover, Bkt

= ‖ykt
‖2 + (y′

kt
(1))2

bs
.

If a = 0, then we construct the system un (x) (n = 0, 1, . . . ;n 6= k1, . . . , kN )
which is biorthogonally conjugate the system (1.7) with an obvious modifica-
tion. In particular, we obtain the corresponding determinant An,k1,...,kN

(x) of
degree N + 1 from the determinant (1.9) by deleting the second row and the
second column.

Many authors investigated the spectral properties of the problem (1.1)-(1.3)
in the special cases. For example, the basis properties in Lp (0, 1) (1 < p <∞)
of the boundary value problem

(1.12)
−y′′ = λy, 0 < x < 1,

y(0) = 0, (a− λ)y′(1) = bλy(1),

where a, b are positive constants, was given in [8]. The uniform convergence of
the spectral expansions in the systems of eigenfunctions of the problem (1.12)
and the problem

y′′ + λy = 0,
y(0) = 0, y′(1) = dλy(1), d > 0

was obtained in [9]. The basis properties in L2 (0, 1) of the eigenfunctions of
boundary value problem

(1.13)
−y′′ + q(x)y = λy, 0 < x < 1

b0y(0) = d0y
′(0),

(a1λ+ b1) y(1) = (c1λ+ d1) y
′(1),

where q(x) is a real-valued continuous function on [0, 1] and |b0| + |d0| 6= 0,
a1d1 − b1c1 > 0, was studied more detail in [15]. The uniform convergence of
the Fourier series expansions in terms of eigenfunctions of the problem (1.13)
was researched in [14].

One can find many articles, for example [3], [4], [5, 6, 7, 10], [12], [13], [17],
where studied the uniform convergence of the spectral expansions.

Note that the case N = 0 is a special case of the problem (1.13), with c1 = 0.
Henceforth, we assume that N ≥ 1.
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2. Main results

In this section, we will give sharpened asymptotic formulae for eigenvalues
and eigenfunctions and investigate the uniform convergence of the Fourier ex-
pansions for the continuous functions in the system of eigenfunctions of the
problem (1.1)-(1.3).

Let ϕ (x, λ) and ψ (x, λ) denote the solutions of the equation (1.1) that satisfy
the initial conditions

ϕ (0, λ) = 1, ϕ′ (0, λ) = h̃,(2.1)

ψ (0, λ) = 0, ψ′ (0, λ) = 1,(2.2)

where h̃ is an arbitrary real number.

Theorem 2.1. Let λn = s2n. The following asymptotic formulae are valid for

sufficiently large n:

(2.3) sn = (n+ ν)π +
Aa,β

nπ
+O

(
δn,ν
n

)
;

(2.4)

yn (x) = ψ (x, λn)

=
sin (n+ ν) πx

(n+ ν)π
+
αax− 1

2

∫ x

0 q (τ) dτ

(nπ)
2 cos (n+ ν)πx

+
cos (n+ ν)πx

2(nπ)2

∫ x

0

q (τ) cos 2 (n+ ν) πτdτ

+
sin (n+ ν)πx

2(nπ)
2

∫ x

0

q (τ) sin 2 (n+ ν)πτdτ

+O

(
δn,ν
n2

)
, if β = 0;

(2.5)

yn (x) = ϕ (x, λn)

= cos (n+ ν)πx

+
h̃− (h̃+ αa)x+ 1

2

∫ x

0
q (τ) dτ

nπ
sin (n+ ν)πx

+
sin (n+ ν)πx

2nπ

∫ x

0

q (τ) cos 2 (n+ ν)πτdτ

− cos (n+ ν) πx

2nπ

∫ x

0

q (τ) sin 2 (n+ ν)πτdτ

+O

(
δn,ν
n

)
, if 0 < β < π;
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where ν is defined by (1.5), h̃ = cotβ, Aa,β =

{
αa, if β = 0,

h̃+ αa, if 0 < β < π,

αa=

{
−b+ 1

2

∫ 1

0
q (τ) dτ , if a = 0,

1
a
+ 1

2

∫ 1

0
q (τ) dτ , if a 6= 0

and δn,ν=
∣∣∣
∫ 1

0
q (τ) cos 2 (n+ ν) πτdτ

∣∣∣+ 1
n
.

