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Abstract

Thermal properties of the ordered phase of the spin 1/2 isotropic Heisenberg Antiferromag-

net on a d-dimensional hypercubical lattice are studied within the fermionic representation

when the constraint of single occupancy condition is taken into account by the method sug-

gested by Popov and Fedotov. Using saddle point approximation in path integral approach we

discuss not only the leading order but also the fluctuations around the saddle point at one-loop

level. The influence of taking into account the single occupancy condition is discussed at all

steps.

PACS.75.10.-b General theory and models of magnetic ordering - 75.10.Jm Quantized spin sys-
tems -75.50.Ee Antiferromagnetics

1 Introduction

The two-dimensional spin-1/2 Heisenberg antiferromagnet (HAFM) on the square lattice has been
extensively studied during the last few years. The motivation for this study stems from the
discovery of high Tc superconductivity in the ceramic compounds, where the competition between
superconductivity and antiferromagnetic order has been observed experimentally [1].

Contrary to early suggestions there is nowdays strong evidence that the ground state of the
fully isotropic quantum spin -1/2 HAFM on a two dimensional regular lattice is the Néel state (the
classical ground state (the Néel state) is not disordered by quantum fluctuations.).

This evidence is mainly based on numerical work [2]. Recently it has gained an additional sup-
port by results obtained analytically with the help of various techniques e.g. large spin expansion,
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field theory of the quantum nonlinear σ -model [3], effective Hamiltonian approach [4], a modified
mean field approach (saddle point approximation) based on bosonic [5] or fermionic representations
[6] of spin operators.

The main problem in the technique based on these representations is to take into account the
so-called single occupancy condition.

The aim of this work is to study the thermal properties of the ordered (magnetic) phase of
the spin 1/2 isotropic HAFM on a d-dimensional hypercubical lattice 1 with periodic boundary
conditions within the fermionic representation when the constraint of single occupancy condition
is taken into account by the method suggested by Popov and Fedotov [7]. We use saddle point
approximation and discuss not only the leading order but also the fluctuations around the saddle
point at the one-loop approximation level. We show that at zero temperatures one-loop corrections
to the saddle point in our path integral description is equivalent to next-to-leading order in the
linear spin wave theory. At all steps we discuss the influence of taking into account the single
occupancy condition comparing the results of our calculations with those when this condition is
disregarded. In particular we show that at finite temperatures taking into account the single
occupancy condition considerably reduces the specific heat.

For T 6= 0 the two-dimensional spin system has no long range order (the Néel state is destroyed
by thermal fluctuations)[8] and its state has to be treated as a paramagnetic one with strong
antiferromagnetic correlations at finite distances. So our finite temperature results are relevant for
the case when d ≥ 3 and T < TN , where TN is the Néel temperature.

In Sec.2 we briefly review the fermionization procedure of spin operators by the method of
Popov and Fedotov.

In Sec.3 we discuss the mean field result (the leading order of the saddle point approximation).
In Sec.4 we obtain the one-loop corrections (Gaussian fluctuations) to free energy and show

that one can get the spin wave spectrum at zero temperture. We also find the specific heat and
discuss the influence of the single occupancy condition on its temperature dependence.

The last section is devoted to brief comments on our results.

2 Fermionization by Popov and Fedotov’ s method and bosonic

path integrals for the partition function.

The Hamiltonian of the isotropic HAFM reads

Ĥs = J
∑

〈i,j〉
Ŝi.Ŝj , (1)

the sum runs over ordered nearest neighbor sites of the d-dimensional finite regular lattice with M
sites. For spin variables Si we assume periodic boundary conditions, J > 0 .

Many authors have proposed to use different representations of spin operators by Bose or Fermi
operators. However, the fact that the dimensionality of the space in which these operators act is
always greater than the dimensionality of the space of spin operators leads to the problem of the
elimination of the superfluous states. Usually it is done by putting some constraints on the states.

1For simplicity we consider a simple hypercubical lattice though our approach may be also used for a non-bipartite

lattice
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In the present paper we choose fermionic representation of spin operators

Ŝi =
1

2
ĉ†iασαβ ĉiβ , α, β = 1(↑), 2(↓), (2)

the summation with respect to repeated Greek indices is assumed, σ = (σx, σy, σz) are the Pauli
matrices, and if we use this representation in the spin Hamiltonian Ĥs we shall get the fermionic
Hamiltonian:

ĤF =
J

4

∑

<i,j>

(ĉ†iασαβ ĉiβ)(ĉ†jγσγδ ĉjδ) (3)

ĉiα and ĉ†iα are fermionic annihilation and creation operators (at site i with spin projection α to
the z axis), which obey canonical anticommutation relation

{ĉiα, ĉ†jβ} = δi,jδαβ .

