The basis property in L_{p} of the boundary value problem rationally dependent on the eigenparameter

by

N. B. Kerimov and Y. N. Aliyev (Baku)

Abstract

We consider a Sturm-Liouville operator with boundary conditions rationally dependent on the eigenparameter. We study the basis property in L_{p} of the system of eigenfunctions corresponding to this operator. We determine the explicit form of the biorthogonal system. Using this we establish a theorem on the minimality of the part of the system of eigenfunctions. For the basisness in L_{2} we prove that the system of eigenfunctions is quadratically close to trigonometric systems. For the basisness in L_{p} we use F. Riesz's theorem.

Consider the spectral problem

$$
\begin{array}{ll}
-y^{\prime \prime}+q(x) y=\lambda y, & 0<x<1 \\
y(0) \cos \beta=y^{\prime}(0) \sin \beta, & 0 \leq \beta<\pi \\
y^{\prime}(1) / y(1)=h(\lambda), & \tag{0.3}
\end{array}
$$

where λ is the spectral parameter, q is a real-valued and continuous function on the interval $[0,1]$,

$$
h(\lambda)=a \lambda+b-\sum_{k=1}^{N} \frac{b_{k}}{\lambda-c_{k}}
$$

where all the coefficients are real and $a \geq 0, b_{k}>0, c_{1}<\cdots<c_{N}, N \geq 0$. If $h(\lambda)=\infty$ then (0.3) is interpreted as a Dirichlet condition $y(1)=0$. If $N=0$ then there are no c_{k} 's and $h(\lambda)$ is affine in λ.

In a recent paper [1] existence and asymptotics of eigenvalues and oscillation of eigenfunctions of this problem were studied. It was proved that the eigenvalues of (0.1)-(0.3) are real, simple and form a sequence $\lambda_{0}<\lambda_{1}<\ldots$ accumulating only at ∞ and with $\lambda_{0}<c_{1}$. Moreover, it was proved that if

[^0]ω_{n} is the number of zeros in $(0,1)$ of the eigenfunction y_{n}, associated with the eigenvalue λ_{n}, then $\omega_{n}=n-m_{n}$, where m_{n} is the number of points $c_{i} \leq \lambda_{n}$. In particular, $\omega_{0}=0$ and $\omega_{n}=n-N$ when $\lambda_{n}>c_{N}$.

The basis properties of eigenvectors of the self-adjoint operator on $L_{2} \oplus$ \mathbb{C}^{N+1} (or on $L_{2} \oplus \mathbb{C}^{N}$ if $a=0$), formed by the eigenfunctions of (0.1)-(0.3) were examined in [2].

The current article concerns the basis properties in $L_{p}(0,1)(1<p<\infty)$ of the system of eigenfunctions of the boundary value problem (0.1)-(0.3).

Basis properties of the boundary value problem (0.1)-(0.3) in cases where h is affine or bilinear have been analyzed in [5], [6], [8].

A complete discussion of the basis properties in $L_{p}(0,1)(1<p<\infty)$ of the boundary value problem

$$
\begin{aligned}
& -y^{\prime \prime}=\lambda y, \quad 0<x<1 \\
& y(0)=0, \quad(a-\lambda) y^{\prime}(1)=b \lambda y(1)
\end{aligned}
$$

where a, b are positive constants, is given in [6].
The basis properties in $L_{2}(0,1)$ of the boundary value problem

$$
\begin{aligned}
& -y^{\prime \prime}+q(x) y=\lambda y, \quad 0<x<1, \\
& b_{0} y(0)=d_{0} y^{\prime}(0) \\
& \left(a_{1} \lambda+b_{1}\right) y(1)=\left(c_{1} \lambda+d_{1}\right) y^{\prime}(1)
\end{aligned}
$$

where q is a real-valued continuous function on $[0,1]$ and $\left|b_{0}\right|+\left|d_{0}\right| \neq 0$, $a_{1} d_{1}-b_{1} c_{1}>0$, were studied in more detail in [8].

1. Minimality of the system of eigenfunctions of (0.1)-(0.3). The following lemma will be needed:

Lemma 1.1. Let $\mu_{0}, \mu_{1}, \ldots, \mu_{N}, d_{1}, d_{2}, \ldots, d_{N}$ be pairwise different real numbers. Then

$$
\begin{aligned}
& \left|\begin{array}{cccc}
1 & \left(\mu_{0}-d_{1}\right)^{-1} & \ldots & \left(\mu_{0}-d_{N}\right)^{-1} \\
1 & \left(\mu_{1}-d_{1}\right)^{-1} & \cdots & \left(\mu_{1}-d_{N}\right)^{-1} \\
\cdots \cdots \ldots \ldots \ldots \ldots & \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
1 & \left(\mu_{N}-d_{1}\right)^{-1} & \cdots & \left(\mu_{N}-d_{N}\right)^{-1}
\end{array}\right| \\
& =\frac{\prod_{0 \leq i<j \leq N}\left(\mu_{i}-\mu_{j}\right) \prod_{1 \leq i<j \leq N}\left(d_{j}-d_{i}\right)}{\prod_{\substack{0 \leq i \leq N \\
1 \leq j \leq N}}\left(\mu_{i}-d_{j}\right)} .
\end{aligned}
$$