Proof. We will prove only the case of a 6= 0 and 0 < β < π. The other cases
are proven similarly. From (1.4) and (1.5),

(2.6) sn =
√
λn =

(
n− 1

2
−N

)
π + εn

is satisfied, where εn = O
(
n−1

)
.

Let λ = s2. From (2.1), the equality

(2.7) ϕ (x, λ) = cos sx+
h̃

s
sin sx+

1

s

∫ x

0

q (τ)ϕ (τ, λ) sin s (x− τ) dτ

is obtained [16, ChapterI, Section 1.2, Lemma 1.2.1].
Let s = σ + it. Then there exists s0 > 0 such that for |s| > s0, the estimate

(2.8) ϕ (x, λ) = cos sx+O
(
e|t|x|s|−1

)

is valid [16, Chapter I, Section 1.2, Lemma 1.2.2], where the function

O
(
e|t|x|s|−1

)

is the entire function of s for any fixed x in [0, 1]. Moreover, (2.8) holds uni-
formly by x for 0 ≤ x ≤ 1.

The formulae (2.6)-(2.8) yield the following:

(2.9)

yn (x) = ϕ (x, λn)

= cos snx+
h̃

sn
sin snx+

sin snx

2sn

∫ x

0

q (τ) dτ

+
sin snx

2sn

∫ x

0

q (τ) cos 2snτdτ −
cos snx

2sn

∫ x

0

q (τ) sin 2snτdτ

+O
(
n−2

)
.

Because

cos snx = cos

(
n− 1

2
−N

)
πx+O

(
n−1

)
,

sin snx = sin

(
n− 1

2
−N

)
πx +O

(
n−1

)
,
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the equality (2.9) can be written as
(2.10)

ϕ (x, λn) = cos snx+
h̃ sin

(
n− 1

2 −N
)
πx

nπ
+

sin
(
n− 1

2 −N
)
πx

2nπ

∫ x

0

q (τ) dτ

+
sin
(
n− 1

2 −N
)
πx

2nπ

∫ x

0

q (τ) cos (2n− 1− 2N)πτdτ

− cos
(
n− 1

2 −N
)
πx

2nπ

∫ x

0

q (τ) sin (2n− 1− 2N)πτdτ+O
(
n−2

)
.

In addition, by differentiating equality (2.7) with respect to x and substituting
equality (2.6), we obtain the estimate

(2.11) ϕ′ (x, λn) = −sn sin snx+O (1) .

The function ϕ (x, λ) satisfies the boundary condition (1.2). Therefore, the
eigenvalues of the problem (1.1)-(1.3) satisfy the equation

(2.12) ϕ′ (1, λn) =

(
aλn + b−

N∑

k=1

bk
λn − ck

)
ϕ (1, λn) .

By using (2.10) and (2.11), we obtain the estimates

ϕ (1, λn) = (−1)
n−N

εn +
(−1)n−N−1

(
h̃+ 1

2

∫ 1

0
q (τ) dτ

)

nπ
+O

(
δn,ν
n

)
,

ϕ′ (1, λn) = (−1)
n−N

(
n− 1

2
−N

)
π +O (1) .

Substituting last estimates in the equation (2.12), we obtain the equality

(−1)
n−N

(
n− 1

2
−N

)
π +O (1)

=

(
a

(
n− 1

2
−N

)2

π2 +O (1)

)

×



(−1)n−Nεn +
(−1)

n−N−1
(
h̃+ 1

2

∫ 1

0
q (τ) dτ

)

nπ
+O

(
δn,ν
n

)

 .

The last equation shows that the estimate

(2.13) εn =
h̃+ 1

a
+ 1

2

∫ 1

0
q (τ) dτ

nπ
+O

(
δn,ν
n

)

is valid. The equality (2.3) is proven in case of a 6= 0 and 0 < β < π.
We obtain the estimate

(2.14)
cos snx = cos

(
n− 1

2 −N
)
πx− (h̃+ 1

a
+ 1

2

∫
1

0
q(τ)dτ)x

nπ

× sin
(
n− 1

2 −N
)
πx+O

(
δn,ν

n

)
,
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by using (2.6) and (2.13). The equality (2.5) follows from (2.10) and (2.14).
The proof of Theorem 2.1 is completed. �

Let a 6= 0; λn 6= cj for all n = 0, 1, . . . ; j = 1, . . . , N and f(x) ∈ C[0, 1]. We
define the determinant

(2.15) ∆′ =

∣∣∣∣∣∣∣∣

(f, yk0
)

yk0
(1)

λk0
−c1

· · · yk0
(1)

λk0
−cN

...
...

