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Abstract: With the growing number of Web services on the internet, there is a challenge to 
select the best Web service which can offer more quality-of-service (QoS) values at the 
lowest price. Another challenge is the uncertainty of QoS values over time due to the 
unpredictable nature of the internet. In this paper, we modify the interval data envelopment 
analysis (DEA) models [Wang, Greatbanks and Yang (2005)] for QoS-aware Web service 
selection considering the uncertainty of QoS attributes in the presence of desirable and 
undesirable factors. We conduct a set of experiments using a synthesized dataset to show the 
capabilities of the proposed models. The experimental results show that the correlation 
between the proposed models and the interval DEA models is significant. Also, the 
proposed models provide almost robust results and represent more stable behavior than the 
interval DEA models against QoS variations. Finally, we demonstrate the usefulness of the 
proposed models for QoS-aware Web service composition. Experimental results indicate 
that the proposed models significantly improve the fitness of the resultant compositions when 
they filter out unsatisfactory candidate services for each abstract service in the 
preprocessing phase. These models help users to select the best possible cloud service 
considering the dynamic internet environment and they help service providers to 
improve their Web services in the market.
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1 Introduction

Cloud computing is the widely accepted paradigm of sharing computing resources (e.g.,
servers, data storage, software and information) as services over the internet. Resources
are configurable at the server side, and service providers can manage them with
minimum interaction. Therefore, users can access the services rapidly without knowing
how they work [Goscinski and Brock (2010); Wei, Vasilakos, Zheng et al. (2010)].
Cloud computing has several technical advantages over traditional computing, such as
flexibility, reliability, and availability. Moreover, a business can reduce its expenditures
by using metered services (pay-per-use) instead of buying expensive hardware and
software. These advantages have led to the rapid development of cloud computing and
they encourage large firms to migrate toward cloud services [Goscinski and Brock
(2010); Jatoth, Gangadharan and Fiore (2017)].

Cloud computing is based on a service-oriented architecture [Wang, Liu, Sun et al. (2014)],
and complex business applications are built by combining atomic Web-based components
(i.e., Web services) via the internet [Chen, Dou, Li et al. (2016)].

The nonfunctional properties of Web services are often described by quality-of-service
(QoS) attributes such as security, throughput, reliability and response time. The fast
growth of Web services has led to the emergence of numerous candidate services with
the same functional description but different in QoS values (we refer to the candidate
services as concrete services and the functional descriptions as abstract services). As a
result, there may be a tradeoff between price and other QoS attributes, which makes it
challenging to select the best service for each abstract service [Ouadah, Hadjali, Nader
et al. (2019); Karimi, Isazadeh and Rahmani (2017)].

Another issue that should be considered in Web service selection is the emergence of
uncertainty and fluctuation in QoS values over different periods. Due to the unpredictable
and dynamic internet environment. There are many kinds of uncertainty in the cloud
environment, which can affect different QoS attributes. For example, failure and recovery
time of servers can affect availability values. Hence, resource migration, data replication,
on-demand resource provisioning and server workloads can affect response time values
[Tchernykh, Schwiegelsohn, Talbi et al. (2019); Wang, Zheng, Sun et al. (2011); ur
Rehman, Hussain and Hussain (2014); Garg, Versteeg and Buyya (2013)]. Hence, the
QoS values are not assumed to be exactly obtained. Only their bounded intervals are
known, and they are derived from the range of possible values that the corresponding
QoS attribute may take.

Cloud services usually consist of several Web services and use graph-based modeling tools
to determine the precedence relationships of the user-submitted workflow tasks. In detail,
they model a user-submitted request as a directed graph to specify the execution order of
the participant Web services [Zhang, Lee and Helal (2019); Wu, Ni, Gu et al. (2010)].
Users require QoS-aware cloud service selection strategies to discover the best concrete
service set for a requested workflow that satisfies their QoS constraints. To find the
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optimal solution to this problem is NP-complete. The problem of cloud service selection
usually deals with the following issues: (1) QoS-aware Web service selection: retrieve the
worthiest concrete services from UDDI [Zhang, Gong, Lin et al. (2007)] for each abstract
service, which can be considered the preprocessing phase for QoS-aware Web service
composition approaches. (2) QoS-aware Web service composition: an optimization
problem that builds new functionalities (cloud services) by combining different Web
services based on the requested workflow. The aggregate QoS of the resultant
composition should be maximized possible while satisfying the user’s qualitative requests
[Huang, Lan and Yang (2009); Jatoth, Gangadharan and Buyya (2019); Zeng, Benatallah,
Ngu et al. (2004); Chen, Dou, Li et al. (2016)].

Multi-criteria decision making (MCDM) is a collection of methods to compare and rank
multiple options (referred to as alternatives) involving several decision criteria [Özcan,
Ünlüsoy and Eren (2017)]. Entropy is a widely accepted method to compute the relative
importance of attributes based on their uncertainty in MCDM [Shemshadi, Shirazi,
Toreihi et al. (2011)]. Data envelopment analysis (DEA) is a well-established method in
the field of MCDM that uses linear programming methodology. This nonparametric
method is used to measure the efficiency of a homogeneous group of alternatives (the
decision-making unit, or DMU) such as shops, schools, hospitals and cloud services
[Karsak (2008); Raju and Kumar (2006); Jatoth, Gangadharan and Fiore (2017)].

In this study, we probe the effects of uncertainty on the internet and propose the most
compatible DEA models for mentioned situations. Hence, we can more precisely evaluate
the performance of Web services and better identify the qualified concrete services for
each abstract service.

As mentioned, only bounded intervals of QoS attributes are known in the dynamic
environment of the internet. The traditional DEA models and the entropy method are not
suited to imprecise data. Accordingly, we choose the interval DEA models [Wang,
Greatbanks and Yang (2005)] and modify them for QoS-aware Web service selection. We
construct our models by integrating interval DEA models and interval entropy weights
(assuming a uniform distribution of each QoS attribute) [Wu, Sun, Song et al. (2013);
Lotfi and Fallahnejad (2010)]. We modify these models based on Russell’s model
[Pastor, Ruiz and Sirvent (1999)] to improve their accuracy against frequent variations of
QoS values. We enrich the models to treat DEA-undesirable (bad) outputs, which jointly
are produced along with desirable (good) outputs in the cloud computing environment.

The main conributions of this paper are as follows: (i) We construct a new pair of interval
DEA models to rank Web services more precisely. (ii) We propose a solution to discover the
best possible cloud service according to the dynamic nature of the cloud environment. For
this purpose, we eliminate the unqualified Web services from the design space of
metaheuristic algorithms using the proposed models. (iii) We conduct a comprehensive
comparison between the proposed models and interval DEA models based on the
sensitivity analyses and degree of utilization from the available information to represent
the advantages of the proposed models. The rest of this paper is organized as follows. In
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the next section, related work and the role of MCDM in cloud service selection are
presented. The concepts of DEA, interval DEA, entropy, interval entropy, and
comparision of interval efficiency scores are reviewed in Section 3. The proposed models
for cloud service selection are constructed in Section 4. The usefulness of proposed
models for QoS-aware Web service composition is discussed in Section 5. In Section 6,
an experiment is conducted to describe Web service selection using the proposed models
and a synthesized dataset. In Section 7, the capabilities of the proposed models are
analyzed. In Section 8, the experimental results are presented when proposed models are
employed in the preprocessing phase of GA. Conclusions are given in Section 9.

2 Related work

2.1 Web and cloud service selection
So far, a lot of researchers have gone for Web and cloud service selection. In this section, we
will present a brief overview of MCDM for these problems.

Ouadah et al. [Ouadah, Hadjali, Nader et al. (2019)] proposed SEFAP, a hybrid MCDM
method to rank Web services. They combined fuzzy AHP and Entropy for weighting
selection criteria, and they used PROMETHEE to rank Web services. Serrai et al. [Serrai,
Abdelli, Mokdad et al. (2017)] proposed a hybrid method which consists of BWM and
some other MCDM methods to rank Web services. Serrai et al. [Serrai, Abdelli, Mokdad
et al. (2019)] developed a Web service selection approach to cope with user constraints
on QoS criteria. For this purpose, they extended the TOPSIS, SAW, WPM and VIKOR
methods to a normalization technique called OMRI. They also considered an extension
of the AHP method to weight QoS criteria. Sun et al. [Sun, Zhang and Liu (2016)]
presented an MCDM method for service ranking. They integrated the entropy and
subjective weights to determine the importance of QoS attributes. Then they ranked
services by the TOPSIS method based on their quality.

The following studies concentrated only on a single task in the cloud environment and used
MCDM for cloud service selection.