Proof. It is known (see e.g. [12, Ch. VII, Prob. 3]) that

$$
\left|\begin{array}{cccc}
\left(\mu_{0}-d_{0}\right)^{-1} & \left(\mu_{0}-d_{1}\right)^{-1} & \cdots & \left(\mu_{0}-d_{N}\right)^{-1} \\
\left(\mu_{1}-d_{0}\right)^{-1} & \left(\mu_{1}-d_{1}\right)^{-1} & \cdots & \left(\mu_{1}-d_{N}\right)^{-1} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots & \cdots \cdots \cdots \cdots \cdots \cdots \\
\left(\mu_{N}-d_{0}\right)^{-1} & \left(\mu_{N}-d_{1}\right)^{-1} & \cdots & \left(\mu_{N}-d_{N}\right)^{-1}
\end{array}\right|
$$

$$
=\frac{\prod_{0 \leq i<j \leq N}\left(\mu_{i}-\mu_{j}\right) \prod_{\substack{0 \leq i<j \leq N}}\left(d_{j}-d_{i}\right)}{\prod_{\substack{0 \leq i \leq N \\ 0 \leq j \leq N}}\left(\mu_{i}-d_{j}\right)} .
$$

Consequently,

$$
\begin{aligned}
& \left|\begin{array}{cccc}
1 & \left(\mu_{0}-d_{1}\right)^{-1} & \ldots & \left(\mu_{0}-d_{N}\right)^{-1} \\
1 & \left(\mu_{1}-d_{1}\right)^{-1} & \cdots & \left(\mu_{1}-d_{N}\right)^{-1} \\
\cdots \\
1 & \left(\mu_{N}-d_{1}\right)^{-1} & \cdots & \left(\mu_{N}-d_{N}\right)^{-1}
\end{array}\right| \\
& =-\lim _{d_{0} \rightarrow \infty} d_{0}\left|\begin{array}{cccc}
\left(\mu_{0}-d_{0}\right)^{-1} & \left(\mu_{0}-d_{1}\right)^{-1} & \cdots & \left(\mu_{0}-d_{N}\right)^{-1} \\
\left(\mu_{1}-d_{0}\right)^{-1} & \left(\mu_{1}-d_{1}\right)^{-1} & \cdots & \left(\mu_{1}-d_{N}\right)^{-1} \\
\ldots \\
\left(\mu_{N}-d_{0}\right)^{-1} & \left(\mu_{N}-d_{1}\right)^{-1} & \cdots & \left(\mu_{N}-d_{N}\right)^{-1}
\end{array}\right| \\
& =-\lim _{d_{0} \rightarrow \infty} d_{0} \frac{\prod_{0 \leq i<j \leq N}\left(\mu_{i}-\mu_{j}\right) \prod_{0 \leq i<j \leq N}\left(d_{j}-d_{i}\right)}{\prod_{\substack{0 \leq i \leq N \\
0 \leq j \leq N}}\left(\mu_{i}-d_{j}\right)} \\
& =\frac{\prod_{0 \leq i<j \leq N}\left(\mu_{i}-\mu_{j}\right) \prod_{\substack{1 \leq i<j \leq N}}\left(d_{j}-d_{i}\right)}{\prod_{\substack{0 \leq i \leq N \\
1 \leq j \leq N}}\left(\mu_{i}-d_{j}\right)} .
\end{aligned}
$$

This proves the lemma.
Theorem 1.1.
(a) If $a \neq 0$ and if $k_{0}, k_{1}, \ldots, k_{N}$ are pairwise different nonnegative integers then the system $\left\{y_{n}\right\}\left(n=0,1, \ldots ; n \neq k_{0}, k_{1}, \ldots, k_{N}\right)$ is minimal in $L_{p}(0,1)$.
(b) If $a=0$ and if k_{1}, \ldots, k_{N} are pairwise different nonnegative integers then the system $\left\{y_{n}\right\}\left(n=0,1, \ldots ; n \neq k_{1}, \ldots, k_{N}\right)$ is minimal in $L_{p}(0,1)$.

Proof. (a) It suffices to show the existence of a system $\left\{u_{n}\right\}$ biorthogonal to $\left\{y_{n}\right\}\left(n=0,1, \ldots ; n \neq k_{0}, k_{1}, \ldots, k_{N}\right)$ in $L_{p}(0,1)$.

Note that

$$
\frac{d}{d x}\left(y_{n}(x) y_{m}^{\prime}(x)-y_{m}(x) y_{n}^{\prime}(x)\right)=\left(\lambda_{n}-\lambda_{m}\right) y_{m}(x) y_{n}(x)
$$

for $0 \leq x \leq 1$. By integrating this identity from 0 to 1 , we obtain

$$
\begin{equation*}
\left(\lambda_{n}-\lambda_{m}\right)\left(y_{n}, y_{m}\right)=\left.\left(y_{n}(x) y_{m}^{\prime}(x)-y_{m}(x) y_{n}^{\prime}(x)\right)\right|_{0} ^{1}, \tag{1.1}
\end{equation*}
$$

where (\cdot, \cdot) is the Hilbert space inner product on $L_{2}(0,1)$.