. . .
...

(f, ykN
)

ykN
(1)

λkN
−c1

· · · ykN
(1)

λkN
−cN

∣∣∣∣∣∣∣∣
,

where (f, g) denotes the inner product of f(x) and g(x) in space L2(0, 1).
If λkt

= cs for some t and s, then all the elements (t+1)th row of the deter-
minant (2.15) vanish, except the first element and (s+1)th element; the first

element (f, ykt
) does not change, but the (s+1)th element

ykt
(1)

λkt
−cs

is replaced

by − y′

kt
(1)

bs
.

Theorem 2.2. Suppose that k0, k1, . . . , kN are pairwise different nonnegative

integers and f (x) ∈ C [0, 1].
I. Let a = 0 and β = 0. If the function f (x) has a uniformly convergent

Fourier series expansion in the system
{√

2 sin
(
n− 1

2

)
πx
}∞
n=1

on the inter-

val [0, 1], then this function can be expanded in Fourier series in the system

yn (x) (n = 0, 1, . . . ;n 6= k1, . . . , kN ) and this expansion is uniformly convergent

on [0, 1].
II. Let a 6= 0 and β = 0. If the function f (x) has a uniformly conver-

gent Fourier series expansion in the system
{√

2 sinnπx
}∞
n=1

on the inter-

val [0, 1], then this function can be expanded in Fourier series in the system

yn (x) (n = 0, 1, . . . ;n 6= k0, k1, . . . , kN ) and this expansion is uniformly con-

vergent on every interval [0, b], 0 < b < 1. The Fourier series of f (x) in

the system yn (x) (n = 0, 1, . . . ;n 6= k0, k1, . . . , kN ) is uniformly convergent on

[0, 1] if and only if the determinant ∆′ vanishes.

III. Let a = 0 and 0 < β < π. If the function f (x) has a uniformly

convergent Fourier series expansion in the system
{√

2 cosnπx
}∞
n=1

on the in-

terval [0, 1], then this function can be expanded in Fourier series in the system

yn (x) (n = 0, 1, . . . ;n 6= k1, . . . , kN ) and this expansion is uniformly convergent

on [0, 1].
IV. Let a 6= 0 and 0 < β < π. If the function f (x) has a uniformly

convergent Fourier series expansion in the system
{√

2 cos
(
n− 1

2

)
πx
}∞
n=1

on

the interval [0, 1], then this function can be expanded in Fourier series in the

system yn (x) (n = 0, 1, . . . ;n 6= k0, k1, . . . , kN ) and this expansion is uniformly

convergent on every interval [0, b], 0 < b < 1. The Fourier series of f (x) in

the system yn (x) (n = 0, 1, . . . ;n 6= k0, k1, . . . , kN ) is uniformly convergent on

[0, 1] if and only if the determinant ∆′ vanishes.
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Proof. We will only prove the first and the second case. Other cases are proven
similarly.

The first case: Let λn 6= cj , j = 1, . . . , N, n = 0, 1, . . .. Consider the Fourier
series f (x) on the interval [0, 1] in the system yn (x), (n = 0, 1, . . .; n 6=
k1, . . . , kN ):

(2.16) F (x) =
∞∑

n=0,n6=k1,...,kN

(f, un) yn (x),

where

(2.17) un (x) =
An,k1,...,kN

(x)

Bn∆
,

(2.18) An,k1,...,kN
(x) =

∣∣∣∣∣∣∣∣∣∣∣

yn(x)
yn(1)
λn−c1

· · · yn(1)
λn−cN

yk1
(x)

yk1
(1)

λk1−c1
· · · yk1

(1)

λk1
−cN

...
...

