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Abstract. A new notion in frame theory has been introduced recently that called
woven frames. Woven and weaving frames are powerful tools for preprocessing signals and
distributed data processing. Also, the purpose of introducing fusion frame or frame of
subspace is to first construct local components and then build a global frame from these.
This type of frames behaves as a generalization of frames. Motivating by the concepts of
fusion and weaving frames, we investigate the notion woven fusion frames and study some
of their features.
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1 Introduction

Frames are generalizations of orthonormal bases in Hilbert spaces. A frame, as well as an
orthonormal basis, allows each element in Hilbert space to be written as an in finite linear
combination of the frame elements so that unlike the bases conditions, the coefficients
might not be unique. Also fusion frames is a generalization which were introduced by
Cassaza and Kutyniok [3] in 2004 and were studied in variety of papers. The significance
of fusion frame is the construction of global frames from local frames in Hilbert space.
In recent years, Bemrose et al. introduced weaving frames [1]. This notion studied by
researchers in a lot of papers [1, 2, 5]. From the point of view of its introducers, weaving
frames are powerful tools for preprocessing signals and distributed data processing. By
the concepts of fusion frames and weaving frames, we investigate the notion of woven
fusion frames and study some behaviors in this paper, that is, we review some properties
of fusion frames on weaving and conversely.

Throughout this paper H is a sparable Hilbert space. Also, [m] shows the natural
numbers {1, 2, 3, ...,m}.

Definition. A family {fi}i∈N ⊂ H is a frame for H, if there exist constants A,B > 0
such that:

A‖f‖2 ≤
∑

i∈N
| 〈f, fi〉 |2 ≤ B‖f‖2; ∀f ∈ H. (1)

The constants A and B are called the lower and upper frame bounds respectively. The
frame {fi}i∈N is tight if A = B and Parseval frame if A = B = 1. The sequence {fi}i∈N is
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called Bessel sequence, if satisfies the upper inequality in (1). For the Bessel sequences
{fi}i∈N, the analysis operator U : H −→ l2 (N) is defined by U(f) = {〈f, fi〉}i∈N for all
f ∈ H. The adjoint of analysis operator named synthesis operator and

T : l2(N) −→ H s.t T {ci} =
∑

i∈N
cifi; ∀ {ci} ∈ l2 (N) .

By combination of synthesis and analysis operators, we define the frame operator S for all
f ∈ H:

S : H −→ H s.t S(f) = TU(f) =
∑

i∈N
〈f, fi〉 fi, ∀f ∈ H.

The operator S is bounded, positive, self-adjoint and invertible [4].
Definition. Let {νi}i∈N be a family of weights such that νi > 0 for all i ∈ N. A family

of closed subspaces {Wi}i∈N of a Hilbert space H is called a fusion frame for H with respect
to {νi}i∈N, if there exist constants A,B > 0 such that:

A‖f‖2 ≤
∑

i∈N
ν2
i ‖PWi

(f)‖2 ≤ B‖f‖2; ∀f ∈ H. (2)

PWi
is the orthogonal projection of a Hilbert space H onto subspace Wi. Constants A

and B are called the lower and upper fusion frame bounds respectively. {Wi}i∈N is called
tight fusion frame with respect to {νi}i∈N, if in (2) the constants A and B are equal and
is called a Parseval fusion frame if A = B = 1. We say {Wi}i∈N an orthonormal fusion
basis for H if H =

⊕
i∈NWi. If we have only the upper bound, we call {Wi}i∈N a Bessel

sequence of subspaces with respect to {νi}i∈N with Bessel bound B.

2 Woven-Weaving frames

In this section, we mention to definition of woven and weaving frames in Hilbert spaces.
Definition. Let F := {fij}i∈N for j ∈ [m] be a family of frames for the separable

Hilbert space H. If there exist universal constants A and B such that for every partition
{σj}j∈[m], the family Fj := {fij}i∈σj ,j∈[m] is a frame for H with bounds A and B. Then F

is said a woven frame and for every j ∈ [m], the frame Fj is called weaving frame.

Example. Let {ei}2i=1 be standard basis for Euclidean space R
2. Also F and G are

given by:
F = {f1 = (1, 2), f2 = (2, 1), f3 = (2, 3)}

and
G = {g1 = (1, 0), g2 = (0, 1), g3 = (3, 1)} .

By a simple calculation, it is easy to see that both F and G are frames and

9‖f‖2 ≤
3∑

i=1

| 〈f, fi〉 |2 ≤ 14‖f‖2; ∀f ∈ R
2

and

2‖f‖2 ≤
3∑

i=1

| 〈f, gi〉 |2 ≤ 10‖f‖2; ∀f ∈ R
2.
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By getting σ = {1, 2}, the family {fi}i∈σ={1,2}
⋃ {gi}i∈σc={3} is frame with lower and upper

bounds 6 and 14, respectively. Similarly for every σ ⊂ {1, 2, 3}, {fi}i∈σ
⋃ {gi}i∈σc is frame.

Then {fi}3i=1 and {gi}3i=1 are woven frames.

3 Woven-Weaving fusion frames

By using the ideas of fusion and woven frames, we define the notion of woven fusion
frames. Also we review some of its properties. Definition. A family of fusion frames
{Wij}∞i=1 , j ∈ [m] with respect to weights {νij}i∈N,j∈[m] is said to be woven fusion frames
if there are universal constant A and B so that for every partition {σj}j∈[m] of N , the
family {Wij}i∈σj ,j∈[m] is a fusion frame for H with lower and upper frame bounds A and B.
Each family {Wij}i∈σj ,j∈[m] is called a weaving of fusion frame.

[�] From hereafter, we use briefly W.F.F instead of the statement of woven fusion frame.
Theorem. For each i ∈ N, let νi, μi > 0 and {fij}j∈Ji and {gij}j∈Ji be frames in H

with frame bounds (Afi ,Bfi) and (Agi ,Bgi) respectively. Define:

Wi = spanj∈Ji {fij} , Vi = spanj∈Ji {gij} ∀i ∈ N

and choose an orthonormal basis {eij}j∈Ji for each subspaces Wi and Vi. Suppose that:

0 < Af = inf
i∈N

Afi ≤ Bf = sup
i∈N

Bgi < ∞

and
0 < Ag = inf

i∈N
Agi ≤ Bg = sup

i∈N
Bgi < ∞.

Then the following conditions are equivalent:

(i) {νifij}i∈N,j∈Ji and {μigij}i∈N,j∈Ji are woven frames.

(ii) {νieij}i∈N,j∈Ji and {μieij}i∈N,j∈Ji are woven frames.

(iii) {Wi}i∈N and {Vi}i∈N are W.F.F with respect to weights {νi}i∈N , {μi}i∈N respectively.

Theorem Assume that {Wi}i∈N and {Vi}i∈N be fusion frames with weights {μi}i∈N
and {νi}i∈N respectively. If {Wi}i∈N and {Vi}i∈N are W.F.F and T is a self-adjoint and
invertible operator on H, such that T ∗T (W ) ⊂ W , for every closed subspace W of H.
Then for every σ ⊂ N, the sequence {TWi}i∈σ

⋃ {TVi}i∈σc is a fusion frame with frame
operator TSσT

−1 where Sσ is frame operator of {TWi}i∈σ
⋃ {TVi}i∈σc , i.e. {TWi}i∈N and

{TVi}i∈N are W.F.F.
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