From (0.2), we obtain

$$
\begin{equation*}
y_{n}(0) y_{m}^{\prime}(0)-y_{m}(0) y_{n}^{\prime}(0)=0 \tag{1.2}
\end{equation*}
$$

for all $n, m=0,1, \ldots$.
Let $\lambda_{n}, \lambda_{m} \neq c_{j}$ for $j=1, \ldots, N$. Then by (0.3),

$$
\begin{align*}
y_{n}(1) y_{m}^{\prime}(1)- & y_{m}(1) y_{n}^{\prime}(1)=\left(h\left(\lambda_{m}\right)-h\left(\lambda_{n}\right)\right) y_{m}(1) y_{n}(1) \tag{1.3}\\
& =\left(\lambda_{m}-\lambda_{n}\right)\left(a+\sum_{k=1}^{N} \frac{b_{k}}{\left(\lambda_{n}-c_{k}\right)\left(\lambda_{m}-c_{k}\right)}\right) y_{n}(1) y_{m}(1)
\end{align*}
$$

Now suppose that $\lambda_{n}=c_{s}$ for some $s \in\{1, \ldots, N\}$. Then by $(0.3), y_{n}(1)=0$. Hence

$$
\begin{equation*}
y_{n}(1) y_{m}^{\prime}(1)-y_{m}(1) y_{n}^{\prime}(1)=-y_{n}^{\prime}(1) y_{m}(1) \tag{1.4}
\end{equation*}
$$

for $\lambda_{m} \neq c_{s}(m=0,1, \ldots)$.
From (1.1)-(1.4), it follows that for $m \neq n$,

$$
\left(y_{n}, y_{m}\right)= \begin{cases}-\left(a+\sum_{k=1}^{N} \frac{b_{k}}{\left(\lambda_{n}-c_{k}\right)\left(\lambda_{m}-c_{k}\right)}\right) y_{n}(1) y_{m}(1) \tag{1.5}\\ \frac{y_{n}^{\prime}(1) y_{m}(1)}{\lambda_{m}-c_{s}} & \text { if } \lambda_{n}, \lambda_{m} \neq c_{1}, \ldots, c_{N} \\ \text { if } \lambda_{n}=c_{s}\end{cases}
$$

Let $\lambda_{k} \neq c_{j}$ for all $k=0,1, \ldots$ and $j=1, \ldots, N$. We define elements of the system $\left\{u_{n}\right\}\left(n=0,1, \ldots ; n \neq k_{0}, k_{1}, \ldots, k_{N}\right)$ by

$$
\begin{equation*}
u_{n}(x)=\frac{A_{n, k_{0}, \ldots, k_{N}}(x)}{B_{n} \Delta} \tag{1.6}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{n, k_{0}, \ldots, k_{N}}(x)=\left|\begin{array}{cccccc}
y_{n}(x) & y_{n}(1) & \frac{y_{n}(1)}{\lambda_{n}-c_{1}} & \frac{y_{n}(1)}{\lambda_{n}-c_{2}} & \cdots & \frac{y_{n}(1)}{\lambda_{n}-c_{N}} \\
y_{k_{0}}(x) & y_{k_{0}}(1) & \frac{y_{k_{0}}(1)}{\lambda_{k_{0}}-c_{1}} & \frac{y_{k_{0}}(1)}{\lambda_{k_{0}}-c_{2}} & \cdots & \frac{y_{k_{0}}(1)}{\lambda_{k_{0}}-c_{N}} \\
y_{k_{1}}(x) & y_{k_{1}}(1) & \frac{y_{k_{1}}(1)}{\lambda_{k_{1}}-c_{1}} & \frac{y_{k_{1}}(1)}{\lambda_{k_{1}}-c_{2}} & \cdots & \frac{y_{k_{1}}(1)}{\lambda_{k_{1}}-c_{N}} \\
\ldots & \ldots \ldots \ldots & \ldots \ldots & \ldots \ldots \ldots \\
y_{k_{N}}(x) & y_{k_{N}}(1) & \frac{y_{k_{N}}(1)}{\lambda_{k_{N}}-c_{1}} & \frac{y_{k_{N}}(1)}{\lambda_{k_{N}}-c_{2}} & \cdots & \frac{y_{k_{N}(1)}^{\lambda_{k_{N}}-c_{N}}}{}
\end{array}\right|, \tag{1.7}\\
& B_{n}=\left\|y_{n}\right\|^{2}+\left(a+\sum_{k=1}^{N} \frac{b_{k}}{\left(\lambda_{n}-c_{k}\right)^{2}}\right) y_{n}^{2}(1) \text {, } \tag{1.8}\\
& \Delta=\frac{\prod_{0 \leq i<j \leq N}\left(\lambda_{k_{i}}-\lambda_{k_{j}}\right) \cdot \prod_{1 \leq i<j \leq N}\left(c_{j}-c_{i}\right)}{\prod_{\substack{0 \leq i \leq N \\
1 \leq j \leq N}}\left(\lambda_{k_{i}}-c_{j}\right)} \prod_{0 \leq i \leq N} y_{k_{i}}(1) . \tag{1.9}
\end{align*}
$$

Let us verify that $\left(u_{n}, y_{m}\right)=\delta_{n, m}\left(n, m=0,1, \ldots ; n, m \neq k_{0}, k_{1}, \ldots, k_{N}\right)$, where $\delta_{n, m}$ is Kronecker's symbol. Indeed, from (1.6) and (1.7) we have (1.10) $\left(u_{n}, y_{m}\right)$

It is now immediate from (1.5) that for $m \neq n$ the first column of the determinant in (1.10) is a linear combination of the other columns; hence $\left(u_{n}, y_{m}\right)=0$ for $n \neq m$.