Al-Faifi et al. [Al-Faifi, Song, Hassan et al. (2019)] developed a hybrid MCDM method to
evaluate and rank cloud services from smart data. Their method consists of two components:
(i) clustering the cloud services using the k-means algorithm and (ii) ranking the obtained
clusters using MCDM methods to make a final decision. Ma et al. [Ma, Hu, Li et al.
(2019)] proposed a variation-aware cloud service selection via collaborative QoS
prediction to select an optimal cloud service according to the user’s non-functional
requirements. They employed cloud model theory to compute the uncertainty of QoS
attributes and ranked cloud services based on both user preferences and QoS variation
using an improved TOPSIS. Gireesha et al. [Gireesha, Somu, Krithivasan et al. (2020)]
presented a novel approach for cloud service provider selection based on their
trustworthy. They also employed a weight assessment method to determine the
importance of QoS attributes based on objective and subjective measures. Hussain et al.
[Hussain, Chun and Khan (2020)] proposed a novel framework called CSSaaS, which
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provides essential facilities for viable cloud service selection as a service. Then, they
introduced a novel MCDM approach named FLBWN for viable cloud service selection
of CSSaaS framework under a fuzzy environment. Gireesha et al. [Gireesha, Somu,
Raman et al. (2020)] utilized the neural networks as an MCDM method to solve the
cloud service selection problem. In detail, they determined the optimal weights of QoS
attributes using WNN. Then, they employed EDAS to rank cloud service providers. Silas
et al. [Silas, Rajsingh and Ezra (2012)] presented a cloud service selection middleware
named SSM_EC which used ELECTERE methodology. Rai et al. [Rai and Kumar
(2016)] developed a new method using TOPSIS and VIKOR for IaaS cloud service
selection. This method ranks cloud services daily. To obtain more accurate results, it
assigns more weight to recent values. Jatoth et al. [Jatoth, Gangadharan and Fiore
(2017)] developed new DEA models integrated with AHP/ANP to evaluate cloud
services based on user preferences. Rehman et al. [ur Rehman, Hussain and Hussain
(2014)] presented an MCDM method for IaaS cloud service selection considering
fluctuations of services’ efficiency. This method performs parallel MCDM according to
user preferences over different periods of time. Then, it determines the overall best
service by aggregating the individual results of each time period. Sun et al. [Sun, Ma,
Zhang et al. (2016)] proposed an MCDM method based on the fuzzy AHP and fuzzy
TOPSIS approaches to rank cloud services in uncertain cloud environments, and built a
fuzzy ontology model to filter the services by function matching before ranking them.
Kumar et al. [Kumar, Mishra and Kumar (2017)] devised an integrated MCDM method
for cloud service selection in a fuzzy environment. Their method determines the weights
of QoS attributes using AHP and ranks cloud services using fuzzy TOPSIS. Jatoth et al.
[Jatoth, Gangadharan, Fiore et al. (2019)] proposed an MCDM method derived from
Grey TOPSIS and AHP for cloud service selection. Xu et al. [Xu, Ma and Wang (2015)]
utilized CCR and BCC DEA models to classify cloud services by efficiency levels, and
provided guidelines to improve less efficient services. Azadi et al. [Azadi, Emrouznejad,
Ramezani et al. (2019)] proposed a network DEA model to evaluate the efficiency of
cloud services more accurately. Moreover, their model can detect inefficient divisions of
cloud services. This is a key advantage of their approach over all the other existing
approaches. Shetty et al. [Shetty and DMello (2015)] eliminated services based on users’
QoS constraints ranked qualified services using the REMBRANDT approach. Kumar
et al. [Kumar and Kumar (2017)] proposed a hybrid method for cloud service selection.
They used entropy to determine the weight of each QoS attribute and TOPSIS to
evaluate the efficiency of cloud services.

An important factor considered in some of above studies is uncertainty and fluctuation of
QoS values in the dynamic internet environment [ur Rehman, Hussain and Hussain
(2014); Sun, Ma, Zhang et al. (2016); Kumar, Mishra and Kumar (2017); Wang, Zheng,
Sun et al. (2011); Kumar and Kumar (2017); Ma, Hu, Li et al. (2019)]. For example,
Wang et al. [Wang, Zheng, Sun et al. (2011)] used a cloud model to determine QoS
uncertainty to eliminate the unqualified Web services. Based on QoS uncertainty, they
selected the optimal Web service.
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All of the mentioned studies select the best possible cloud or Web services using different
MCDM methods. A part of these approaches which considers the uncertainty factor in their
selection process has merely concentrated on a single task. But the current business
processes are usually complicated and involve several tasks. Hence, an unsupported
factor that needs to be investigated in such business processes is the ability of the
ranking method to select the best possible cloud service considering the variations of
QoS values. In this study, we aim at presenting a hybrid MCDM method to fill this gap.
The conspicuous components of this method are: (i) a pair of modified interval DEA
models to select best Web services considering the uncertainty of the internet. (ii) a Web
service composition approach to discover the best possible cloud service among the
selected Web services considering the uncertainty of the internet.

2.2 Problem definition and MCDM in cloud service selection
In many real-world problems, we face situations in which the best alternative should be
selected from several options. In this case, an alternative may be best based on one or
more criteria and worse on other criteria. Hence, a compromise is required to rank the
alternatives.

MCDM is a sub-discipline of operations research used rank alternatives by aggregating
multiple conflicting/related criteria. Hence, MCDM includes appropriate methods to solve
the above problem, and it is widely employed in decision support systems [Pérez,
Laprise and Rey (2018); Kwok and Lau (2019), Hasnain, Thaheem and Ullah (2018);
Eraslan and Ic (2019); Santos, Bressi, Cerezo et al. (2019)]. ELECTRE, TOPSIS,
VIKOR, AHP, ANP, and DEA are examples of well-known MCDM methods. A variety
of studies, which we briefly reviewed in Section 2.1, have compared Web services using
MCDM methods.

In the QoS-aware Web service selection problem, the best service is selected according to its
QoS attributes. Hence, this problem falls into the category of MCDM methods.

In this paper, we present interval DEA models that are customized for the dynamic internet
environment. These models can help users select the best Web service more accurately
according to the circumstances of the cloud environment.

To understand the application of the proposed models in Web service composition problem,
consider the AgFlow middleware platform [Zeng, Benatallah, Ngu et al. (2004)]. AgFlow is
used for Web service composition, and its architecture is depicted in Fig. 1.

In this architecture, service providers register the QoS and other descriptions of their Web
services in the UDDI registry. When the composition manager receives a request, an
instance of composite service is initiated and a service broker is invoked to retrieve
appropriate candidate services for each abstract service. Thereafter, it aggregates retrieved
Web services and returns the optimal service set based on the requested workflow. In this
architecture, proposed models will be embedded in the service broker and they will
employ Web service selection considering the uncertainty of the cloud environment.
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3 Preliminaries

This section introduces the concepts of DEA, interval DEA, entropy and interval entropy
and their roles in evaluation of Web services.

3.1 DEA
As mentioned in Section 1, DEA is a method based on MCDM to evaluate the relative
efficiency of a group of homogeneous DMUs. DMUs represent processing units that
convert several inputs to several outputs. This method was first proposed by Charnes
et al. [Charnes, Cooper and Rhodes (1978)]. It has gradually been expanded to a variety
of applications, and is applied to many fields including engineering, economics, and
management. In DEA, the production possibility set (PPS) [Cooper, Seiford and Tone
(2007)] and the corresponding models are constructed by the acceptance of a series of
assumptions from a set of observed and virtual (possible) DMUs (A virtual DMU is an
ideal DMU, which can be made by combining a set of observed DMUs. Since this DMU
does not necessarily exist, it sometimes called a virtual DMU). After construction of
PPS, DEA determines the “efficient frontier” which includes all efficient DMUs. The
more inefficient DMU the further it is from the efficient frontier. There are two
conventional methods to determine the efficiency score: (1) the input-oriented method,
which is to move toward the efficient frontier by reducing inputs while maintaining the
same level of outputs; and (2) the output oriented method, which is to increase outputs
while keeping inputs fixed at their current values [Banker, Charnes and Cooper (1984),
Lotfi, Jahanshahloo, Ebrahimnejad et al. (2010); Wu, Sun, Song et al. (2013); He, Zhang,
Lei et al. (2013)].

We use an output-oriented CCR model [Lotfi, Jahanshahloo, Ebrahimnejad et al. (2010)]
whose envelopment form is presented in model (1).

Service Broker

Service composition
manager

Web service n

Web service 2

Web service 1

AgFlow middleware

UDDI 
Registry

Figure 1: AgFlow’s architecture
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’�¼max’

s:t

Pn
j¼1

�jxij � xid i ¼ 1; 2;…;m

Pn
j¼1

�jyrj � ’yrd r ¼ 1; 2;…; s

�j � 0 j ¼ 1; 2;…; n

8>>>>><
>>>>>:

(1)

In model (1), xij and yrj respectively represent the ith input and rth output of DMUj where i=
(1, 2, …, m), r=(1, 2, …, s), and j=(1, 2, …, n). The DMU under evaluation is DMUd. The
variables of this model are λ and φ. If φ*=1, thenDMUd is efficient. Otherwise, if φ*>1, then
this DMU is inefficient, and it is possible to increase outputs with keeping inputs unchanged.