Popov and Fedotov [7] proved that the partition function of the model (1)

Z = TrS(e−βĤS) (4a)

can also be written as
Z = iMTrF (e−βĤF −i π

2
N̂ ). (4b)

In these formulas TrS(TrF) is a trace in space where spin (fermionic) operators act, N̂ =
∑M

i=1 ĉ†iαĉiα =
∑M

i=1 n̂i is the number operator.
Let us briefly repeat their arguments. It is sufficient to consider only one site (we omit the site

index). For spin 1
2 , spin operators Ŝa(a = x, y, z) act in two dimensional space. But the space

where fermionic operators act is four dimensional; we have states

|0, 0〉, ĉ†↑|0, 0〉 = | ↑, 0〉, ĉ†↓|0, 0〉 = |0, ↓〉, ĉ†↑ĉ
†
↓|0, 0〉 = | ↑, ↓〉.

States | ↑, 0〉, |0, ↓〉 can be identified with eigenstates of Ŝz operator with spin up and spin
down , we call them physical and denote |phys〉. Then states |0, 0〉 and | ↑, ↓〉 are superfluous or
unphysical and their contribution should be excluded.

The physical states span a two-dimensional physical subspace, characterized by the single oc-
cupancy condition

n̂|phys〉 = |phys〉.
The direct product of the physical subspaces of all the sites form the sectors in which the

Hamiltonians ĤS and ĤF coincide.
In order to prove the basic formula Eq.(4b) we write

ĤF = ĤFi + Ĥ ′
Fi , N̂ = n̂i + N̂ ′

i ,

where ĤFi(n̂i) is that part of the ĤF (N̂) which contains the fermionic operators of the i-th site
and Ĥ ′

Fi(N̂
′
i) is the remaining part. For the Hamiltonian of HAFM we have

ĤFi|unphys〉i = 0.

Therefore, the trace in Eq.(4b) taken over unphysical states of the i-th site vanishes

3



Tri unphys{e−βĤF−i π
2 N̂} = e−βĤ′

F i−i π
2 N̂ ′

i Tri unphys{(−i)n̂i} = 0,

since Tri unphys{(−i)n̂i} = (−i)0 + (−i)2 = 0.
As a result , in the calculation of the trace all the unphysical states are eliminated, while on

the physical states ĤF = ĤS and N̂ |phys〉 = M |phys〉. Therefore

TrF (e−βĤF −i π
2 N̂ ) = (−i)MTrphys(e

−βĤF ) =
1

iM
TrS(e−βĤS)

which proves Eq.(4b).
The evaluation of fermionic trace TrF requires only the standard technique because this trace

is unrestricted. It can be represented as a path integral in terms of Grassmann fields η and η [11]

Z = iM
∫

Dµη exp






−
∫ β

0

dτ




∑

i,α

ηiα(τ)

(

∂τ + i
π

2β

)

ηiα(τ) + HF (η, η; τ)










, (5)

where

HF (η, η; τ) =
J

4

∑

〈i,j〉
(ηiα(τ)σαβηiβ(τ))(ηjγ(τ)σγδηjδ(τ))

= J
∑

〈i,j〉
Si(τ) · Sj(τ) (6)

and

Si(τ) ≡ 1

2
ηiα(τ)σαβηiβ(τ), (7)

Dµη =
∏

0≤τ≤β

∏

i,α

dηiα(τ)dηiα(τ).

Now let us do the Fourier transformation

Si(τ) =
1

β

∑

q∈BZ

∑

m

S(q, Ωm)e−iΩmτeiq.ri , (8)

where q is the wave vector in reciprocal space (we can restrict it to the first Brillouin zone (BZ)),
Ωm = 2πm

β
is a Matsubara frequency for Bose field.

Summation over ordered nearest neighbors can be written as

∑

〈i,j〉
=

1

2

∑

i,δ

, (9)

since j is a nearest neighbor of i: rj = ri + δ, and δ represents the displacement of z = 2d nearest
neighbors of each site . Then

∫ β

0

dτHF (η, η; τ) =
JMd

β

∑

q∈BZ

∑

m

γqS(q, Ωm)S(−q,−Ωm), (10)

4



where the so-called structure function γq = 1
z

∑

δ eiqδ = γ−q = 1
d
(cos q1 + cos q2 + · · · + cos qd).