Assume now that $n=m$ in (1.10). Adding to the first column the 2nd, 3rd, $\ldots,(N+2)$ th columns multiplied respectively by

$$
a y_{n}(1), \frac{b_{1} y_{n}(1)}{\lambda_{n}-c_{1}}, \ldots, \frac{b_{N} y_{n}(1)}{\lambda_{n}-c_{N}}
$$

we obtain
where we have used the definition (1.8) for B_{n}. Thus from Lemma 1.1 and the definition (1.9) for Δ we obtain

$$
\left(u_{n}, y_{n}\right)=\frac{1}{\Delta}\left|\begin{array}{cccc}
1 & \left(\lambda_{k_{0}}-c_{1}\right)^{-1} & \cdots & \left(\lambda_{k_{0}}-c_{N}\right)^{-1} \\
1 & \left(\lambda_{k_{1}}-c_{1}\right)^{-1} & \cdots & \left(\lambda_{k_{1}}-c_{N}\right)^{-1} \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots \cdots \cdots \\
1 & \left(\lambda_{k_{N}}-c_{1}\right)^{-1} & \cdots & \left(\lambda_{k_{N}}-c_{N}\right)^{-1}
\end{array}\right| \cdot \prod_{0 \leq i \leq N} y_{k_{i}}(1)=1
$$

Now consider the case where some of the numbers $c_{j}(j=1, \ldots, N)$ are eigenvalues of (0.1)-(0.3). In this case we define

$$
\begin{equation*}
u_{n}(x)=\frac{A_{n, k_{0}, \ldots, k_{N}}^{\prime}(x)}{B_{n}^{\prime} \Delta^{\prime}} \tag{1.11}
\end{equation*}
$$

where $A_{n, k_{0}, \ldots, k_{N}}^{\prime}(x)$ is a determinant of order $N+2$ which we obtain from $A_{n, k_{0}, \ldots, k_{N}}(x)$ as follows (here we also give the definitions of B_{n}^{\prime} and $\left.\Delta^{\prime}\right)$:
I. If $\lambda_{k_{t}} \neq c_{j}\left(\lambda_{n} \neq c_{j}\right)$ for all $j=1, \ldots, N$ then column $t+2$ (respectively, the first column) does not change.
II. If $\lambda_{k_{t}}=c_{s}\left(\lambda_{n}=c_{s}\right)$ for some t (respectively, n) and s then all the elements in row $t+2$ (respectively, in the first row) vanish, except the first element and $y_{k_{t}}(1) /\left(\lambda_{k_{t}}-c_{s}\right)$ (respectively, $\left.y_{n}(1) /\left(\lambda_{n}-c_{s}\right)\right)$; the first element does not change but $y_{k_{t}}(1) /\left(\lambda_{k_{t}}-c_{s}\right)$ (respectively, $y_{n}(1) /\left(\lambda_{n}-c_{s}\right)$) is replaced by $-y_{k_{t}}^{\prime}(1) / b_{s}$ (respectively, by $\left.-y_{n}^{\prime}(1) / b_{s}\right)$.
III. If $\lambda_{n} \neq c_{j}$ for all $j=1, \ldots, N$ then $B_{n}^{\prime}=B_{n}$.
IV. If $\lambda_{n}=c_{s}$ for some $s \in\{1, \ldots, N\}$, then $B_{n}^{\prime}=\left\|y_{n}\right\|^{2}+\left(y_{n}^{\prime}(1)\right)^{2} / b_{s}$.
V. Δ^{\prime} is the complementary minor of the upper left element of the determinant $A_{n, k_{0}, \ldots, k_{N}}^{\prime}$.

For example if $N=2, a \neq 0, \lambda_{k_{1}}=c_{2}, \lambda_{n}, \lambda_{k_{0}}, \lambda_{k_{2}} \neq c_{1}, c_{2}$ then

$$
\begin{aligned}
A_{n, k_{0}, k_{1}, k_{2}}^{\prime}(x) & =\left|\begin{array}{cccc}
y_{n}(x) & y_{n}(1) & \frac{y_{n}(1)}{\lambda_{n}-c_{1}} & \frac{y_{n}(1)}{\lambda_{n}-c_{2}} \\
y_{k_{0}}(x) & y_{k_{0}}(1) & \frac{y_{k_{0}}(1)}{\lambda_{k_{0}}-c_{1}} & \frac{y_{k_{0}}(1)}{\lambda_{k_{0}}-c_{2}} \\
y_{k_{1}}(x) & 0 & -\frac{y_{k_{1}}^{\prime}(1)}{b_{s}} & 0 \\
y_{k_{2}}(x) & y_{k_{2}}(1) & \frac{y_{k_{2}}(1)}{\lambda_{k_{2}}-c_{1}} & \frac{y_{k_{2}}(1)}{\lambda_{k_{2}}-c_{2}}
\end{array}\right|, \\
\Delta^{\prime} & =\left|\begin{array}{ccc}
y_{k_{0}}(1) & \frac{y_{k_{0}}(1)}{\lambda_{k_{2}}-c_{1}} & \frac{y_{k_{0}(1)}^{\lambda_{k_{0}}-c_{2}}}{0} \\
0-\frac{y_{k_{1}}(1)}{b_{s}} & 0 \\
y_{k_{2}}(1) & \frac{y_{k_{2}}(1)}{\lambda_{k_{2}}-c_{1}} & \frac{y_{k_{2}}(1)}{\lambda_{k_{2}}-c_{2}}
\end{array}\right| \\
& =\frac{\lambda_{k_{0}}-\lambda_{k_{2}}}{\left(\lambda_{k_{0}}-c_{2}\right)\left(\lambda_{k_{2}}-c_{2}\right)} \cdot y_{k_{0}}(1) \cdot\left(-\frac{y_{k_{1}}^{\prime}(1)}{b_{s}}\right) \cdot y_{k_{2}}(1) .
\end{aligned}
$$

