L_{2}-Approximation Theory on Compact Group and Their Realization for the Groups $S U(2)$ and $S O$ (3)

E. Aghdassi
Faculty of Math. Sciences, University of Tabriz, IRAN
E-mail: esaghdassi@tabrizu.ac.ir
S.F. Rzaev
Khazar University, Baku, AZERBAIJAN
E-mail: rzseymur@hotmail.com

Abstract

In this article we use results of the work [1]. We have analogous results for the group $S U(2)$ and prove specific integral formulas for the matrix elements representations of group $S U(2)$ (in particularly for the spherical functions) and some results concerning classical orthogonal polynomials are given.

AMS Subject Classification: 41XX, 42A10, 62L20.
Keywords: Approximation theory, harmonic analysis.

1. Introduction

In this paper we extend a certain sample of well-known classical theorems about Fourier series on the circle, in particulary where as D. Jackson, Szasz, S.B. Stechkin theorems to compact non-Abelian groups. Proofs of these classical theorems can be easily found in all the standard text books (for instance [2-4] and [5]).

Several papers devoted to generalizations of these theorems have been considered by many authors published widely in recent years. The case of the sphere $\mathbb{S}^{n} \subset \mathbb{R}^{n+1}$ has been considered in books ([6] and its references) and also in papers (see [7] and its references). The non-Abelian compact separable totally disconnected case was done by Benke (see [8] and its references).

We note that, while these classical theorems seem at first rather unrelated, the grouptheoretic generalizations provide certain links between them and thereby throw a little light on some classical results for Fourier series.

The group-theoretic method is still quite elementary because the only required tools are the Haar measure on a compact group G.

For a general locally compact group where Haar measure is the principal analytic concept, the Hilbert space $L_{2}(G)$ and the irreducible unitary representations become the central objects in analysis on G.

Finally we solve the problems formulated in [9] (p. 366), see also [3] (p. 9, 1.3.5).

2. Preliminaries and Notations

Let G be a compact topological group, $d g$ - Haar measure on G normalized by the condition $\int_{G} d g=1$ and \hat{G} the dual space of G. For $\alpha \in \hat{G}$ let U_{α} denote the irreducible representation of the group G and $d_{\alpha}, \chi_{\alpha}$ and $t_{i j}^{\alpha}\left(i, j=1,2, \ldots, d_{\alpha}\right)$ respectively the dimension, character and matrix elements of U_{α}. Note that any topological irreducible representation of G is finite dimensional and unitary. We note that \hat{G} is finite or countable. (If G is finite, then \hat{G} is also finite).

We denote by $L_{2}(G)$ the set of all functions f for which $|f(g)|^{2}$ is integrable on G. From Peter-Weyl theorem any function $f \in L_{2}(G)$ can be expanded into a Fourier series with respect to this bases $t_{i j}^{\alpha}$ of the form

$$
f(g)=\sum_{\alpha \in \hat{G}} \sum_{i, j=1}^{d_{\alpha}} a_{i j}^{\alpha} t_{i j}^{\alpha}(g)
$$

where the Fourier coefficients $a_{i j}^{\alpha}$ are defined by following relations

$$
a_{i j}^{\alpha}=d_{\alpha} \int_{G} f(g) \overline{t_{i j}^{\alpha}(g)} d g
$$

such that $\overline{t_{i j}^{\alpha}(g)}=t_{i j}^{\alpha}\left(g^{-1}\right)$, where g^{-1} is the inverse of g, and the Parseval equality

$$
\|f\|_{2}^{2}=\int_{G}|f(g)|^{2} d g=\sum_{\alpha \in \hat{G}} \frac{1}{d_{\alpha}} \sum_{i, j=1}^{d_{\alpha}}\left|a_{i j}^{\alpha}\right|^{2},
$$

holds. The basic result of harmonic analysis on a compact group can be found for example in [9], [10] and [11].