. . .
...

ykN
(x)

ykN
(1)

λkN
−c1

· · · ykN
(1)

λkN
−cN

∣∣∣∣∣∣∣∣∣∣∣

,

(2.19) Bn = ‖yn‖2 + y2n (1)

N∑

k=1

bk

(λn − ck)
2 ,

(2.20) ∆ =

∣∣∣∣∣∣∣∣

yk1
(1)

λk1
−c1

· · · yk1
(1)

λk1
−cN

...
. . .

...
ykN

(1)

λkN
−c1

· · · yk1
(1)

λkN
−cN

∣∣∣∣∣∣∣∣
.

Note that the series (2.16) is uniformly convergent on [0, 1] if and only if the
series

(2.21) F1 (x) =

∞∑

n=r+1

(f, un) yn (x)

is uniformly convergent on [0, 1], where r = max {k1, k2, . . . , kN}.
By virtue of (2.3), (2.4), (2.17)-(2.20), the equality

(2.22) (f, un) =
(f,An,k1,...,kN

)

Bn∆
=

(f, yn)

Bn

+O
(
n−3

)

holds. From (2.3), (2.4) and (2.19), the estimate

Bn =
1

2(nπ)2
+O

(
n−3

)

is valid. Therefore, the equality (2.22) can be written as

(2.23) (f, un) = 2(nπ)
2
(f, yn) + (f, yn)O (n) .
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By using (2.4) and (2.23), we have

(f, un) yn (x) =

(
f,
√
2 sin

(
n+

1

2
−N

)
πx

)√
2 sin

(
n+

1

2
−N

)
πx

+Rn,1 (x) ,

where

(2.24)

Rn,1 (x) =

(
f, sin

(
n+

1

2
−N

)
πx

)
O
(
n−1

)

+

(
f (x)α1 (x) , cos

(
n+

1

2
−N

)
πx

)
O
(
n−1

)

+

(
f, αn,1 (x) cos

(
n+

1

2
−N

)
πx

)
O
(
n−1

)

+

(
f, βn,1 (x) sin

(
n+

1

2
−N

)
πx

)
O
(
n−1

)

+O

(
δn,ν
n

)
,

α1 (x) = αax− 1

2

∫ x

0

q (τ) dτ ,

αn,1 (x) =

∫ x

0

q (τ) cos (2n+ 1− 2N)πτdτ ,

βn,1(x) =

∫ x

0

q (τ) sin (2n+ 1− 2N)πτdτ .

By virtue of (2.24), we obtain

|Rn,1 (x)| ≤
const

n

{∣∣∣∣
(
f, sin

(
n+

1

2
−N

)
πx

)∣∣∣∣

+

∣∣∣∣
(
f (x)α1 (x) , cos

(
n+

1

2
−N

)
πx

)∣∣∣∣

+

∣∣∣∣
(
f, αn,1 (x) cos

(
n+

1

2
−N

)
πx

)∣∣∣∣

+

∣∣∣∣
(
f, βn,1 (x) sin

(
n+

1

2
−N

)
πx

)∣∣∣∣+ δn,ν

}

≤ const

{∣∣∣∣
(
f, sin

(
n+

1

2
−N

)
πx

)∣∣∣∣
2

+

∣∣∣∣
(
f (x)α1 (x) , cos

(
n+

1

2
−N

)
πx

)∣∣∣∣
2

+

(∫ 1

0

|f (x)αn,1 (x)| dx
)2

+

(∫ 1

0

|f (x)βn,1 (x)|dx
)2

+
δn,ν
n

}
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for sufficiently large n. The numerical series

∞∑

n=r+1

∣∣∣∣
(
f, sin

(
n+

1

2
−N

)
πx

)∣∣∣∣
2

,

∞∑

n=r+1

∣∣∣∣
(
f (x)α1 (x) , cos

(
n+

1

2
−N

)
πx

)∣∣∣∣
2

,

∞∑

n=r+1

δn,ν
n

are convergent. On the other hand, by virtue of Bessel inequality, we obtain

∞∑

n=r+1

(∫ 1

0

|f (x)αn,1 (x)| dx
)2

≤ ‖f‖2
∞∑

n=r+1

∫ 1

0

|αn,1 (x)|2dx

= ‖f‖2
∫ 1

0

∞∑

n=r+1

∣∣∣∣
∫ x

0

q (τ) cos (2n+ 1− 2N)πτdτ

∣∣∣∣
2

dx

≤ const‖f‖2
∫ 1

0

∫ x

0

|q (τ)|2dτdx ≤const‖f‖2‖q‖2.