Let us prove that $\Delta^{\prime} \neq 0$. From the construction, it follows that each row of Δ^{\prime} is either of the form $\left(0, \ldots, 0,-y_{k_{t}}^{\prime}(1) / b_{s}, 0, \ldots, 0\right)$ (in this case $\lambda_{k_{t}}=c_{s}$) or

$$
\left(y_{k_{t}}(1), y_{k_{t}}(1) /\left(\lambda_{k_{t}}-c_{1}\right), \ldots, y_{k_{t}}(1) /\left(\lambda_{k_{t}}-c_{N}\right)\right)
$$

(in this case $\lambda_{k_{t}} \neq c_{j}$ for all $j=1, \ldots, N$). It can easily be seen from the form of the determinant Δ^{\prime} and Lemma 1.1 that $\Delta^{\prime} \neq 0$. The proof now proceeds along the same lines as above.

This concludes the proof for the case $a \neq 0$.
(b) The case $N=0$ is a classical Sturm-Liouville problem. So we can suppose $N \geq 1$. In this case we construct a biorthogonal system $\left\{u_{n}\right\}$ ($n=0,1, \ldots ; n \neq k_{1}, \ldots, k_{N}$) as in part (a) with obvious modifications. In particular, we obtain the corresponding determinants $A_{n, k_{1}, \ldots, k_{N}}(x)$ and
$A_{n, k_{1}, \ldots, k_{N}}^{\prime}(x)$ of degree $N+1$ from $A_{n, k_{0}, \ldots, k_{N}}(x)$ and $A_{n, k_{0}, \ldots, k_{N}}^{\prime}(x)$ by deleting the second row and second column.

The proof of Theorem 1.1 is complete.
2. Basisness in $L_{p}(0,1)$ of the system of eigenfunctions of the boundary value problem (0.1)-(0.3)
Theorem 2.1.
(a) If $a \neq 0$ and if $k_{0}, k_{1}, \ldots, k_{N}$ are pairwise different nonnegative integers then the system $\left\{y_{n}\right\}\left(n=0,1, \ldots ; n \neq k_{0}, k_{1}, \ldots, k_{N}\right)$ is a basis of $L_{p}(0,1)(1<p<\infty)$; moreover if $p=2$ then this basis is unconditional.
(b) If $a=0$ and if k_{1}, \ldots, k_{N} are pairwise different nonnegative integers then the system $\left\{y_{n}\right\}\left(n=0,1, \ldots ; n \neq k_{1}, \ldots, k_{N}\right)$ is a basis of $L_{p}(0,1)$ $(1<p<\infty)$; moreover if $p=2$ then this basis is unconditional.

Proof. It was proved in [1] that

$$
\lambda_{n}=(\pi(n+\nu))^{2}+O(1)
$$

where

$$
\nu= \begin{cases}-1 / 2-N & \text { if } a \neq 0, \beta \neq 0 \tag{2.1}\\ -N, & \text { if } a \neq 0, \beta=0 \\ -N, & \text { if } a=0, \beta \neq 0 \\ 1 / 2-N, & \text { if } a=0, \beta=0\end{cases}
$$

This gives, for sufficiently large n,

$$
\begin{equation*}
\sqrt{\lambda_{n}}=\pi(n+\nu)+O(1 / n) \tag{2.2}
\end{equation*}
$$

Denote by $\psi_{1}(x, \mu)$ and $\psi_{2}(x, \mu)$ a fundamental system of solutions of the differential equation $u^{\prime \prime}-q(x) u+\mu^{2} u=0$, with initial conditions

$$
\begin{array}{lc}
\psi_{1}(0, \mu)=1, & \psi_{1}^{\prime}(0, \mu)=i \mu \\
\psi_{2}(0, \mu)=1, & \psi_{2}^{\prime}(0, \mu)=-i \mu \tag{2.4}
\end{array}
$$

It is well known (see [9] or [11, Ch. II, §4.5]) that for sufficiently large μ,

$$
\begin{equation*}
\psi_{j}(x, \mu)=\exp \left(\mu \omega_{j} x\right)(1+O(1 / \mu)) \quad(j=1,2) \tag{2.5}
\end{equation*}
$$

where $\omega_{1}=-\omega_{2}=i$.
We seek the eigenfunction y_{n} corresponding to the eigenvalue λ_{n} in the form

$$
y_{n}(x)=P_{n}\left|\begin{array}{ll}
\psi_{1}\left(x, \sqrt{\lambda_{n}}\right) & \psi_{2}\left(x, \sqrt{\lambda_{n}}\right) \tag{2.6}\\
U\left(\psi_{1}\left(x, \sqrt{\lambda_{n}}\right)\right) & U\left(\psi_{2}\left(x, \sqrt{\lambda_{n}}\right)\right)
\end{array}\right|
$$

where

$$
P_{n}= \begin{cases}\left(i \sqrt{2 \lambda_{n}} \sin \beta\right)^{-1} & \text { if } \beta \neq 0 \tag{2.7}\\ (i \sqrt{2})^{-1} & \text { if } \beta=0\end{cases}
$$

and

$$
\begin{equation*}
U(\psi(x))=\psi(0) \cos \beta-\psi^{\prime}(0) \sin \beta \tag{2.8}
\end{equation*}
$$

for any $\psi \in C^{1}[0,1]$. From (2.1)-(2.8) we easily obtain

$$
y_{n}(x)= \begin{cases}\sqrt{2} \cos (n-1 / 2-N) \pi x+O(1 / n) & \text { if } a \neq 0, \beta \neq 0 \tag{2.9}\\ \sqrt{2} \sin (n-N) \pi x+O(1 / n) & \text { if } a \neq 0, \beta=0 \\ \sqrt{2} \cos (n-N) \pi x+O(1 / n) & \text { if } a=0, \beta \neq 0 \\ \sqrt{2} \sin (n+1 / 2-N) \pi x+O(1 / n) & \text { if } a=0, \beta=0\end{cases}
$$