For simplicity we denote $\|\cdot\|_{L_{2}(G)}=\|\cdot\|_{2}$. Let us introduce the following notations:

$$
\begin{aligned}
& \left(S h_{u} f\right)(g)=\int_{G} f\left(t u t^{-1} g\right) d t \\
& \left(\Omega_{u} f\right)(g)=f(g)-\left(S h_{u} f\right)(g)
\end{aligned}
$$

where $u, g \in G$.

We note that α is a complicated index. Since \hat{G} is a countable set, there are only countably many $\alpha \in \hat{G}$ for which $\alpha_{i j}^{\alpha} \neq 0$ for some i and j; enumerate them as $\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}, \ldots\right\}$. So $d_{\alpha_{0}}<d_{\alpha_{1}}<d_{\alpha_{2}}<\cdots<d_{\alpha_{n}}<\cdots$. Because of that, the symbol " $\alpha<n$ " is interpreted as $\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right\} \subset \hat{G}$, and $\alpha \geq n$ denotes the set $\hat{G} \backslash(\alpha<n)$. Let d_{α} as usual be the dimension of H_{α}. For typographical convenience we will write d_{n} for the dimension of the representation $U^{\alpha_{n}}, n=1,2, \ldots$ (see [9], p. 458).

We denote by $E_{n}(f)_{2}$ the approximation of the function $f \in L_{2}$ by "spherical" polynomials of degree not greater than n;

$$
E_{n}(f)_{2}=\inf \left\{\left\|f-T_{n}\right\|_{2}\right\}, \quad n=1,2, \ldots,
$$

where $T_{n}(g)=\sum_{\alpha<n} \sum_{i, j=1}^{d_{\alpha}} a_{i, j}^{\alpha} t_{i, j}^{\alpha}(g)$ and $a_{i, j}^{\alpha}$ are arbitrary constants.
Let W_{n} be a sequence of neighborhoods of $e(e-$ the identity element of $G)$, i.e.,

$$
W_{n}(u)=\left\{u: \rho(u, e)<\frac{1}{n}, u \in G\right\},
$$

where ρ is a pseudo-metric on G. We denote by

$$
\omega_{n}(f)_{2}=\sup _{u \in W_{n}(u)}\left\{\left\|S h_{u} f-f\right\|_{L_{2}(G)}\right\}
$$

the modulus of continuity of the function $f \in L_{2}(G)$. The followings are simple but useful facts:

$$
\left\|\left(S h_{u} f\right)(g)\right\|_{2} \leq\|f\|_{2}, \quad\left\|\Omega_{u} f\right\|_{2} \longrightarrow 0 \quad \text { as } \quad u \longrightarrow e .
$$

Also,

$$
\lim _{n \longrightarrow \infty} \omega_{n}(f)_{2}=0
$$

Now we prove the following simple but useful lemma:
In the work [1] the following is proved:
Lemma 2.1. The following equality holds for all $u, g \in G$:

$$
\left(S h_{u} t_{i j}^{\alpha}\right)(g)=\frac{\chi_{\alpha}(u)}{d_{\alpha}} t_{i j}^{\alpha}(g) .
$$

Also in the work [1] with the help of the lemma is proved.
Theorem 2.2. If $f(g) \in L_{2}(G)$ and $f(g) \not \equiv$ constant, then

$$
E_{n}(f)_{2} \leq \sqrt{\frac{d_{n}}{d_{n}-2}} \omega_{n}(f)_{2}
$$

From this theorem we have:

Corollary 2.3. If $f \in L_{2}$, then

$$
\left[\sum_{\alpha \geq n} \frac{1}{d_{\alpha}} \sum_{i, j=1}^{d_{\alpha}}\left|a_{i j}^{\alpha}\right|^{2}\right]^{1 / 2} \leq \sqrt{\frac{d_{n}}{d_{n}-2}} \omega_{n}(t)_{2}
$$

This result is proved by Stechkin for the trigonometric case.
Corollary 2.4. If $f \in L_{2}$, then

$$
\left|a_{i j}^{\alpha_{n}}\right| \leq \sqrt{\frac{d_{n}}{d_{n}-2}} \omega_{n}(f)_{2}, \quad i, j=1,2, \ldots, d_{\alpha_{n}}
$$