Similarly, we obtain the estimate

∞∑

n=r+1

(∫ 1

0

|f (x)βn,1 (x)|dx
)2

≤ const‖f‖2‖q‖2.

Consequently, the series
∞∑

n=r+1

Rn,1 (x)

is absolutely and uniformly convergent on [0, 1].
If some of numbers cj (j = 1, . . . , N) are eigenvalues of the problem (1.1)-

(1.3), then the proof is completely similar.
The first case is proven.
The second case: Let λn 6= cj , j = 1, . . . , N, n = 0, 1, . . .. Consider the

Fourier series f(x) on the interval [0, 1] in the system yn (x) (n = 0, 1, . . .;
n 6= k0, k1, . . . , kN ):

(2.25) G (x) =

∞∑

n=0,n6=k0,k1,...,kN

(f, un) yn (x),

where un (x) is defined by (1.8).
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Note that the series (2.25) is uniformly convergent on [0, 1] if and only if the
series

(2.26) G1 (x) =

∞∑

n=r

(f, un) yn (x)

is uniformly convergent on [0, 1], where r = max {k0, k1, k2, . . . , kN}.
By virtue of (1.8)-(1.11), (2.3), (2.4), the equality

(2.27) (f, un) =
(f, yn)

Bn

− ∆
′

∆

yn (1)

Bn

+O
(
n−4

)

holds, where ∆′ is defined by (2.15).

The series
∑∞

n=r
(f,yn)
Bn

yn (x) is uniformly convergent on [0, 1]. This can be

seen by the method of the first case. By virtue of (2.27), if ∆
′

= 0, then the
second part of this case is truth.

Let ∆
′ 6= 0. From (1.10), (2.3) and (2.4), the estimates

yn (1) =
(−1)

n−N

2a(nπ)2
+O

(
δn,ν
n2

)
,

Bn =
1

2(nπ)
2 +O

(
n−3

)

holds. Therefore, the equality

∞∑

n=r

yn (1)

Bn

yn (x) = −
∞∑

n=r−N

sinnπ (1 + x)

n
+

∞∑

n=r

O

(
δn,ν
n

)

is valid. The series
∑∞

n=r O
(

δn,ν

n

)
is absolutely and uniformly convergent on

[0, 1]. On the other hand, the series

∞∑

n=r

sinnπt

n

is uniformly convergent on every closed interval [δ, 2π − δ], where 0 < δ < π [1,
Chapter I, Section 30, Theorem1]. So, the series

∞∑

n=r−N

sinnπ (1 + x)

n

is uniformly convergent on every closed interval [0,b] 0 < b < 1.
The second case is proven.
The proof of theorem 2.2 is completed. �
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3. Example

Consider the problem

(3.1) −y′′ = λy, 0 < x < 1,

(3.2) y (0) = 0,
y′ (1)

y (1)
= aλ− π2

λ− π2
,

where a is a positive number.
λr = 0 and λs = π2 are eigenvalues of the problems (3.1) and (3.2), where r

and s are certain non-negative integers and yr(x) = x and ys(x) = sinπx are
corresponding eigenfunctions, respectively.

Let f(x) = (x2 − x)(x2 +mx+ n) and g(x) = (x2 − x)(5x− 3), where
m = 11 − 120

π2 and n = 72
π2 − 7. Since f(0) = f(1) = g(0) = g(1) = 0,

then (f, sinnπx) = O(n−3) and (g, sinnπx) = O(n−3). On the other hand,
(f, yr) = (f, ys) = 0 and (g, yr) = 0, (g, ys) =

2
π3 .

From here and (2.15), we obtain

∆
′

=

∣∣∣∣∣
(g, yr)

yr(1)
λr−c1

(g, ys) − y′

s(1)
b1

∣∣∣∣∣ =
∣∣∣∣
0 − 1

π2

2
π3

1
π

∣∣∣∣ =
2

π5
6= 0.

Consequently, by Theorem 2.2 the Fourier series of f (x) and g (x) in the
system y (x) (n = 0, 1, . . . ;n 6= r, s) are uniformly convergent on [0, 1] and on
[0, b] (0 < b < 1), respectively.
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