From Eq.(8) it follows that
S(−q,−Ωm) = S⋆(q, Ωm) (11)

and if we write
S(q, Ωm) = ReS(q, Ωm) + iImS(q, Ωm) (12)

then
∫ β

0

dτHF (η, η; τ) =
dJM

β

∑

q∈BZ

∑

m

γq[(ReS(q, Ωm))2 + (ImS(q, Ωm))2]. (13)

The standard way to decouple four fermion terms is to use Hubbard-Stratonovich represen-
tations and introduce some auxiliary Bose fields. The decoupling scheme is not unique and the
particular choice of the Bose fields depends which mean field solutions (ordered or disordered for
our model) we are going to discuss. Of course, before one starts to use some approximation (usually
saddle point approximation) all representations are equivalent and if we are able to calculate the
path integrals exactly we shall get the same result.

In the present paper we are considering the ordered phase (the disordered phase which is the
most relevant for d ≤ 2 will be discussed elsewhere [9]) and the Hubbard-Stratonovich decoupling
can be done with the help of an auxiliary vector field M(q, Ωm) which plays the role of the
staggered magnetization

e
−
∫

β

0
dτHF (η,η;τ)

=

∫

DµM exp

{
∑

q,m

[

− |M(q, Ωm)|2

+

√

−dJM

β
γq[M⋆(q, Ωm)S(q, Ωm) + S⋆(q, Ωm)M(q, Ωm)]

]}

, (14)

and the path integration measure

DµM =
∏

m

∏

q∈BZ

∏

a=x,y,z

dReMa(q, Ωm)dImMa(q, Ωm)

π
. (15)

For Fermi fields Fourier transformations are

ηiα(τ) =
∑

n

ηiα(νn)e−iνnτ , (16a)

ηiα(τ) =
∑

n

ηiα(νn)eiνnτ , (16b)

where νn = 2π(n+1)
β

is a Matsubara frequency for Fermi fields. Then

S(q, Ωm) =
β

2M

∑

i,n′,n

ηiα(νn′)σαβηiβ(νn)e−iqriδΩm,νn′−νn
. (17)

and for the partition function we get
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Z = iM
∫

DµηDµM exp






−
∑

q,m

|M(q, Ωm)|2 +
∑

i,j

∑

n′,n

ηiα(νn′)Kαβ
n′,n;i,j(M)ηjα(νn)






, (18)

where

Kαβ
n′,n;i,j(M) =

[

δαβ
(

−iνnβ + i
π

2

)

δn′n +
∑

q

√

−dJβ

M
γqeiqriM(q, νn′ − νn)σαβ

]

δij , (19)

and the measure for the path integration with respect to Grassmann variables now reads

Dµη =
∏

i,n,α

dηiα(νn)dηiα(νn). (20)

Integrating with respect to them we obtain

Z = iM
∫

DµMe−Seff [M] = e−βF , (21)

where
Seff [M] =

∑

q,m

|M(q, Ωm)|2 − Tr lnK(M) (22)

and F is a free energy.

3 The leading order of the saddle point approximation

In order to deal with the AFM solution we shall choose a frequency independent solution along
the z-axis (π = (π, π, ..., π)

︸ ︷︷ ︸

d

)

M(q, Ωm) = ẑ
√

dMβJmδq,π. (23)

The real parameter m is a staggered magnetization. Then

(KMF (M))αβ
n′,n;i,j =

[

δαβ
(

−iνnβ + i
π

2

)

+ (−1)idJβmσz
αβ

]

δn′nδij , (24)

and (−1)i = (−1)(ri)1+···+(ri)d . So the free energy in the mean field leading order takes a form

FMF (m) = dJMm
2 − 1

β

∑

m

ln
[
1 + eβEm

]
− M

β
ln i , (25)

where {Em} is the spectrum of the mean field Hamiltonian

ĤMF =
∑

j,α

(

ωj,αĉ†jαĉjα + i
π

2β
ĉ†jαĉjα

)

, (26)

6



ωj1 = (−1)jdJm,

ωj2 = −(−1)jdJm.

The summation with respect to eigenvalues can be done easily with the result

∑

m

ln
[
1 + eβEm

]
= M ln

(
2

i
cosh (dβJm)

)

. (27)

So for the free energy in the leading order we get

FMF (m) = dJMm
2 − M

β
ln (cosh (dβJm)) − M

β
ln 2 (28)

Minimization of FMF (m) yields the mean field staggered magnetization equation

m =
1

2
tanh (dβJm). (29)

Exactly the same result for magnetization one obtains in the mean field approach to the S = 1/2
Heisenberg model with the Hamiltonian Eq.(1) working in terms of spin variables.