Theorem 2.5. If $f(g) \in L_{2}(G)$, then

$$
\sum_{n=1}^{\infty} \frac{\omega_{n}(f)_{2}}{\sqrt{n}}<+\infty \Rightarrow f(g) \in A(G)
$$

This theorem is analogous to the Szasz theorem of the classical Fourier series.
Theorem 2.6. If $f(g) \in L_{2}(G)$, then

$$
\sum_{n=1}^{\infty} \frac{E_{n}(f)_{2}}{\sqrt{n}}<+\infty \Rightarrow f(g) \in A(G)
$$

This theorem is also analogous to a theorem in the trigonometric case proved by S.B. Stechkin.

3. Applications to the Groups $S U(2)$ and $S O$ (3)

In this section we make considerable use of the results of § 2, i.e., we shall primarily be concerned with the analogs and implications for the groups $S U(2)$ and $S O(3)$ of the theorems of Section 2. These groups are of fundamental importance in modern physical theories (see [9]).

Recall that $S U(2)$ consists of unimodular unitary matrices of the second order, i.e.,

$$
S U(2):=\left\{u=\left(\begin{array}{rr}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right),|\alpha|^{2}+|\beta|^{2}=1\right\},
$$

and $S O(3)=S O(3, R)$ is the group of all 3×3 real matrices such that $g^{\prime} g=e_{3}$ and $\operatorname{det} g=+1\left(g^{\prime}\right.$ is the transpose matrix of the matrix g and e_{3}-identity element of the group $S O$ (3).

We note that the groups $S U(2)$ and $S O(3)$ are compact, connected, Lie groups, both have dimension 3. Also, $S U(2)$ is homomorphic to the 3-dimensional sphere $\mathbb{S}^{3} \subset \mathbb{R}^{4}$.

From this point of view, the approximation theory on the $S U(2)$ may be formulated analogous on the sphere.

Also, $S O(3)$ is isomorphic to the factor group $S U(2) /\left\{ \pm e_{2}\right\}$ (e_{2} - the identity element of $S U(2)$). Exactly two elements of $S U(2)$ map onto one element of $S O(3)$. Consequently, problems of the approximation theory for the groups $S U(2)$ and $S O$ (3) are similar (see [12]). For a more geometrical derivation of the relationship between $S U(2)$ and $S O$ (3) see Gel'fand [13] (also see [14] and [15]).

We use notation which is consistent with the notation in the book of N. Ja. Vilenkin and A.U. Klimyk [15].

The invariant integral on $S U(2)$ has the form

$$
\int_{S U(2)} f(u) d u=\frac{1}{16 \pi^{2}} \int_{-2 \pi}^{2 \pi} \int_{0}^{\pi} \int_{0}^{2 \pi} f(\varphi, \theta, \psi) \sin \theta d \varphi d \theta d \psi
$$

where the parameters φ, θ, ψ called Euler angles satisfy the conditions

$$
0 \leq \varphi<2 \pi, \quad 0 \leq \theta<\pi, \quad-2 \pi \leq \psi<2 \pi .
$$

For the matrices $u_{1}\left(\varphi_{1}, \theta_{1}, \psi_{1}\right)$ and $u_{2}\left(\varphi_{2}, \theta_{2}, \psi_{2}\right)$ of $S U(2)$ we have

$$
u(\varphi, \theta, \psi)=u_{1}\left(\varphi_{1}, \theta_{1}, \psi_{1}\right) u_{2}\left(\varphi_{2}, \theta_{2}, \psi_{2}\right)
$$

Expressing the angles φ, θ, ψ in terms of $\varphi_{i}, \theta_{i}, \psi_{i}, \quad i=1,2$, gives the following relations (see [14] or [15]):