From now on we shall give the details only for the case $a \neq 0, \beta \neq 0$. We define the elements of the system $\left\{\varphi_{n}\right\}\left(n=0,1, \ldots ; n \neq k_{0}, k_{1}, \ldots, k_{N}\right)$ as follows:

$$
\varphi_{n}(x)= \begin{cases}\sqrt{2} \cos \left(j_{n}-1 / 2\right) \pi x & \left(n=0,1, \ldots, k^{*} ; n \neq k_{0}, k_{1}, \ldots, k_{N}\right) \\ \sqrt{2} \cos (n-1 / 2-N) \pi x & \left(n=k^{*}+1, k^{*}+2, \ldots\right)\end{cases}
$$

where $k^{*}=\max \left(k_{0}, \ldots, k_{N}\right)$, and $\left\{j_{n}\right\}\left(n=0,1, \ldots, k^{*} ; n \neq k_{0}, \ldots, k_{N}\right)$ is an increasing $\left(k^{*}-N\right)$-term sequence of numbers from $\left\{1, \ldots, k^{*}-N\right\}$. It is obvious that this system is identical to the system $\{\sqrt{2} \cos (n-1 / 2-N) \pi x\}$ $(n=N+1, N+2, \ldots)$, which is a basis of $L_{p}(0,1)$, and in particular, an orthonormal basis of $L_{2}(0,1)$ (see for example [10]).

Let $\|\cdot\|_{p}$ denote the norm in $L_{p}(0,1)$.
Firstly we prove that the system $\left\{y_{n}\right\}\left(n=0,1, \ldots ; n \neq k_{0}, \ldots, k_{N}\right)$ is an unconditional basis of $L_{2}(0,1)$. For this we compare the system

$$
\begin{equation*}
\left\{y_{n}\right\}\left(n=0,1, \ldots ; n \neq k_{0}, k_{1}, \ldots, k_{N}\right) \tag{2.10}
\end{equation*}
$$

with $\left\{\varphi_{n}\right\}\left(n=0,1, \ldots ; n \neq k_{0}, k_{1}, \ldots, k_{N}\right)$. From (2.9) it follows that for sufficiently large n,

$$
\left\|y_{n}-\varphi_{n}\right\|_{2} \leq \mathrm{const} / n
$$

Therefore the series

$$
\sum_{n=0 ; n \neq k_{0}, \ldots, k_{N}}^{\infty}\left\|y_{n}-\varphi_{n}\right\|_{2}^{2}
$$

is convergent. Hence in this case the system (2.10) is quadratically close to $\left\{\varphi_{n}\right\}\left(n=0,1, \ldots ; n \neq k_{0}, k_{1}, \ldots, k_{N}\right)$, which is an orthonormal basis of $L_{2}(0,1)$ as mentioned above. Since the system (2.10) is minimal in $L_{2}(0,1)$, our claim is established for $p=2$ (see [4, Sect. 9.9.8 of the Russian translation]).

For the remaining part of the theorem the following asymptotic formula will be needed:

$$
\begin{equation*}
u_{n}(x)=y_{n}(x)+O(1 / n) \tag{2.11}
\end{equation*}
$$

for sufficiently large n.

It follows from (2.9) that

$$
\begin{gather*}
\left\|y_{n}\right\|_{2}=1+O(1 / n) \tag{2.12}\\
y_{n}(1)=O(1 / n) \tag{2.13}
\end{gather*}
$$

Let $\lambda_{n} \neq c_{j}$ for all $n=0,1, \ldots$ and $j=1, \ldots, N$. For this case the system $\left\{u_{n}\right\}\left(n=0,1, \ldots ; n \neq k_{0}, k_{1}, \ldots, k_{N}\right)$ is defined by (1.6)-(1.9). Then by (1.8), (2.12) and (2.13),

$$
\begin{equation*}
B_{n}=1+O(1 / n) \tag{2.14}
\end{equation*}
$$

Expanding the determinant (1.7) along the first row and taking into account that all elements in other rows are either bounded functions or fixed real numbers, we deduce from (1.6)-(1.9), (2.13) and (2.14) that the formula (2.11) is true.

The case in which some of the numbers $c_{j}(j=1, \ldots, N)$ are eigenvalues of the boundary value problem (0.1)-(0.3) can be treated in a similar way. In this case for the proof of (2.11) we use the corresponding representations for the functions $\left\{u_{n}\right\}\left(n=0,1, \ldots ; n \neq k_{0}, k_{1}, \ldots, k_{N}\right)$ for sufficiently large n (see I-III, V from the previous section).

The asymptotic formulas

$$
\begin{align*}
& y_{n}(x)=\varphi_{n}(x)+O(1 / n) \tag{2.15}\\
& u_{n}(x)=\varphi_{n}(x)+O(1 / n) \tag{2.16}
\end{align*}
$$

are also valid for sufficiently large n. This follows immediately from (2.9) and (2.11).