The efficiency score of DMUd is
1

’�. The variable λ is a weight vector that indicates the

contribution of DMUj in finding the best virtual DMU for DMUd, where j=(1, 2, …, n).

We aim to customize this basic DEA model for Web service evaluation according to the
dynamic internet environment. For this purpose, we consider a Web service as a DMU,
QoS attributes as outputs and price items (the cost of service for a request) as inputs, as
shown in Fig. 2.

3.2 Interval DEA
Traditional DEA models suppose that DMU data are deterministic, whereas due to data
uncertainty of Web services, the input and output data cannot be determined precisely
[Jahanshahloo, Lotfi and Davoodi (2009)]. In such circumstances, the ith input and rth
output of DMUj are represented by ½xlij; xuij� and ½ylrj; yurj�, respectively where xlij>0 and
ylrj>0. To address such circumstances, Wang et al. [Wang, Greatbanks and Yang (2005)]
proposed interval DEA models, which were supported by other researchers [Jahed,
Amirteimoori and Azizi (2015), Wu, Sun, Song et al. (2013)]. Models (2) and (3) are
their envelopment form [Cooper, Seiford and Tone (2007)], which compute the lower
and upper bounds of φ*.

Web service (DMU)
.
.
.

.

.

.
price items QoS attributes

Figure 2: DEA model for Web service evaluation
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’l�¼max’

s:t

Pn
j¼1

�jxlij � xlid i¼1; 2;…;m

Pn
j¼1

�jyurj � ’yurd r¼1; 2;…; s

�j � 0 j¼1; 2;…; n

8>>>>><
>>>>>:

(2)

’u�¼max’

s:t

Pn
j¼1

�jxlij � xuid i¼1; 2;…;m

Pn
j¼1

�jyurj � ’ylrd r¼1; 2;…; s

�j � 0 j¼1; 2;…; n

8>>>>><
>>>>>:

(3)

In models (2) and (3), xlij and xuij represent the lower and upper bounds of the ith input of
DMUj where i=(1, 2, …, m) and j=(1, 2, …, n). Also, ylrj and yurj represent the lower and
upper bounds of the rth output of DMUj where r=(1, 2, …, s) and j=(1, 2, …, n).
Morever, we always have: 0,xlij�xuij and 0,ylrj�yurj. The other notations of models (2)
and (3) (λ and φ) have their usual meanings, as defined in model (1). Models (2) and (3)
calculate the efficiency of DMUs in optimistic and pessimistic viewpoints, respectively.
In detail, model (2) use the best characteristics of DMUd (xlid and yurd) in its calculation
and model (3) use the worst ones (xuid and ylrd). In these models, we always have: φl*≤φu* .
Since these models are output-oriented, the efficiency score of DMUd is computed

by 1
’u� ;

1
’l�

h i
. DMUd is efficient from the optimistic viewpoint if φl*=1. Otherwise, DMUd

is inefficient.

3.3 Comparing interval efficiency scores
After determining the relative efficiency of Web services using models (2) and (3), we must
rank them to find the best. Thus the interval numbers should be compared. Various methods
exist to compare interval numbers according to different theories [Sengupta and Pal (2000);
Chanas and Zielinski (1999); Li, Zeng and Yin (2018), Ramón, Ruiz and Sirvent (2014);
Wang, Chin and Yang (2007)]. In this research, we use the following two approaches:

1. Geometric average [Wang, Chin and Yang (2007)]: The interval numbers are compared
based on their midpoints. The midpoint of the efficiency scores is computed as the second
root of the products of φl* and φu* . Since the models (2) and (3) are output-oriented, we
must reverse their results and then compute the overall efficiency score of the jth Web
service using Eq. (4).
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Geomj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

’l�
j

 !
� 1

’u�
j

 !
2

vuut ; j ¼ 1; 2;…; n (4)

2. Sengupta’s approach [Sengupta and Pal (2000)]: compares the interval numbers A and B based
on their midpoint and half-with. for which we define an acceptability function using Eq. (5).

A�ðA;BÞ ¼ mðBÞ � mðAÞ
wðBÞ þ wðAÞ (5)

In Eq. (5), Assume m(A) and w(A) are the midpoint and half-with, respectively, of A, and
m(B), w(B) are the midpoint and half-with, respectively, of B. The value of A4(A,B)
represents the grade of satisfaction of the premise “A is less than B”. Furthermore, if A
and B have the same mid-point (m(A)=m(B)), then this function selects the number
with less uncertainty.

3.4 Entropy
Entropy is an objective weighting method that was proposed by Shannon [Shannon (1948)].
This method is used in various fields, such as information theory, physics, and transportation
models.

It measures the amount of information that each attribute provides for decision makers. If
one attribute contains more information than another, then it has more discrimination
power in decision making. For this reason, this method assigns more weight to it. Thus,
the results of this method can be used as the relative importance (weight) of QoS
attributes in MCDM [Lotfi and Fallahnejad (2010); ur Rehman, Hussain and Hussain
(2014)]. Fig. 3 shows the decision matrix for weighing QoS attributes of Web services.

Web service 1 x 11 x 12 x 1m

Web service 2 x 21 x 22 x 2m

Web service n x n1 x n2 x nm

Attribute 
weights

w 1 w 2 w m

...

. . .

. . .
...

...
...

...

. . .

. . .

. . .

Figure 3: Decision matrix for weighing to the QoS attributes
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Weights of Shannon’s entropy are computed as follows. First, the decision matrix elements
are normalized using Eq. (6).

pij¼ xijPn
j¼1 xij

; j¼1;…; n; i¼1;…;m (6)

In Eq. (6), xij represents the value of the jth attribute with respect to the ith alternative in the
decision matrix. The variables m and n represent the numbers of attributes and alternatives,
respectively. Then, the entropy hi is computed by Eq. (7).

hi¼� k
Xn
j¼1

pij:lnpij; i¼1;…;m (7)

Where k is the entropy constant and is equal to ðln nÞ�1, and pij.ln pij is defined as 0 if
pij=0. The weight of the ith attribute is computed using Eq. (8).

wi¼ 1� hi
m�Pm

s¼1 hi
; i¼1; ::;m (8)

3.5 Interval entropy
Due to the uncertainty of the cloud environment, each element of the decision matrix (Fig. 3)
can be considered an interval number (a continuous probabilistic distribution is assumed for
each QoS attribute). For example, the lower and upper bounds of the jth QoS attribute with
respect to the ith Web service is represented by ½xlij; xuij�. Under this condition, the weight of
the QoS attributes should be modified to the interval form to obtain the correct result. For
instance, the weight of the ith QoS attribute should be changed to ½wl

i;w
u
i �. Lotfi et al.

[Lotfi and Fallahnejad (2010)] proposed an interval entropy method to deal with this
problem. First, they normalized the decision matrix elements using Eq. (9).

plij¼
xlijPn
j¼1 x

u
ij
; puij¼

xuijPn
j¼1 x

u
ij
; i¼1;…;m; j¼1;…; n (9)

Then, they computed the lower and upper bounds of interval entropy using Eqs. (10) and
(11), respectively.

hli¼min �k
Xn
j¼1

plij:lnp
l
ij;�k

Xn
j¼1

puij:lnp
u
ij

( )
; i¼1;…;m (10)

hui¼max �k
Xn
j¼1

plij:lnp
l
ij;�k

Xn
j¼1

puij:lnp
u
ij

( )
; i¼1;…;m (11)

where k is the entropy constant and is equal to ðln nÞ�1, and plij:lnp
l
ij is defined 0 if plij¼0

and puij:lnp
u
ij is defined 0 if puij¼0. The lower and upper bounds of the weights of the ith
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QoS attribute are computed using Eqs. (12) and (13), respectively.

wl
i¼

1� hui
m�Pm

s¼1 h
l
s

; i¼1; ::;m (12)

wu
i¼

1� hli
m�Pm

s¼1 h
u
s

; i¼1; ::;m (13)

When all of the Web services have deterministic QoS values, the the interval entropy
weights lead to the usual entropy weight. But if at least one of the QoS values is in the
interval form, all weights will be in the interval form too.

4 QoS-aware Web service selection using proposed models

The main objective of this study is to select the best Web service based on the characteristics
of the cloud environment. To deal with this problem, we use the interval entropy to
determine the weights (priorities) of different QoS attributes of Web services. Then, we
integrate the interval entropy weights and interval DEA models to select the best Web
service. We modify the proposed models based on Russell’s model, since the interval
DEA models cannot capture all of the QoS variations in their evaluations. Finally, we
extend the proposed models to treat undesirable (bad) QoS attributes in the cloud
environment along with desirable (good) ones.