$$
\left\{\begin{array}{l}
\cos \theta=\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2} \cos \left(\varphi_{2}+\psi_{1}\right), \tag{3.1}\\
e^{i \varphi}=\left(\frac{e^{i \varphi_{1}}}{\sin \theta^{\prime}}\right)\left(\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2} \cos \left(\varphi_{2}+\psi_{1}\right)+i \sin \theta_{2} \sin \left(\varphi_{2}+\psi_{1}\right),\right. \\
e^{i(\varphi+\psi)}=\left(\frac{e^{i\left(\varphi_{1}+\psi_{1}\right) / 2}}{\cos \frac{\theta^{\prime}}{2}}\right)\left(\cos \frac{\theta_{1}}{2} e^{i\left(\varphi_{2}+\psi_{1}\right)} \cos \frac{\theta_{2}}{2}-\sin \frac{\theta_{1}}{2} \sin \frac{\theta_{2}}{2} e^{-i\left(\varphi_{2}+\psi_{1}\right) / 2} .\right.
\end{array}\right.
$$

Let us now compute

$$
u(\varphi, \theta, \psi)=t_{1}\left(\varphi_{1}, \theta_{1}, \psi_{1}\right) \cdot u_{2}\left(\varphi_{2}, \theta_{2}, \psi_{2}\right) u_{1}^{-1}\left(\varphi_{1}, \theta_{1}, \psi_{1}\right) g\left(\varphi_{3}, \theta_{3}, \psi_{3}\right)
$$

We note that the direct numerical calculations of this product are mildly instructive but already a little tedious.

We use relation (3.1) to obtain the following formulas:

$$
\left\{\begin{array}{l}
\cos \theta=\cos \theta^{\prime} \cos \theta^{\prime \prime}-\sin \theta^{\prime} \sin \theta^{\prime \prime} \cos \left(\varphi^{\prime \prime}+\psi^{\prime}\right) \tag{3.2}\\
e^{i \varphi}=\left(\frac{e^{i \varphi}}{\sin \theta}\right)\left(\sin \theta^{\prime} \cos \theta^{\prime \prime}+\cos \theta^{\prime} \sin \theta^{\prime \prime} \cos \left(\varphi^{\prime \prime}+\psi^{\prime}\right)+i \sin \theta^{\prime \prime} \sin \left(\varphi^{\prime \prime}+\psi^{\prime}\right),\right. \\
e^{i(\varphi+\psi)}=\left(\frac{e^{i\left(\varphi^{\prime}+\psi^{\prime}\right) / 2}}{\cos \frac{\theta}{2}}\right)\left(\cos \frac{\theta^{\prime}}{2} e^{i\left(\varphi^{\prime \prime}+\psi^{\prime}\right)} \cos \frac{\theta^{\prime \prime}}{2}-\sin \frac{\theta^{\prime}}{2} \sin \frac{\theta^{\prime \prime}}{2} e^{-i\left(\varphi^{\prime \prime}+\psi^{\prime}\right) / 2},\right. \\
\cos \theta^{\prime}=\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2} \cos \left(\varphi_{2}+\psi_{1}\right), \\
e^{i \varphi^{\prime}}=\left(\frac{e^{i \varphi_{1}}}{\sin \theta^{\prime}}\right)\left(\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2} \cos \left(\varphi_{2}+\psi_{1}\right)+i \sin \theta_{2} \sin \left(\varphi_{2}+\psi_{1}\right),\right. \\
e^{i\left(\varphi^{\prime}+\psi^{\prime}\right)}=\left(\frac{e^{i\left(\varphi_{1}+\psi_{1}\right) / 2}}{\cos \frac{\theta^{\prime}}{2}}\right)\left(\cos \frac{\theta_{1}}{2} e^{i\left(\varphi_{2}+\psi_{1}\right)} \cos \frac{\theta_{2}}{2}-\sin \frac{\theta_{1}}{2} \sin \frac{\theta_{2}}{2} e^{-i\left(\varphi_{2}+\psi_{1}\right) / 2},\right. \\
\cos \theta^{\prime \prime}=\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{3} \cos \left(\varphi_{3}+\varphi_{1}\right), \\
e^{i \varphi^{\prime \prime}}=\left(\frac{e^{i \varphi_{1}}}{\sin \theta^{\prime \prime}}\right)\left(-\sin \theta_{1} \cos \theta_{3}+\cos \theta_{1} \sin \theta_{3} \cos \left(\varphi_{3}-\varphi_{1}\right)+i \sin \theta_{3} \sin \left(\varphi_{3}+\varphi_{1}\right),\right. \\
e^{i\left(\varphi^{\prime \prime}+\psi^{\prime}\right)}=\left(\frac{e^{i\left(\varphi_{1}+\psi_{1}\right) / 2}}{\cos \frac{\theta^{\prime \prime}}{2}}\right)\left(\cos \frac{\theta_{1}}{2} e^{i\left(\varphi_{3}+\varphi_{1}\right)} \cos \frac{\theta_{3}}{2}+\sin \frac{\theta_{1}}{2} \sin \frac{\theta_{3}}{2} e^{-i\left(\varphi_{3}+\psi_{3}\right)}\right.
\end{array}\right.
$$