We are now ready to prove our claim for $p \neq 2$. Let $1<p<2$ be fixed. It was seen above that the system (2.10) is a basis of $L_{2}(0,1)$. Thus this system is complete in $L_{p}(0,1)$. Hence, for basisness in $L_{p}(0,1)$ of the system (2.10) it is sufficient to show the existence of a constant $M>0$ such that

$$
\begin{equation*}
\left\|_{n=1 ; n \neq k_{0}, \ldots, k_{N}}^{T}\left(f, u_{n}\right) y_{n}\right\|_{p} \leq M \cdot\|f\|_{p} \quad(T=1,2, \ldots) \tag{2.17}
\end{equation*}
$$

for all $f \in L_{p}(0,1)$ (see [7, Ch. I, §4]).
By (2.15) and (2.16),

$$
\begin{align*}
& \left\|\sum_{n=1 ; n \neq k_{0}, \ldots, k_{N}}^{T}\left(f, u_{n}\right) y_{n}\right\|_{p} \leq\left\|_{n=1 ; n \neq k_{0}, \ldots, k_{N}}^{T}\left(f, \varphi_{n}\right) \varphi_{n}\right\|_{p} \tag{2.18}\\
+ & \left\|\sum_{n=1 ; n \neq k_{0}, \ldots, k_{N}}\left(f, u_{n}\right) O(1 / n)\right\|_{p}+\| \|_{n=1 ; n \neq k_{0}, \ldots, k_{N}}^{T}(f, O(1 / n)) \varphi_{n} \|_{p}
\end{align*}
$$

We shall now prove that all the summands on the right hand side of (2.18) are bounded from above by const $\cdot\|f\|_{p}$.

Since $\left\{\varphi_{n}\right\}\left(n=0,1, \ldots ; n \neq k_{0}, k_{1}, \ldots, k_{N}\right)$ is a basis of $L_{p}(0,1)$, we have

$$
\begin{equation*}
\left\|\sum_{n=1 ; n \neq k_{0}, \ldots, k_{N}}^{T}\left(f, \varphi_{n}\right) \varphi_{n}\right\|_{p} \leq \mathrm{const} \cdot\|f\|_{p} \tag{2.19}
\end{equation*}
$$

for all $f \in L_{p}(0,1)$ (see [7, Ch. I, §4]). Applying Hölder's and Minkowski's inequalities, and (2.16), we obtain
(2.20) $\left\|_{n=1 ; n \neq k_{0}, \ldots, k_{N}}^{T}\left(f, u_{n}\right) O(1 / n)\right\|_{p} \leq \mathrm{const} \cdot \sum_{n=1 ; n \neq k_{0}, \ldots, k_{N}}^{T}\left|\left(f, u_{n}\right)\right| \frac{1}{n}$

$$
\leq \text { const } \cdot\left(\sum_{n=1 ; n \neq k_{0}, \ldots, k_{N}}^{T}\left|\left(f, u_{n}\right)\right|^{q}\right)^{1 / q} \cdot\left(\sum_{n=1 ; n \neq k_{0}, \ldots, k_{N}}^{T} \frac{1}{n^{p}}\right)^{1 / p}
$$

$$
\leq \text { const } \cdot\left[\left(\sum_{n=1 ; n \neq k_{0}, \ldots, k_{N}}^{T}\left|\left(f, \varphi_{n}\right)\right|^{q}\right)^{1 / q}\right.
$$

$$
\left.+\left(\sum_{n=1 ; n \neq k_{0}, \ldots, k_{N}}^{T}|(f, O(1 / n))|^{q}\right)^{1 / q}\right]
$$

where $1 / p+1 / q=1$.
Note that $\left\{\varphi_{n}\right\}\left(n=0,1, \ldots ; n \neq k_{0}, k_{1}, \ldots, k_{N}\right)$ is an orthonormal uniformly bounded function system. Thus by F. Riesz's theorem (see [13, Ch. XII, Theorem 2.8]),

$$
\begin{equation*}
\left(\sum_{n=1 ; n \neq k_{0}, \ldots, k_{N}}^{T}\left|\left(f, \varphi_{n}\right)\right|^{q}\right)^{1 / q} \leq \mathrm{const} \cdot\|f\|_{p} \tag{2.21}
\end{equation*}
$$

Using the well known fact (see e.g. [3, Sect. 2.2.4]) that $\|f\|_{p}$ is a nondecreasing function of p, we have

$$
\begin{align*}
& \left(\sum_{n=1 ; n \neq k_{0}, \ldots, k_{N}}^{T}|(f, O(1 / n))|^{q}\right)^{1 / q} \tag{2.22}\\
& \quad \leq \mathrm{const} \cdot\|f\|_{1} \cdot\left(\sum_{n=1}^{T} \frac{1}{n^{q}}\right)^{1 / q} \leq \mathrm{const} \cdot\|f\|_{p}
\end{align*}
$$

Similarly, for the third summand of (2.18), using Parseval's equality we have

$$
\begin{equation*}
\left\|\sum_{n=1 ; n \neq k_{0}, \ldots, k_{N}}^{T}(f, O(1 / n)) \varphi_{n}\right\|_{p} \leq\left\|\sum_{n=1 ; n \neq k_{0}, \ldots, k_{N}}^{T}(f, O(1 / n)) \varphi_{n}\right\|_{2} \tag{2.23}
\end{equation*}
$$

$$
\begin{aligned}
& =\left(\sum_{n=1 ; n \neq k_{0}, \ldots, k_{N}}^{T}|(f, O(1 / n))|^{2}\right)^{1 / 2} \\
& \leq \text { const } \cdot\|f\|_{1} \cdot\left(\sum_{n=1}^{T} \frac{1}{n^{2}}\right)^{1 / 2} \leq \text { const } \cdot\|f\|_{p}
\end{aligned}
$$

Finally, (2.17) follows from (2.18)-(2.23). Hence the system (2.10) is a basis of $L_{p}(0,1)(1<p<2)$.