Fig. 4 describes the process of QoS-aware Web service selection using the proposed models.
The UDDI registry, which is used as an input layer, includes the list of concrete services and
their QoS values. The main operations of this process shown in the white boxes. The inputs
and outputs are represented with blue boxes. The workflow of these operations is as follows.
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Figure 4: The process of QoS-aware Web service selection using proposed models
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First, the interval entropy method is used to determine the interval weights of inputs and
outputs. Figs. 5(a) and 5(b) show the decision matrices for weighing the lower and upper
bounds of the QoS attributes, respectively. In these figures, xlij represents the lower bound
of QoS values where i=(1, 2, …, n) and j=(1, 2, …, m). Similarly, xuij represents the
upper bound of them.

Then a new PPS is constructed, which includes the interval entropy weights. For this
purpose, each interval weight is multiplied by the interval value of the corresponding
input/output using interval multiplication [Chakraverty (2014)]. For example, ½yl0rj; yu

0
rj �

represents the rth output of DMUj, which is computed by Eq. (14), where r=(1, …, s)
and j=(1, …, n).

½yl0rj; yu
0

rj � ¼ ½ylrj; yurj� � ½wl
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u
rjw

u
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(14)

The proposed models are constructed in the third step. These are run separately for eachWeb
service to compute their interval efficiency scores. (This is discussed further in Section 4.1).

Finally, the best Web services are selected by comparing interval efficiency scores.

These steps are repeated for each abstract service to determine the qualified Web services.

4.1 Proposed models
In this section, we construct our DEA models to compute the relative efficiency of Web
services considering the uncertainty of the cloud environment. Then we rank the Web
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Figure 5: Decision matrices for weighing the lower and upper bounds of the QoS attributes
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services based on their efficiency scores. To rank Web services using DEA, they should be
grouped by functional matchmaking in the UDDI as shown in Fig. 6. As is seen, Web
services of each group have equal numbers of inputs and outputs. For example, each
candidate service of abstract service 1 has s QoS attributes and m price items.

As mentioned, we consider inputs and outputs of Web services as continuous interval
variables due to the dynamic nature of the internet. Hence, we construct the proposed
models based on the interval DEA models described in Section 3.2.

In Section 3.1, we introduced the output-oriented CCRmodel to evaluate Web services. This
model is constructed based on the constant return to scale (CRS) hypothesis, in which input
and output variables change proportionally. For example, if the input values for a DMU are
all doubled, then the DMU must produce twice as many outputs. CRS in the cloud
environment is not acceptable due to internet dynamics and different pricing plans of
service level agreements (SLAs) [Serrano, Kouki and Ledoux (2016)]. Hence, we use the
BCC model which assumes a variable return to scale (VRS). In this hypothesis, the input
and output variables can change disproportionately with each other. The BCC model
includes the constraints of the CCR model and

Pn
j¼1 �j¼1 as an additional constraint.

This constraint denotes the assumption of the VRS [Cooper, Seiford and Tone (2007)].

Proposed models are provided for use in the service broker. These models should run
periodically to precisely reflect the intrinsic changes in QoS values [Jula, Sundararajan
and Othman (2014)]. As each QoS attribute corresponds to a specific aspect of a Web
service’s efficiency (e.g., reliability, security, and throughput), it does not reflect the
reality that all of the outputs of DMUs increase at the same rate. QoS attributes should
be increased at different ratios, while interval DEA models can only decrease/increase all
of the inputs/outputs at the same rate (because models (2) and (3) use a unique φ variable
for all the outputs). Therefore, if we use the interval DEA models to rank Web services
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Figure 6: DEA model of UDDI
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in the service broker, they cannot consider all of the QoS variations in their evaluations. (This
is addressed in Section 7.3 using a synthesized dataset.) To remove this drawback, the
integrated interval entropy-DEA models are presented based on Russell’s model as follows.

cl�¼max
1

s

Xs
r¼1

cr

s:t

Pn
j¼1

�jxl
0
ij � xl

0
id i¼1; 2;…;m

Pn
j¼1

�jyu
0

rj � cry
u0
rd r¼1; 2;…; s

Pn
j¼1

�j ¼ 1

�j � 0 j¼1; 2;…; n

cr � 1 r¼1; 2;…; s

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(15)
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s

Xs
r¼1

cr

s:t

Pn
j¼1

�jxl
0
ij � xu

0
id i¼1; 2;…;m

Pn
j¼1

�jyu
0

rj � cry
l0
rd r¼1; 2;…; s

Pn
j¼1

�j ¼ 1

�j � 0 j¼1; 2;…; n

cr � 1 r¼1; 2;…; s

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(16)

In models (15) and (16), γr is the efficient value of the rth output and the objective function is
defined as the average of efficient values. Hence, these models can change outputs at
different rates, which is more compatible with the dynamic situation of the cloud
environment. Other notations of the mentioned models were defined previously. As
mentioned in Section 3.2, the efficiency score of DMUd is computed through ½ 1cu� ; 1

cl��.
In models (15) and (16), DMUd is efficient if γ*r=1 for r=(1, 2, .., s). If we remove the
constraint γr≥1, we may have γ*r<1 for some outputs of an optimal solution. This
inequality means a kind of reduction in outputs, which is inconsistent with the concept of
output-oriented models. Consequently, we consider the constraint γr≥1 for r=(1, 2, .., s)
in models (15) and (16).

Definition 4.1 In model (15), when γr≥1 for r=(1, 2, .., s), DMUd is efficient from the
optimistic viewpoint if γl*=1. Otherwise, DMUd is inefficient and we have γl*>1.
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4.2 Proposed models considering undesirable outputs
Sometimes undesirable (bad) inputs and outputs may jointly appear along with desirable (good)
inputs and outputs. Traditional DEA models only values the desirable and simply ignores the
undesirable. In their presence, a DMU’s efficiency improves by decreasing undesirable
outputs and desirable inputs and increasing undesirable inputs and desirable outputs.

As mentioned, we consider QoS attributes as outputs of the proposed models. Hence, both
desirable and undesirable outputs may exist in the proposed models. For example, consider
the following QoS attributes:

	 Availability: the percentage of time in which a service is operating and accessible upon request.

	 Throughput: the number of tasks that can be completed by a service provider at a given
time.

	 Reliability: the probability that a service operates during a given time without failure, based
on the promise of the service provider and past failures experienced by users.

	 Adaptability: a service provider’s ability to modify its service’s functionality based on the
requests of users, defined as the time needed to adapt a service to the requests.

	 Response time: the period of time between sending a request to aWeb service and receiving
its response [Zheng, Wu, Zhang et al. (2012); Garg, Versteeg and Buyya (2013)].

According to the above definitions, we observe that throughput, reliability, and availability
are desirable outputs (greater values are favorable), while response time and adaptability are
undesirable (smaller values are favorable). We can conclude that Web services produce both
desirable and undesirable outputs, in which case traditional DEA models are not applicable.
We evaluate QoS attributes independently [Zheng, Wu, Zhang et al. (2012)]. Accordingly,
we can suppose strong disposability of undesirable QoS attributes. Hence, we treat
undesirable outputs using the approach developed by Seiford et al. [Seiford and Zhu
(2002)] and supported by other researchers [Anvari, Zulkifli, Sorooshian et al. (2014);
Liu, Chu, Yin et al. (2017)]. This approach is appropriate for our purpose since it
preserves the convexity and linearity of the BCC model. We extend this approach to
interval form for adaptation with the interval DEA models.

We first use Eqs. (17) and (18), respectively, to transform the lower and upper bounds of
undesirable outputs.

ybup ¼�yblp þwp>0; ðp¼1; 2;…; kÞ (17)

yblp ¼�ybup þwp>0; ðp¼1; 2;…; kÞ (18)

In Eqs. (17) and (18), yblp and ybup are the lower and upper bounds, respectively, of
undesirable outputs, and wp is a proper translation vector which transforms the lower and
upper bounds of the negative undesirable outputs to positive ones where p=(1, 2, …, k).
After applying these transformations, we can use the undesirable outputs in our proposed
models. Thus models (15) and (16) turn into models (19) and (20).
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(20)

In models (19) and (20), yglq and yguq are the lower and upper bounds, respectively, of
desirable outputs, where q=(1, 2,…, t) and k+t=s. Other notations were previously defined.

DMUd is efficient from the optimistic viewpoint if the equality γl*=1 hold [Wang,
Greatbanks and Yang (2005)]. No improvement is possible in the outputs of the Web
service because we have an optimal solution: γ*r=1 for r=(1, …, s).

Here, we compute the proportion of desirable/undesirable outputs in an inefficient Web
service, which should be increase/decrease to make it efficient. Model (20) uses the
pessimistic perspective. Therefore, the suggested improvements of this model are
redundant and unnecessary in most situations. Hence, we utilize model (19) to identify
the necessary improvements, which can apply to the service’s outputs in any situation. In
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this model, it is necessary to increase/decrease the upper/lower bound of the rth desirable/
undesirable output of DMUd at rate γ*r−1, where r=(1, 2, …, s), with a fixed input to turn it
into an efficient service if γ*r >1. In fact, the above rate play the role of auxiliary variable in
the slack-based models [Tone (2001)]. In Theorem 4.1, we observe an important property of
the proposed models, which shows that our models are always feasible.