After this formula with the help of the lemma we have

$$
\begin{aligned}
& \frac{1}{16 \pi^{2}} \int_{-2 \pi}^{2 \pi} \int_{0}^{\pi} \int_{0}^{2 \pi} e^{i(m \varphi+n \varphi)} P_{m n}^{l}(\cos \theta) \sin \theta_{1} d \varphi_{1} d \theta_{1} d \psi_{1} \\
& =\frac{\sin \left(l+\frac{1}{2}\right) t}{(2 l+1) \sin \frac{t}{2}} e^{i\left(m \varphi_{3}+n \psi_{3}\right)} P_{m n}^{l}\left(\cos \theta_{3}\right)
\end{aligned}
$$

where $\cos \frac{t}{2}=\cos \frac{\theta_{2}}{\theta} \cos \frac{\varphi_{2}+\psi_{2}}{2}$ and $\cos \theta$ are connected with relation (3.2).
Also we know that the dimension of the representation T^{l} of $S U(2)$ is equal to $2 l+1$, where $l=0, \frac{1}{2}, 1, \ldots$ and the matrix elements of T^{l} for the group $S U(2)$ are defined by the formula

$$
t_{m n}^{l}(u)=e^{-(n \psi+m \phi)} P_{m n}^{l}(\cos \theta) i^{(m-n)} .
$$

Expressing $t_{m n}^{l}(u)$ in terms of $P_{m n}^{l}(\cos \theta)$, we arrive at the following conclusion:
Any function $f(\phi, \theta, \psi), 0 \leq \phi<2 \pi, 0 \leq \theta<\pi,-2 \pi \leq \psi<2 \pi$, belonging to the space $L^{2}(S U(2))$, such that

$$
\int_{-2 \pi}^{2 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi}|f(\phi, \theta, \psi)|^{2} \sin \theta d \theta d \phi d \psi<\infty
$$

can be expanded into the mean-convergent series

$$
f(\phi, \theta, \psi)=\sum_{l} \sum_{m=-l}^{l} \sum_{n=-l}^{l} \alpha_{m n}^{l} e^{-i(m \phi+n \psi)} P_{m n}^{l}(\cos \theta),
$$

where

$$
\alpha_{m n}^{l}=\frac{2 l+1}{16 \pi^{2}} \int_{-2 \pi}^{2 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} f(\phi, \theta, \psi) e^{i(m \phi+n \psi)} P_{m n}^{l}(\cos \theta) \sin \theta d \theta d \phi d \psi
$$

In addition, we obtain from the Parseval equality that

$$
\sum_{l} \sum_{m=-l}^{l} \sum_{n=-l}^{l} \frac{1}{2 l+1}\left|\alpha_{m n}^{l}\right|^{2}=\frac{1}{16 \pi^{2}} \int_{-2 \pi}^{2 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi}|f(\phi, \theta, \psi)|^{2} \sin \theta d \theta d \phi d \psi
$$