Let $2<p<\infty$. It is obvious that the system $\left\{u_{n}\right\}(n=0,1, \ldots ; n \neq$ $\left.k_{0}, k_{1}, \ldots, k_{N}\right)$ is a basis of $L_{p}(0,1)$. Therefore this system is complete in $L_{q}(0,1)$, where $1 / p+1 / q=1$. Note that $1<q<2$.

Using the same kind of argument, one can prove that $\left\{u_{n}\right\}(n=0,1, \ldots$; $\left.n \neq k_{0}, k_{1}, \ldots, k_{N}\right)$ is a basis of $L_{q}(0,1)$. It follows that (2.10) is a basis of $L_{p}(0,1)(2<p<\infty)$.

The proofs for the cases $a \neq 0, \beta=0 ; a=0, \beta \neq 0 ; a=0, \beta=0$ are similar if we note the fact that each of the systems

$$
\begin{array}{ll}
\{\sqrt{2} \sin (n-N) \pi x\} & (n=N+1, N+2, \ldots), \\
\{\sqrt{2} \cos (n-N) \pi x\} & (n=N, N+1, \ldots), \\
\{\sqrt{2} \sin (n+1 / 2-N) \pi x\} & (n=N, N+1, \ldots),
\end{array}
$$

is a basis of $L_{p}(0,1)(1<p<\infty)$, and in particular, an orthonormal basis of $L_{2}(0,1)$ (see e.g. [10]).

The proof of Theorem 2.1 is complete.

References

[1] P. A. Binding, P. J. Browne and B. A. Watson, Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, I, Proc. Edinb. Math. Soc. 45 (2002), 631-645.
[2] —, 一, 一, Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, II, J. Comput. Appl. Math. 148 (2002), 147-168.
[3] R. E. Edwards, Fourier Series: A Modern Introduction, Vol. 1, Springer, New York, 1982; Russian transl., Mir, Moscow, 1985.
[4] S. Kaczmarz and H. Steinhaus, Theorie der Orthogonalreihen, Warszawa-Lwów, 1935; Russian transl., Fizmatgiz, Moscow, 1958.
[5] N. Yu. Kapustin, Oscillation properties for the solutions of a non-selfadjoint spectral problem with a spectral parameter in the boundary conditions, Differentsial'nye Uravneniya 35 (1999), 1024-1027 (in Russian); English transl.: Differential Equations 35 (1999), 1031-1034.
[6] N. Yu. Kapustin and E. I. Moĭseev, The basis property in L_{p} of the systems of eigenfunctions corresponding to two problems with a spectral parameter in the boundary conditions, Differentsial'nye Uravneniya 36 (2000), 1357-1360 (in Russian); English transl.: Differential Equations 36 (2000), 1498-1501.
[7] B. S. Kashin and A. A. Saakian, Orthogonal Series, Nauka, Moscow, 1984 (in Russian); English transl., Amer. Math. Soc., 1989.
[8] N. B. Kerimov and V. S. Mirzoev, On the basis properties of one spectral problem with a spectral parameter in boundary conditions, Sibirsk. Mat. Zh. 44 (2003), 10411045 (in Russian); English transl.: Siberian Math. J. 44 (2003), 813-816.
[9] A. S. Makin, On the class of boundary value problems for the Sturm-Liouville operator, Differentsial'nye Uravneniya 35 (1999), 1058-1066 (in Russian); English transl.: Differential Equations 35 (1999), 1067-1076.
[10] E. I. Moĭseev, On the basis properties of sine and cosine systems, Dokl. Akad. Nauk SSSR 275 (1984), 794-798 (in Russian).
[11] M. A. Naimark, Linear Differential Operators, GITTL, Moscow, 1954 (in Russian); English transl., Frederick Ungar, New York, 1967; German transl., Akademie-Verlag, Berlin, 1960.
[12] G. Pólya und G. Szegő, Aufgaben und Lehrsätze aus der Analysis, Vol. 2, Springer, Berlin, 1925; Russian transl., GITTL, Moscow, 1956.
[13] A. Zygmund, Trigonometric Series, Vol. 2, Cambridge Univ. Press, Cambridge, 1959; Russian transl., Mir, Moscow, 1965.

Institute of Mathematics and Mechanics
National Academy of Sciences
of Azerbaijan
F. Agayev St. 9

Baku AZ 1141, Azerbaijan
E-mail: nazimkerimov@yahoo.com

Department of Mathematics
Faculty of Pedagogics
Qafqaz University
Khyrdalan
Baku AZ 0101, Azerbaijan
E-mail: yakubaliyev@yahoo.com

Received September 19, 2005
Revised version January 12, 2006

[^0]: 2000 Mathematics Subject Classification: 34L10, 34B24, 34L20.
 Key words and phrases: Sturm-Liouville, eigenparameter-dependent boundary conditions, basis, minimal system, quadratically close systems.