Theorem 4.1 Models (19) and (20) are feasible.

Proof. set

�d¼1; �j¼0; j¼1;…; n; j 6¼d
cr¼1; r¼1;…; s

It can be seen that (γr, λj) with the above components is a feasible solution for these models. ▪

Another property that is considered after the construction of DEA models is their
boundedness. In Theorem 4.2, we prove that the proposed models are bounded.

Theorem 4.2 Models (19) and (20) are bounded.

Proof. The dual (multiplier) form of the model (19) is expressed as the model (21).
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8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

(21)

It can be seen that the solution (β, μ, ω, ν, u0) with the following components are a feasible
solution for model (21). Therefore, model (19) is bounded based on the weak duality
theorem [Vazirani (2013)].
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Model (20) is also bounded. The proof is similar to that of model (19).

Theorem 4.3 The inequality γl* ≤ γu* holds for all DMUs.

Proof. Suppose ðc�r ; ��
j Þ for r=(1, …, s), and j=(1, …, n) is an optimal solution of model

(19). Hence, the inequality (22) holds.
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j x
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0
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0
id. Hence, inequality (23) holds.
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0
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Also, the inequalities (24) and (25) hold for any optimal solution of model (19).
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We know that inequalities (26) and (27) always hold.
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0

qd q¼1;…; t (26)
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Based on inequalities (24)-(27), inequalities (28) and (29) hold.
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��
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Regarding the BCC constraint of models (19) and (20), equality (30) holds for any optimal
solution.

Xn
j¼1

��
j ¼ 1 j¼1;…; n (30)

As mentioned, we consider the constraint γr≥1 for r=(1, 2, …, s) in the proposed models.
Hence, inequality (31) holds for any optimal solution of these models.

c�r � 1 r¼1;…; s (31)

From inequalities (23) and (28)-(31), we can conclude that the optimal solution of model (19)
is a feasible solution of model (20). Therefore, the inequality γl* ≤ γu* holds. ▪

5 Usefulness of the proposed models for QoS-aware Web service composition

Although the proposed models rank Web services based on their relative efficiency, they are
not suitable for Web service composition because combining separate best services might
not always satisfy a user’s QoS constraints. A QoS-aware Web service composition
approach is needed to orchestrate the qualified services based on the requested workflow,
so as to maximize the aggregate QoS and meet user-specified global QoS constraints.

As mentioned, Web service composition is an optimization problem, and many studies have
been conducted using different algorithms to solve it. In this section, we investigate the
advantages of the proposed models when they are employed in the preprocessing phase
of metaheuristic algorithms. We should prepare data before running these algorithms.
This is carried out in two steps, as follows.

1. Weighting QoS values: As mentioned, the proposed models are integrated with interval
entropy weights. Hence they select qualified Web services according to the dynamic
cloud environment. Similarly, in the next phase, QoS-aware Web service composition
approaches should discover the best possible compositions according to this situation.
Thus we multiply the lower and upper bounds of QoS attributes by their interval
entropy weights using Eq. (14). Therefore, these approaches will be able to compute
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the fitness of compositions while considering the dynamic nature of the cloud
environment. This is the main usefulness of the proposed models for cloud service
selectiom problem.

2. Normalization of attribute values: The different measurement metrics of QoS attributes
may lead to inaccurate evaluations. The QoS values should be normalized to avoid this.
As mentioned, QoS attributes can be classified as desirable (positive) or undesirable
(negative). Hence, the lower and upper bounds of positive attribute values are
normalized to a range of 0-1 using the Eqs. (32) and (33), respectively.

ql;kSij ¼
ql;kSij �Minðql;kSij Þ

Maxðql;kSij Þ �Minðql;kSij Þ
if Maxðql;kSij Þ �Minðql;kSij Þ 6¼ 0

1 if Maxðql;kSij Þ �Minðql;kSij Þ ¼ 0

Positive attributes

8>><
>>: (32)
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¼

qu;kSij
�Minðqu;kSij

Þ
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Þ �Minðqu;kSij
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Þ �Minðqu;kSij
Þ 6¼ 0

1 if Maxðqu;kSij
Þ �Minðqu;kSij

Þ ¼ 0

Positive attributes

8>><
>>: (33)

In Eqs. (32) and (33), ql;kSij and q
u;k
Sij

represent the lower and upper bounds, respectively, of the
kth QoS attribute of the jth Web service from the ith abstract service. Also, Max(ql;kSij ) and
Min(qu;kSij

) are respectively the maximum ql;kSij and minimum qu;kSij
among all qualified Web

services. The lower and upper bounds of the negative attribute values are normalized to a
range of 0-1 using the Eqs. (34) and (35), respectively.

ql;kSij ¼
Maxðql;kSij Þ � ql;kSij

Maxðql;kSij Þ �Minðql;kSij Þ
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Much effort has been devoted to cloud service selection using single- and multi-objective
metaheuristic algorithms, such as studies based on GA [Ding, Liu, Sun et al. (2015)],
NSGA-II [Chen, Dou, Li et al. (2016)], PSO [Seghir and Khababa (2018)], MOPSO
[Huo, Qiu, Zhai et al. (2018)], IWO [Jatoth, Gangadharan and Fiore (2019)], MOEAD
[Suciu, Pallez, Cremene et al. (2013)], Eagle [Gavvala, Jatoth, Gangadharan et al.
(2019)], and ABC [Huo, Zhuang, Gu et al. (2015)]. These studies apply an integer
encoding scheme to candidate compositions. representing each by an m-dimensional
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array xd ¼ fxd1; xd2;…; xdmg. An element xij of this array denotes the ith concrete service from
the jth abstract service. Proposed models select attractive Web services that have the best
efficiency scores. In this way, proposed models eliminate unqualified services for each
abstract service and reduce the design space. Hence, employing our interval DEA models
in the preprocessing phase of the metaheuristic algorithms decreases the probability of
being trapped in local optima and increases the convergence rate. In Section 8, we will
adopt GA as an instance of metaheuristic algorithm and confirm this. Fig. 7 illustrates
how the proposed models reduce the design space by eliminating unqualified concrete
services for each abstract service.

The time complexity of the DEA model is linear with the number of qualified services. Hence
the time complexity of our preprocessing phase is proportional toO(mn), wherem is the number
of abstract services, and n is the number of qualified concrete services for each abstract service.
This run-time overhead can be considered as a disadvantage of the proposed solution.

Our solution can expand to a variety of applications that need effective search such as
[Abdullahi, Ngadi and Abdulhamid (2016); Awad, El-Hefnawy and Abdel-kader (2015)]
and Virtual Machine Placement in cloud computing [Masdari, Nabavi and Ahmadi
(2016); Choudhary, Rana and Matahai (2016)].

6 Experiment

6.1 Dataset description
This study proposed a pair of models to rank Web services more precisely considering the
uncertainty factor, and other factors such as user feedback techniques [Jatoth, Gangadharan
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Figure 7: Eliminating unqualified concrete services

546 CMES, vol.123, no.2, pp.525-570, 2020



and Fiore (2017)] are not included in its assumptions. Hence, we should find an appropriate
dataset to conduct our experiment under the uncertainty factor.

There is currently no open dataset that includes a variety of QoS attributes to evaluate our
interval DEAmodels. Performance of Web services is evaluated by throughput and response
time attributes. Here, to be more realistic, we confine our experiment to the performance
evaluation of Web services whose needed information is available in the WS-DREAM
dataset#1. This dataset includes QoS values related to 5285 public Web services which
monitored by 339 users. It is available for download (https://github.com/wsdream/
wsdream-dataset/tree/master/dataset1), hence our experiment is reproducible.

The Web services of the WS-DREAM dataset have different functionalities. We confine our
selection to 25 Web services with similar search functionality. These are selected from the
original dataset by keyword-search. The QoS values (throughput and response time) of these
Web services can be represented as a 339×25 matrix, whose each entry is a vector that
includes corresponding throughput and response time.

Tab. 1 includes a summary of the QoS values used in the experiment. Missing (out-of-range)
values were removed before computing the mean values of QoS attributes for this table.
These were filled with the obtained mean values to compute the standard deviation. As is
seen in the table, there is a remarkable difference between the minimum and maximum
values of each QoS attribute. Also, the large standard deviations values indicate
considerable uncertainty in these QoS values. This confirms the necessity to find a
solution to deal with the uncertainty in the Web service selection process.

Table 1: Summary of extracted dataset

Statistics Values

Num. of Web service invocations 8475

Num. of service users 339

Num. of Web services 25

Num. of user countries 31

Num. of Web service countries 9

Minimum response time value 0.007 s

Maximum response time value 19.23 s

Mean of response time 3.343 s

Standard deviation of response time 4.460 s

Minimum throughput value 0.122 kbps

Maximum throughput value 428.6 kbps

Mean of throughput 13.64 kbps

Standard deviation of throughput 22.49 kbps
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Value distributions of throughput and response time attributes related to the chosen 25 Web
services are shown in Figs. 8(a) and 8(b), respectively, from which we observe that the major
portion of response time values is less than 0.8 seconds, and the major portion of the
throughput values is less than 20 kilobytes per second (kbps).