$E_{n}(f)_{2}$ will denote the approximation of the function $f \in L_{2}(S U(2))$ by spherical polynomials of degree not greater than n :

$$
E_{n}(f)_{2}=\inf _{a_{i j}^{l}}\left\|f(\varphi, \theta, \psi)-T_{n}(\varphi, \theta, \psi)\right\|_{2}, \quad n=1,2, \ldots,
$$

where

$$
T_{n}(\varphi, \theta, \psi)=\sum_{l \in K_{n}} \sum_{m=-l}^{l} \sum_{n=-l}^{l} a_{m n}^{l} e^{i m \varphi+i n \psi} P_{m n}^{l}(\cos \theta),
$$

in this $K_{n}=\left\{0, \frac{1}{2}, 1, \ldots, \frac{n-1}{2}\right\}, n$ natural number.
Let W_{n} be a sequence of neighborhoods of e_{2}, i.e.,

$$
\begin{aligned}
& W_{n}\left(\varphi_{2}, \theta_{2}, \psi_{2}\right)=\left\{\left(\varphi_{2}, \theta_{2}, \psi_{2}\right):\left|\cos \frac{t}{2}\right|<\frac{1}{n} ;\right. \\
& \left.0 \leq \varphi_{2}<2 \pi ; 0 \leq \theta_{2}<\pi ;-2 \pi \leq \psi_{2}<2 \pi\right\},
\end{aligned}
$$

where $\cos \frac{t}{2}=\cos \frac{\theta_{2}}{2} \cos \frac{\varphi_{2}+\psi_{2}}{2}$ and
$\omega_{n}(f)_{2}=\sup _{\varphi_{2}, \theta_{2}, \psi_{2}}\left\{\left\|f\left(\varphi_{3}, \theta_{3}, \psi_{3}\right)-\frac{1}{16 \pi^{2}} \int_{-2 \pi}^{2 \pi} \int_{0}^{\pi} \int_{0}^{2 \pi} f(\cos \theta) \sin \theta_{1} d \varphi_{1} d \theta_{1} d \psi_{1}\right\|_{2}\right.$,
where $\cos \theta$ is connected with formulas (3.2).
By using Theorem 2.2 and Corollary 2.3, we obtain the following:
Theorem 3.1. If $f(\phi, \theta, \psi) \in L_{2}(S U(2))$, then

$$
E_{n}(f)_{2} \leq \sqrt{1+\frac{2}{n-1}} \omega_{n}(f)_{2},
$$

and

$$
\left\{\sum_{l \geq n} \sum_{m=-l}^{l} \sum_{n=-l}^{l} \frac{1}{2 l+1}\left|\alpha_{m n}^{l}\right|^{2}\right\}^{1 / 2} \leq \sqrt{1+\frac{2}{n-1}} \omega_{n}(f)_{2}
$$

Using the relation between the polynomials $P_{n}^{(\alpha, \beta)}(z)$ and $P_{m n}^{l}(z)$ we conclude that

$$
P_{m n}^{l}(z)=2^{-m}\left[\frac{(l-m)!(l+m)!}{(l-n)!(l+n)!}\right]^{1 / 2}(1-z)^{\frac{m-n}{2}}(1+z)^{\frac{m+n}{2}} P_{l-m}^{(m-n, m+n)}
$$

The Jacobi polynomials obtained here are characterized by the condition that α and β are integers and $n+\alpha+\beta \in \mathbb{Z}_{+}$.

Now we consider the following case:
Let $L_{2}^{(\alpha, \beta)}[-1,1]$ be the Hilbert space of the functions f defined on the segment $[-1,1]$ with the scalar product

$$
\left(f_{1}, f_{2}\right)=\int_{-1}^{1} f_{1}(x) \overline{f_{2}(x)}(1-x)^{\alpha}(1+x)^{\beta} d x
$$

then any function f in this space is expanded into the mean-convergent series

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} \alpha_{n} P_{n}^{(\alpha, \beta)}(x), \tag{3.3}
\end{equation*}
$$

where the polynomials $P_{n}^{(\alpha, \beta)}(x)$ are given by the formula

$$
P_{k}^{(\alpha, \hat{\beta})}(x)=2^{-\frac{\alpha+\beta+1}{2}}\left[\frac{k!(k+\alpha+\beta)!(\alpha+\beta+2 k+1)}{(k+\alpha)!(k+\beta)!}\right]^{1 / 2} P_{k}^{(\alpha, \beta)}(x)
$$

and

$$
\begin{equation*}
\alpha_{n}=\int_{-1}^{1} f(x) P_{n}^{(\hat{\alpha, \beta})}(x)(1-x)^{\alpha}(1+x)^{\beta} d x \tag{3.4}
\end{equation*}
$$