If the single occupancy condition is disregarded instead of Eqs.(28) and Eqs.(29) we get

FMF
0 (m0) = dJMm

2
0 −

2M

β
ln

(

cosh

(
d

2
βJm0

))

− 2M

β
ln 2 (30)

and

m0 =
1

2
tanh

(
d

2
βJm0

)

. (31)

4 One-loop corrections

Now we write

M(q, Ωm) = ẑ
√

dMβJmδq,π + δM(q, Ωm) , (32)

where δM(q, Ωm) are fluctuations of the magnetization around the mean-field value (the leading
order)m satisfying Eq.(29). Then

Kαβ
n′,n;i,j(δM) =

[

δαβ
(

−iνnβ + i
π

2

)

+ (−1)jdJβmσz
αβ

]

δn′nδij + δnαβ
ij (νn′ − νn), (33)

where

δnαβ
ij (νn′ − νn) ≡

∑

q∈BZ

√

−dJβ

M
γqeiq·riδM(q, νn′ − νn)σαβδij . (34)

The partition function
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Z = e−βF MF

∫

DµMe−S
(2)

eff
[δM], (35)

where

S
(2)
eff [δM] =

∑

m

∑

q∈BZ

|δM((q, Ωm))|2 − Tr lnK(δM) , (36)

DµM ≡
∏

m

∏

q∈BZ

dReδM(q, Ωm)dImδM(q, Ωm)

π
. (37)

The superscript (2) means that only the terms of the second order with respect to δM are kept.
Thus we take into account only so-called Gaussian fluctuations.

Let us define a matrix G such that its matrix elements has a form

Gαβ
n′,n;i,j =

[

−iνnβ + i
π

2
− (−1)α(−1)jdJβm

]−1

δijδαβδn′n. (38)

This matrix is the one particle propagator evaluated at the saddle point. Then Eq.(33) written in
the matrix form (with respect to spin index α and lattice site index i ) takes a form

Kn′n = G−1
n′n − δn(νn′ − νn) (39)

and

Tr lnK(δM) = Tr lnG−1 + Tr ln(1 − Gδn)

= Tr lnG−1 − Tr[Gδn] − 1

2
Tr[GδnGδn] − · · · .

The term which describes the Gaussian fluctuations in more explicit form reads

Tr[GδnGδn] =
∑

n,m

Sp[(m− iν̃nβ)−1δn(Ωm)(m− iν̃nβ + iΩmβ)−1δn(−Ωm)], (40)

where m is a matrix in the space of i and α indices with the matrix element

m
αβ

ij = −(−1)α(−1)jdJβmδijδαβ , (41)

and Sp is a trace in this space ( its element we denote as |iα〉),

ν̃n ≡ νn +
π

2β
.

So in the one-loop approximation we have for S
(2)
eff [δM]

S
(2)
eff =

∑

m,q∈BZ

|δM((q, Ωm))|2 + S̃
(2)
eff [δM] (42)

and

S̃
(2)
eff [δM] =

1

2

∑

i,α,β,m

Tαβ(i, m)〈iα|δn(Ωm)|iβ〉〈iβ|δn(−Ωm)|iα〉, (43)
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where

Tαβ(i, m) ≡
∑

n

〈iα|(m− iν̃nβ)−1|iα〉〈iβ|(m− iν̃nβ + iΩmβ)−1|iβ〉

=
∑

n

1

iν̃nβ + (−1)α(−1)idJβm

1

iν̃nβ − iΩmβ + (−1)β(−1)idJβm
. (44)

The summation with respect to Matsubara frequencies can be easily done with the following
result

Φ(A, B; Ωm) ≡
∑

n

1

iν̃nβ − A

1

iν̃nβ − B − iΩmβ

=
1

iΩmβ − A + B

sinh [12 (A − B)]

i sinh [12 (A + B)] + cosh [12 (A − B)]
,

if A 6= B, and

Φ(A, A; Ωm) = −δm0
1 − i sinhA

2 cosh2 A
. (45)

We need to know only the expression for the special choice: B = −A. In this case

Φ(A,−A; Ωm) = − 2A tanhA

(Ωmβ)2 + 4A2
− iΩmβ tanhA

(Ωmβ)2 + 4A2
. (46)