We should extract the lower and upper bounds of QoS values to conduct the experiment.
Tab. 2 includes the extracted values from the WS-DREAM dataset corresponding to the
lower and upper bounds of the selected Web services’ QoS attributes, which we use as
the outputs of DMUs.

Since WS-DREAM does not contain the price of Web services, we use a synthesized dataset
to conduct our experiment. In detail, we assume that the corresponding values of this
missing attribute are equal together.

6.2 Efficiency evaluation
We will use the described dataset to evaluate the relative efficiency of selected Web services
via the proposed models. We then compare the proposed models to the interval DEA
models. Tab. 3 displays the relative importance of the QoS attributes which have been
computed by the interval entropy method. In fact, this table display the last raw of the
decision matrices in Figs. 4(b) and 5(a). The other rows of these matrices are shown in
Tab. 2. As shown for both the lower and upper bounds, the weights of the throughput
attribute are more than those of the response time attribute. We can conclude that the
throughput attribute provides more information than the response time attribute for
decision making. According to the equal values assigned to inputs, the entropy weights
of the price attribute will be equal to 1. After computing the entropy weights, we use
them to construct a new PPS by Eq. (14).

Values of Throughput (kBps)
<5 5-10 10-20 20-40 40-80 >80

N
um

br
s

0

500

1000

1500

2000

2500

3000

3500

(a)

<0.4 0.4-0.8 0.8-1.6 1.6-3.2 3.2-6.4 >6.4

N
um

br
s

0

500

1000

1500

2000

2500

3000

3500

(b)

Figure 8: Value distributions of the chosen Web services
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Table 2: Chosen QoS values for conducting the experiment

21.3 cm Services Response-time Throughput

yl yu yl yu

1 0.409 13.32 0.600 19.56

2 0.413 13.66 0.336 19.37

3 0.377 15.91 0.502 21.22

4 0.504 13.41 0.596 15.87

5 0.398 13.58 0.589 20.10

6 0.439 19.23 0.416 18.22

7 0.488 13.75 0.581 16.39

8 0.037 7.829 0.383 81.08

9 0.083 4.230 1.891 96.39

10 0.155 6.613 0.907 38.71

11 0.095 6.612 0.604 42.11

12 0.014 5.150 0.388 142.9

13 0.007 3.353 0.596 285.7

14 0.106 7.062 0.849 56.60

15 0.093 8.428 0.711 64.52

16 0.097 15.32 0.391 61.86

17 0.031 9.502 0.210 64.52

18 0.014 6.932 0.288 142.9

19 0.012 10.47 0.191 166.7

20 0.008 2.863 0.698 250

21 0.011 2.062 0.969 181.8

22 0.007 2.098 1.429 428.5

23 0.022 6.631 0.452 136.4

24 0.349 10.27 0.152 20.06

25 0.019 6.464 0.464 157.9

Table 3: Interval entropy weights

Response-time Throughput

wl wu wl wu

Interval entropy weights 0.022 5.618 0.066 5.755
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We evaluate the relative efficiency of Web services using models (19) and (20), since the
response time attribute is considered an undesirable output for Web services. These
models are coded using GAMS distribution 24.1.2. In addition, we set the translation
vector of undesirable outputs using Eq. (36) before running our models.

wp ¼ maxfybu0p g þ 1; ðp ¼ 1; 2;…; kÞ (36)

The results are summarized in Tab. 4. The first three columns are the results of model (19),
including the efficient values of response time (column γ*1), efficient values of throughput
(column γ*2), and amounts of γl* (column γl*). The next three columns are the
corresponding results of model (20).

As is seen, all of the obtained efficiency scores are greater than or equal to 1 since we
evaluate Web services using the output-oriented models. A Web service is efficient from
the optimistic viewpoint, if values of both γ*1 and γ*2 are equal to 1 in model (19). In Tab.
4, only Web service 22 is efficient from the optimistic viewpoint. The other Web services
are inefficient since their efficiency scores are greater than 1. Web service 4 has the worst
efficiency among the results of model (19) because its values of γl* is more than those of
the other optimistic efficiency scores. In the same way, Web services 9 and 24
respectively have the best and worst efficiency scores among the results of model (20).
We observe that the computed results confirm theorems in Section 4.2, since all solutions
are feasible and bounded, and we always have γl* ≤ γu*.

As mentioned in Section 4.2, an inefficient Web service can be converted into an efficient
one through the proportional increase on its outputs while the proportion of its inputs
remains fixed. Here, we compute the output insufficiency/redundancy rates of inefficient
Web services. As mentioned in Section 4.2, the insufficiency/redundancy rate of the rth
output is γ*r−1 in model (19), where r=(1, 2, …, s). For example, consider Web service 8
in Tab. 4. The output redundancy rate of its response time is 0.00149 s, and the output
insufficiency rate of its throughput is 4.28614 kbps. It means this Web service will
become efficient if these improvements are applied to its QoS attributes. As another
example, consider the Web service 13 in Tab. 4. There is no need to make any
improvements in its response time attribute since its redundancy rate is 0.

Next, we evaluate the selected Web service set using the interval DEA models. For
this purpose, we run the modified versions of models (2) and (3) considering
undesirable outputs.

The results of the lower and upper bounds of the interval DEA models are incomplete.
Hence, we integrate their results using the geometric average. The results are shown in
Tab. 5. The first two columns are the results of proposed models that include the overall
efficiency scores of the Web services (column Geom) and their ranking results (column
Rank). Similarly, the next two columns include results of the interval DEA models.
Fig. 9 shows the Spearman’s rank correlation coefficient between the ranking of the
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interval DEA models and the proposed models, which is 0.897 (slope of trendline). The
p-value is 1.2835E-9. We can conclude that this correlation is significant.

Finally, we employ Sengupta’s approach instead of the geometric average in the above
experiment. In this experiment, the Spearman’s rho and p-value are modified to 0.818

Table 4: Evaluation results of proposed models

Services Lower bound Upper bound

γ*1 γ*2 γl* γ*1 γ*2 γu*

1 1.02028 21.9121 11.466 740.512 62560.6 31651

2 1.02049 22.1270 11.574 778.834 102558 51668

3 1.01864 20.1979 10.608 1184.48 74773.6 37979

4 1.02520 27.0069 14.016 750.285 62980.4 31865

5 1.01972 21.3234 11.172 769.465 63728.9 32249

6 1.02183 23.5236 12.273 5116.94 90231.6 47674

7 1.02436 26.1501 13.587 789.651 64606.4 32698

8 1.00149 5.28614 3.1438 412.623 98006.1 49209

9 1.00377 4.44652 2.7251 319.809 19850.0 10085

10 1.00737 11.0721 6.0397 375.776 41385.2 20880

11 1.00437 10.1781 5.5912 375.748 62146.3 31261

12 1.00035 2.99930 1.9998 339.320 96743.1 48541

13 1 1.50018 1.2501 303.190 62980.4 31642

14 1.00492 7.57244 4.2887 388.589 44212.4 22300

15 1.00427 6.64290 3.8236 433.566 52793.7 26614

16 1.00447 6.92855 3.9665 1042.15 96000.9 48522

17 1.00119 6.64290 3.8220 476.971 178744 89610

18 1.00035 2.99930 1.9998 384.790 130334 65359

19 1.00025 2.57109 1.7857 524.277 196525 98525

20 1.00005 1.71440 1.3572 294.636 53777.0 27036

21 1.00020 2.35754 1.6789 281.646 38737.2 19509

22 1 1 1 282.205 26267.6 13275

23 1.00074 3.14223 2.0715 376.273 83045.0 41711

24 1.01720 21.3659 11.192 513.749 246950 123732

25 1.00059 2.71438 1.8575 371.709 80897.3 40635
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and 6.0153E-7, respectively. The obtained results again represent that there is a significant
correlation between their rankings, and Fig. 10 confirms this.

By comparing the results of these empirical studies, it can be concluded that there is a close
relationship between the proposed models and the interval DEA models, although, as seen
in Tab. 5, there are considerable differences in their rankings which leads to different service

Table 5: Comparison of results

Services Our Models Interval DEA

Geom Rank Geom Rank

1 0.001660 19 0.578701 18

2 0.001293 24 0.564225 21

3 0.001575 20 0.457952 24

4 0.001496 22 0.573547 19

5 0.001666 18 0.567869 20

6 0.001307 23 0.219986 25

7 0.001500 21 0.559284 22

8 0.002542 13 0.782482 13

9 0.006032 2 0.887810 5

10 0.002816 11 0.817563 10

11 0.002392 14 0.818811 9

12 0.003210 9 0.863417 6

13 0.005028 5 0.913518 4

14 0.003234 8 0.804954 12

15 0.003135 10 0.762301 14

16 0.002279 16 0.491637 23

17 0.001709 17 0.727901 15

18 0.002766 12 0.810772 11

19 0.002384 15 0.694643 17

20 0.005220 4 0.926721 3

21 0.005525 3 0.947741 1

22 0.008679 1 0.946900 2

23 0.003402 7 0.819743 8

24 0.000850 25 0.695835 16

25 0.003640 6 0.824791 7
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recommendations. For example, the proposed models select Web service 22 and the interval
DEA models select Web service 21.