The Parseval equality

$$
\begin{equation*}
\int_{-1}^{1}|f(x)|^{2}(1-x)^{\alpha}(1+x)^{\beta} d x=\sum_{n=0}^{\infty}|\alpha|^{2} \tag{3.5}
\end{equation*}
$$

holds. Formulas (3.2), (3.4) and (3.5) are proved for non-negative integer values of α and β. One can show that they are valid for arbitrary real values of α and β exceeding -1 .

Theorem 3.2. If $f(x) \in L_{2}[-1,1]$, then the followings hold for the Jacobi series

$$
E_{n}(f)_{2} \leq \sqrt{1+\frac{2}{n-1}} \omega_{n}(f)_{2}
$$

and

$$
\left\{\sum_{l=n}^{\infty}\left|\alpha_{l}\right|^{2}\right\}^{1 / 2} \leq \sqrt{1+\frac{2}{n-1}} \omega_{n}(f)_{2} .
$$

Finally, by using Theorems 2.5 and 2.6 we have an absolutely convergence series Jacobi in the space $L_{2}[-1,1]$.

Remark 3.3. The basic results of approximation theory on $S U(2)$ can be found, for example, in [16] and [17].

References

[1] H. Vaezi and S.F. Rzaev. Modules of Smoothness and Theorems Concerning Approximation on Compact Group, Int. J. Math. Math. Sci., 20:1251-1260, 2003.
[2] W.K. Bari, Trigonometric series, Vol. II, Holt, Rinehart and Winston Inc., 1967.
[3] R.A. Devore and G.G. Lorentz. Constructive Approximation, Springer-Verlag, Berlin, Heidelberg, 1993.
[4] R.E. Edwards. Fourier Series, a Modern Introduction, Vol. I, Second Edition, Springer-Verlag, New York, Heidelberg, Berlin, 1979.
[5] A.F. Timan. Theory of Approximation of Functions of a Real Variable, MacMillan, New York, 1963.
[6] V.M. Tikhomirov. Approximation Theory, Analysis-2, Modern Problems of Mathematics, 14:103-260, 1987. (Russian)
[7] P.I. Lizorkin and S.M. Nikol'skiǔ. A Theorem Concerning Approximation on the Sphere, Analysis Math., 9:207-268, 1983.
[8] G. Benke. Bernstein's Theorem for Compact Groups, J. Function Analysis, 35:295303, 1980.
[9] E. Hewitt and K.A. Ross. Abstract Harmonic Analysis, Vol. 2, Springer-Verlag , Berlin, New York, 1970.
[10] S. Helgason. Groups and Geometric Analysis, Academic Press Inc., 1984.
[11] A.M. Naimark and I.A. Stern. Theory of Group Representation, Springer-Verlag, New York, 1982.
[12] S.F. Rzaev. Space of Functions and Some Problems of Approximation Theory on $S U(2), \mathrm{PhD}$. Dissertation, Academy of Sciences, Dept. of Math. and Mech., Baku, Azerbaijan, 1995. (Russian)
[13] I.M. Gel'fand, R. Minlos, and Z. Shapiro. Representations of the Rotation and Lorentz Groups and Their Applications, English Transl., MacMillan, New York, 1963.
[14] W. Miller. Symmetry Groups and Their Applications, Academic Press Inc., 1972.
[15] N.Ya. Vilenkin and U.A. Klimyk. Representation of Lie Groups and Special Functions, Vol. I, Kluwer Academic Publishers, 1991.
[16] R. Pini. Bernstein's Theorem on $S U(2)$, Boll. Un. Mat. Ital., A(6), 4(3):381-389, 1985.
[17] D.L. Ragozin. Approximaton Theory on SU (2), J. Approximation Theory, 1:464475, 1968.
[18] J.P. Kahane. Séries de Fourier Absolutment Convergents, Springer-Verlag, Berlin, Heidelberg, New York, 1970.