So we get (A ≡ dJβm)

T11(j, m) = −δm0
1 − i(−1)j sinhA

2 cosh2 A
≡ −δm0[κ − i(−1)jρ], (47a)

T22(j, m) = −δm0[κ + i(−1)jρ], (47b)

T12(j, m) = − 2A tanhA

(Ωmβ)2 + 4A2
− i(−1)jΩmβ tanhA

(Ωmβ)2 + 4A2
≡ ξ(m) + i(−1)jζ(m) (48a)

and
T21(j, m) = ξ(m) − i(−1)jζ(m). (48b)

Taking into account the Eq.(29) for the mean field magnetization we get

κ =
1

2
(1 − 4m2) .

If the single occupancy condition is neglected we get instead (A0 ≡ dJβm0 )

κ0 =
1

4 cosh2 A0

2

=
1

4
(1 − 4m2

0)
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and

ξ0(m) = − 2A0 tanh A0

2

(Ωmβ)2 + 4A2
0

, ζ0(m) = − Ωmβ tanh A0

2

(Ωmβ)2 + 4A2
0

.

From Eqs.(29) and (31) it follows that ξ(m)|A=A0 = ξ0(m) and ζ(m)|A=A0 = ζ0(m).
From Eq.(34) we have

〈i1|δn(Ωm)|i1〉 =
∑

q∈BZ

√

−dJβ

M
γqeiqriδMz(q, Ωm), (49a)

〈i2|δn(Ωm)|i2〉 = −
∑

q∈BZ

√

−dJβ

M
γqeiqriδMz(q, Ωm), (49b)

〈i1|δn(Ωm)|i2〉 =
∑

q∈BZ

√

−dJβ

M
γqeiqri [δMx(q, Ωm) − iδMy(q, Ωm)], (50a)

〈i2|δn(Ωm)|i1〉 =
∑

q∈BZ

√

−dJβ

M
γqeiqri [δMx(q, Ωm) + iδMy(q, Ωm)] , (50b)

and S̃
(2)
eff defined in Eq.(43) can be rewritten as

S̃
(2)
eff = S̃

(2)
L + S̃

(2)
T ,

where the longitudinal part

S̃
(2)
L =

1

2

∑

i,m

{T11(m)〈i1|δn(Ωm)|i1〉〈i1|δn(−Ωm)|i1〉 + T22(m)〈i2|δn(Ωm)|i2〉〈i2|δn(−Ωm)|i2〉}

and the transverse part

S̃
(2)
T =

1

2

∑

i,m

{T12(m)〈i1|δn(Ωm)|i2〉〈i2|δn(−Ωm)|i1〉 + T21(m)〈i2|δn(Ωm)|i1〉〈i1|δn(−Ωm)|i2〉} .

So using Eqs.(47) and (49) we obtain

S̃
(2)
L = dJβκ

∑

q∈BZ

γq|δMz(q, 0)|2 (51)

and with the help of Eqs.(48) and (50)

S̃
(2)
T =

1

2
(−dJβ)

∑

m,q∈BZ

{γq[δMx((q, Ωm)) − iδMy((q, Ωm))][δMx(−q,−Ωm) + iδMy(−q,−Ωm)]ξ(m)

+γq[δMx((q, Ωm)) + iδMy((q, Ωm))][δMx(−q,−Ωm) − iδMy(−q,−Ωm)]ξ(m)

−γq[δMx((q, Ωm)) − iδMy((q, Ωm))][δMx(−q − π,−Ωm) + iδMy(−q − π,−Ωm)]ζ(m)

−γq[δMx((q, Ωm)) + iδMy((q, Ωm))][δMx(−q − π,−Ωm) − iδMy(−q − π,−Ωm)]ζ(m)} .
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So

S̃
(2)
eff = dJβκ

∑

q∈RBZ

|γq|
{
|δMz(q, 0)|2 − |δMz(q + π, 0)|2

}

+ dJβ
∑

m

∑

q∈RBZ

|γq|
{ [

−|δMx(q, Ωm)|2 + |δMx(q + π, Ωm)|2 (52)

− |δMy(q, Ωm)|2 + |δMy(q + π, Ωm)|2
]
ξ(m)

+ 2Im [δMx(q, Ωm)δMy(−q − π,−Ωm)

− δMy(q, Ωm)δMx(−q− π,−Ωm)] ζ(m)
}

.