7 Analysis of proposed models

Here, we aim to analyze the sensitivity of the computed results to data variations, and we
present a comparative analysis of the proposed models and the interval DEA models. In
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Figure 10: Obtained Spearman’s rank correlation coefficient using the Sengupta’s approach
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Figure 9: Obtained Spearman’s rank correlation coefficient using the geometric average
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this comparison, we investigate the motivation of presenting our interval DEAmodels based
on Russell’s model to rank Web services.

7.1 Sensitivity analysis of proposed models to weight variations
Sensitivity analysis determines the robustness or stability of the proposed models. We
determine their robustness when the interval entropy weights are varied. For this purpose,
we change the interval entropy weights while fixing all of the QoS values at their current
levels. Then we find the impact of these variations in the Web service ranking. We
conducted two experiments.

First, we gradually changed the difference between the lower and upper bounds of response
time values for all of the Web services in Tab. 2 to obtain several interval entropy weights.
Throughput values were assumed to be fixed at their current levels. Tab. 6 shows the
obtained weights. We evaluate the Web services in Tab. 2, using models (19) and (20) for
these weights. Fig. 11 shows the results, where the x- and y-axes represent Web services
and their efficiency scores, respectively. Green bars correspond to the interval entropy
weights of Tab. 3, and the other three colors correspond to the interval entropy weights
included in Tab. 6. As is seen, the best Web service Web service (#22) does not change
despite the different weights. The ranking of other Web services follows this trend as

Table 6: Interval entropy weights for response time variation

Interval entropy Weights Response-time Throughput

wl wu wl wu

1 0.041 0.472 0.120 5.755

2 0.030 2.563 0.090 5.755

3 0.022 5.831 0.065 5.755
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Figure 11: Sensitivity analysis of proposed models to response time variations

554 CMES, vol.123, no.2, pp.525-570, 2020



well. We can conclude that no significant change will be made in the ranking of Web
services if different weights are used.

In the second experiment, we gradually changed the difference between the lower and upper
bounds of throughput values for all of the Web services in Tab. 2 to obtain several interval
entropy weights. Response time were assumed to be fixed at their current levels. The other
steps of this experiment were similar to those of the first experiment. The obtained weights
are presented in Tab. 7. Fig. 12 shows the results, which are similar to those in Fig. 11. As is
seen, the best Web service (#22) does not change despite the different weights. The ranking
of other Web services follows this trend as well. From these experiments, we can conclude
that our models are robust to interval entropy weight variations.

7.2 Sensitivity analysis of proposed models to changes in available Web services
Given the large scale and dynamic environment of the internet, candidate services may still
experience numerous sudden failures and become unavailable, and new candidate services
may be launched after the recovery process [Wang, Zheng, Sun et al. (2011); Sharma,
Javadi, Si et al. (2016)].

Table 7: Interval entropy weights for throughput variations

Interval entropy weights Response-time Throughput

wl wu wl wu

1 0.039 5.618 0.116 0.834

2 0.032 5.618 0.096 2.173

3 0.025 5.618 0.075 4.372
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Figure 12: Sensitivity analysis of proposed models to throughput variations
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Here, we conduct another sensitivity analysis, to test the robustness of our models after
recovering the faulty services. From the WS-DREAM dataset, we used a keyword search
to find another 10 Web services that perform search functionality. The first four columns
of Tab. 8 include the lower and upper bounds of their QoS values. Such as in Section
6.2, we assume equal values for price items. In each experiment, we add a Web service
from Tab. 8 to the Web services of Tab. 2 and rank them using models (19) and (20).
After each experiment, we eliminate the added Web service from the results and compare
them with the results of Tab. 5. The last column of Tab. 8 includes the Spearman’s rank
correlation coefficients of these comparisons. We observe that the order of results
remains the same (Spearman’s rho=1) in most of experiments, and no significant change
In this section, we discussed that the robustness of the proposed models against failure of
candidate services is an essential feature, which should be considered in the ranking of
Web services. Then, we demonstrated that the proposed models are almost robust against
these failures, which is an important advantage of the proposed models.

7.3 Comparative analysis of proposed models and interval DEA models
As mentioned, we constructed our interval DEA models based on Russell’s model to
enhance their accuracy against QoS variations. To study the effect of this issue in the
Web service ranking, we present a comparative analysis of the interval DEA models and
proposed models. We evaluate a particular Web service using these models while varing
its QoS values, and we analyze the impact of these variations on its relative efficiency
score. We assume that data for the other Web services are fixed at their current values,
and the weights of QoS attributes are the same. We selected Web service 21 of Tab. 2 for

Table 8: Spearman’s rank correlation coefficient

Services Response-time Throughput Spearman’s rho

yl yu yl yu

1 0.414 13.87 0.576 19.32 1

2 0.157 18.93 0.317 38.22 1

3 0.417 18.57 0.699 31.18 1

4 0.016 3.078 18.52 1000 0.984

5 0.045 14.19 4.018 826.1 0.982

6 0.010 10.63 0.188 200 1

7 0.012 10.47 0.191 166.7 1

8 0.036 2.860 2.097 166.7 1

9 0.037 7.829 0.383 81.08 1

10 0.005 9.928 0.201 400 1
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the first experiment. We changed the lower and upper bounds of its response time values
from 2 to 10 s, with a step value of 2. We assume that its throughput values are fixed at
their current levels. Fig. 13 shows the results. The blue and orange lines represent the
ranking of this Web service as obtained by the interval DEA models and proposed
models, respectively. We observe that the ranking of this Web service drops from the 4th
position to the 22nd position, while its ranking decreased less using the proposed models
(see Fig. 13 for details).

Tab. 9 includes the evaluation results of this Web service using the interval DEAmodels and
proposed models. The first column (column Response time) includes the values assigned to
the lower and upper bounds of its response time attribute. The other columns include the
results of the interval DEA models (columns φl* and φu*) and the results of the models
(19) and (20) (columns γ*1, γ*2, γ

l* and γu*). As is seen, the efficient value of response
time (γ*1) is always less than that of throughput (γ*2) when response time values are varied
from 2 to 10. As we know, the interval DEA models increase/decrease the outputs/inputs
at the same rate. Therefore, these models only use γ*1 to compute the efficiency score of
Web service 21 in the mentioned range. For example, we have φl*=γ*1=1.109 and
φu*=γ*1=1.109 when the response time is 2 s. Hence we lose some useful information
related to throughput in the ranking process, and we observe a considerable reduction in
the rank of Web service 21, although this is one of the best among the Web services in
Tab. 2 as regards throughput. The proposed models dedicate separate efficient values to
each QoS attribute and compute γl* and γu* as their arithmetic average. For example, as
seen in Tab. 9, we have γl*= 1:109þ2:358

2

� �
=1.733 and γu*= 1:109þ442:3

2

� �
=221.7 when the
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Figure 13: Effect of response time variation in ranking of Web service 21
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response time is 2 s. We can conclude that the proposed models can use all of the
information in the ranking process, and we observe a lesser reduction in its ranking.

For the second experiment, we selected Web service 24 from Tab. 2, and we simultaneously
changed the lower and upper bounds of its throughput from 1 to 15 kbps. We assume that its
response time values are fixed at their current levels. Fig. 14 shows the results. Tab. 10
includes the evaluation results of Web service 24 using the interval DEA models and the
proposed models. The first column (Throughput) includes the values assigned to the
lower and upper bounds of its throughput attribute. The specifications of the remaining
columns are analogous to those in Tab. 9 As seen in Tab. 10, γ*1 is always less than γ*2
when throughput values vary from 1 to 15 kbps. As before, the interval DEA models
only use γ*1 to compute the efficiency score of Web service 24 in the mentioned range.
For example, as seen in Tab. 10, we have φl*=γ*1=1.017 and φu*=γ*1=2.030 when

Table 9: Evaluation results of Web service 21 when response time is varied from 2 to 10 s

Response
time

Lower bound Upper bound

φl* γ*1 γ*2 γl* φu* γ*1 γ*2 γu*

2 1.109 1.109 2.358 1.733 1.109 1.109 442.3 221.7

4 1.246 1.246 2.358 1.802 1.246 1.246 442.3 221.8

6 1.421 1.421 2.358 1.889 1.421 1.421 442.3 221.9

8 1.654 1.654 2.358 2.006 1.654 1.654 442.3 222.0

10 1.977 1.977 2.358 2.167 1.977 1.977 442.3 222.1
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throughput is equal to 1 kbps. Therefore, despite increasing throughput values from 1 to 15
kbps, we observe that the efficiency score and ranking of Web service 24 do not change. The
proposed models remove this drawback by dedicating separate efficient values to each QoS
attribute. Thus our interval DEA models can utilize all of the efficient values to compute γl*
and γu*. For example, as seen in Tab. 9, we have γl*= 1:017þ428:6

2

� �
=214.8 and γu*=

2:030þ428:6
2

� �
=215.3 when throughput is equal to 1 kbps.