The part of S
(2)
eff which describes the transverse fluctuations for each q vector and for each

value of m consists of four 2 × 2 blocks mixing the real and imaginary components of δMx and
δMy at q and q+π in pairs. The matrices corresponding to these blocks are given by (q ∈ RBZ)





1 − dβJ |γq|ξ(m) ±dβJ |γq|ζ(m)

±dβJ |γq|ζ(m) 1 + dβJ |γq|ξ(m)



 (53)

with the eigenvalues

λ±(q, m) = 1 ± 2dm|γq|
√

(ΩmJ−1)2 + (2dm)2
. (54)

We see that λ−(q, m) vanishes at Ωm = 0 when q = 0 . The corresponding eigenmodes are the
Goldstone modes (spin waves) which appear due to the fact that AFM (ordered) phase is a phase
with spontaneously broken symmetry.

So from Eq.(35) we obtain up to some inessential constant the free energy including one-loop
corrections

F = FMF +
2

β

∑

q∈RBZ

∑

m>0

ln(λ+(q, m)λ−(q, m)) +
1

β

′∑

q∈RBZ

ln(1 − γ2
q
)

+
1

2β

∑

q∈RBZ

ln(1 − d2β2J2κ2γ2
q
) , (55)

where
∑′

q∈RBZ means that the point q = 0 should be excluded. The summation with respect to
Matsubara frequencies can be done with help of the formula

∑

m>0

ln

(

1 − A2

(Ωmβ)2 + B2

)

= ln

(

B sinh
√

B2−A2

2√
B2 − A2 sinh B

2

)

(56)

and we get finally for the free energy

F = FMF +
2

β

′∑

q∈RBZ

ln





sinh
(

dmβJ
√

1 − γ2
q

)

sinh(dmβJ)



+
2

β
ln

dmβJ

sinh(dmβJ)
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+
1

2β

∑

q∈RBZ

ln

[

1 − d2

4
β2J2(1 − 4m2)2γ2

q

]

. (57)

Now taking the limit of zero temperature β → ∞ we get the energy of the ground state per
site (there is no contribution to the limiting expression from the last term)

F

M
−−−−→
T → 0

E
(0)
0

M
= −dJ

4
+

dJ

M

∑

q∈RBZ

[√

1 − γ2
q
− 1
]

, (58)

which is exactly the ground state energy per site obtained in linear spin-wave approximation [12]
for spin 1/2.

It is easy to check that the same zero temperature result will be obtained when the single
occupancy condition is disregarded.

On the contrary, at finite temperatures taking into account the single occupancy condition gives
different values of the different thermodynamical quantities, e.g. for the free energy this affects in
changing the temperature dependence of the magnetization m and changing the longitudinal part.
Figs.1 and 2 show the difference of the results for the cases when single occupancy condition is
taken into account (solid line) and when it is disregarded (dashed line). On Fig.1 the temperature
dependence of the internal energy and entropy and on Fig.2 of the specific heat are given. From our
numerical calculations we found that only in the interval 0 ≤ t ≤ 0.13 the difference is negligebly
small. In this interval the specific heat goes to zero as Cv = atα with α = 3, as it should [12].

5 Conclusion

We have studied the magnetic (ordered) phase of the isotropic spin 1/2 HAFM defined on the simple
d-dimensional hypercubic lattice using fermionized spin operators and saddle point approximation.
Single occupancy condition which is needed when spin operators are bosonized or fermionized is
taken into account by the method of Popov and Fedotov.

It is shown that inclusion of the one-loop corrections to the leading order of the saddle point
approximation leads in the limit of zero temperature exactly to the same expression for the ground
state energy which one obtains for the next-to-leading term in the linear spin wave theory, and
this result does not depend if the single occupancy condition is disregarded or not.

It is worthwile to mention that in the mean field theory of the spin 1/2 HAFM where Schwinger
bosons are used [5] one obtains the same result of the linear spin wave theory at zero temperature
already in the leading order and taking into account the single occupancy condition is crucial in
this case.

We demonstrated that in our approach taking into account the single occupancy condition
changes finite temperature results considerably.
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Figure captions

Fig.1 Internal energy per site E/M and entropy per site S/M versus dimensionless temperature
t = (βJ)−1 for the 3-dimensional cubic lattice. Dashed and solid lines correspond to the cases
when single occupancy condition is disregarded and taken into account respectively.

Fig.2 Temperature dependence of the specific heat per site Cv/(KBt) for the 3-dimensional
cubic lattice. Dashed and solid lines correspond to the cases when single occupancy condition is
disregarded and taken into account respectively.
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