To summarize, we discussed the another advantage of the proposed models in this section.
In detail, we illustrated that the proposed models are stable, while the interval DEA models
are unstable, and they may show irrational changes in their results against QoS variations.
For example, Fig. 13 shows that the interval DEA models may demonstrate significant
changes in their results against response time variations but, as shown in Fig. 14, they
are quite indifferent against throughput changes. Hence, given the uncertainty of the
internet environment, it is recommended to evaluate Web services using the proposed
models, which change the efficiency of Web services proportionately to the QoS variations.

8 Usefulness of proposed models for GA

This study provided a solution to discover the best possible compositions according to the
dynamic nature of the cloud environment. For this purpose, we employed our models in the
preprocessing phase of the metaheuristic algorithms to reduce the invalid design space. This
enhances the efficiency of the resultant compositions by decreasing the probability of being
trapped in local optima.

In this section, we choose canonical GA [Canfora, Di Penta, Esposito et al. (2005)] as an
example of a metaheuristic algorithms to evaluate the effectiveness of our solution. We
conducted experiments to compare our solution with canonical GA. For each experiment,
we set the population size to 10. We use uniform crossover method [Lin, Sir and
Pasupathy (2013)] to ensure a wide exploration of the design space. This method
exchanges information between two parent solutions randomly to produce two offspring.
In other words, each genome of offspring is selected from one of the corresponding
genomes of the parent solution with a 50% probability. The crossover probability is 0.8
and the rate of mutation is 0.1.

Table 10: Evaluation results of Web service 24 when throughput is varied from 1 to 15 kbps

Throughput Lower bound Upper bound

φl* γ*1 γ*2 γl* φu* γ*1 γ*2 γu*

1 1.017 1.017 428.6 214.8 2.030 2.030 428.6 215.3

5 1.017 1.017 85.72 43.37 2.030 2.030 85.72 43.88

10 1.017 1.017 42.86 21.94 2.030 2.030 42.86 22.45

15 1.017 1.017 28.57 14.80 2.030 2.030 28.57 15.30
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The experiments were coded in MATLAB R2015a and performed on a laptop computer
with an Intel Core i7 processor at 2.5 GHz, with 8 GB RAM under Windows 10.

Fig. 15 provides an example of online shopping to demonstrate how the proposed models
help GA to enhance the fitness of the resultant compositions. To conduct our experiment, we
selected 180 Web services from WS-DREAM by a keyword-based method for the
authentication and search functionalities. We only identified 22 Web services with finance
functionality in this dataset. We generated 180 QoS values using controlled random
generation methodology in the range of finance Web services. We evaluated the
generated data using the Shapiro-Wilk test, which revealed that these QoS values were
distributed normally. We multiplied the lower and upper bounds of QoS values by their
interval entropy weights to find the best resultant compositions according to the
uncertainty of the cloud environment. As mentioned, the WS-DREAM dataset does not
contain the price attribute. Hence, we assume its values are 0.

Tab. 11 shows the manner of measuring the lower and upper bounds of the aggregate QoS
values. Only the sequential composite model is considered corresponding to the online
shopping workflow pattern. Note that, l and u indicate the lower and upper bounds of the
QoS values, and n is the number of Web services.

The fitness function for an individual t is defined as the arithmetic average of Eqs. (37) and (38).
In other words, we assign equal weights to the lower and upper bounds of the fitness function.

FlðtÞ ¼ ThroughputlðtÞ
PricelðtÞ þ ResponsetimelðtÞ (37)

FuðtÞ ¼ ThroughputuðtÞ
PriceuðtÞ þ ResponsetimeuðtÞ (38)

We evaluated the performance of our solution by varying the number of qualified and
abstract services. As shown in Fig. 16, we increased the path length of the online
shopping workflow to cases with 25, 50, 75, and 100 abstract services by invoking the
“search” Web service. Then we conducted a set of experiments for each case by varying
the number of qualified services for each abstract service from 10 to 170 with a step
value of 20.

In each experiment, the initial generation was randomly populated from the qualified Web
services. Then GA was executed 50 times and the average fitness values of the 10 best
compositions were computed. Fig. 17 depicts the final results. The last column in each
figure shows the average fitness values of the 10 best resultant compositions identified by

Authentication Search Finance

Figure 15: Online shopping workflow
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canonical GA. The other columns represent the results of our solution when the number of
qualified services changes from 10 to 170. As is seen, our solution is better than canonical
GA based on the average fitness values since GA searches the larger design space.

As we know, the efficiency of resultant compositions depend on the size of the design space,
and also the size of the design space changes based on the workflow length. Hence, we want
to forecast how the change in the workflow length will affect the effectiveness of our
solution. For this purpose, we use linear regression method [Montgomery, Peck and
Vining (2015)] to determine the correlation between fitness of the resultant compositions
and the workflow length. In detail, we need to find the equation of the best-fit trendline
for the obtained results. The slope of this regression line represents the rate of change in
efficiency score as the number of qualified services changes. The greater the magnitude
of the slope, the steeper the line and the greater the rate of change. We can see that in
Fig. 17, this slope decreases with increasing the workflow length. This issue indicates
that the effectiveness of our solution has been reduced by increasing the workflow
length. For example, the average fitness values is improved by 0.2 scale, when the

Table 11: QoS aggregation functions for sequential composition model

Statistics Values

Pricel
Pn
j¼1

ql;1Si

Response timel
Pn
j¼1

ql;2Si

Throughputl minnj¼1ðql;3Si Þ

Priceu
Pn
j¼1

qu;1Si

Response timeu
Pn
j¼1

qu;2Si

Throughputu minnj¼1ðqu;3Si
Þ

ql;tSi , q
u;t
Si
, 1≤t≤3 show price, response time and throughput of concrete service Si.

Authentication Search FinanceSearch

Number of search services=23, 48, 73, 98

Number of Web services=25, 50, 75, 100

……….……

Figure 16: Varying the path length of online shopping workflow
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number of qualified services decreased from 30 to 10 in Fig. 17(a), but this improvement is
about only 0.06 scale in Fig. 17(d).

Also, if we ignore the scale of Fig. 17, we observe that our solution is more effective when
the path length of the workflow is longer. For example, the average fitness values improved
almost seven times when the number of qualified services decreased from 30 to 10 in Fig. 17
(d), but this improvement was only about twice in Fig. 17(a).

In this section, we demonstrated that the proposed models enhance the efficiency of the
resultant compositions when they are used in the preprocessing phase of the canonical
GA. This issue can be considered as another advantage of the proposed models.

Moreover, we can define the user global QoS constraints in this experiment by considering
the penalty-factor [Ding, Liu, Sun et al. (2015)] for the fitness function or dropping
unsuitable offspring from the population [Que, Zhong, Chen et al. (2018)]. Also, we can
classify the user global QoS constraints using data mining techniques to find the
appropriate number of qualified services for each class.
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Figure 17: The average fitness of the 10 best compositions resultant from our solution and
canonical GA
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9 Conclusion

The rapid proliferation of Web services has led to the dilemma of selecting the best Web
service from many functionally equivalent candidates. In this paper, we assumed
continuous interval values for QoS attributes because of the dynamic cloud environment.
Based on this, we proposed modified interval DEA models to select the most suitable
Web service considering the uncertainty of the internet in the presence of desirable and
undesirable outputs. We constructed our models by integration of the interval DEA
models and the interval entropy weights. We modified the constructed models based on
the BCC and simple Russell’s model.

After comparing the proposed models and the interval DEA models, we concluded that the
correlation between their rankings is significant but they recommend different Web services.
In addition, we found that unlike the proposed models, the interval DEA models lose some
useful information in the ranking process. We performed sensitivity analyses for the interval
entropy weight variations and changes in the available Web services, from which we
observed that our models are almost robust. As a result, we recommend selecting the best
Web service using the proposed models, which are customized according to the dynamic
internet environment. Also, we presented a solution to obtain the best possible
compositions based on the uncertainty of the internet by employing the proposed models
in the preprocessing phase of the metaheuristic algorithms. We demonstrated that the
proposed models enhance the fitness of the resultant compositions when employed in the
preprocessing phase of GA as an instance of metaheuristic algorithms. In our future
work, we plan to work on neural network models to eliminate unqualified concrete
services for the QoS-aware Web service composition problem.
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