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TWO-WEIGHTED INEQUALITIES FOR SOME
SUBLINEAR OPERATORS IN LEBESGUE SPACES

Abstract

In this paper, the author establishes the boundedness in weighted Lp spaces
on Rn a large class of sublinear operators generated by Calderon-Zygmund
operators. The conditions of these theorems are satisfied by many important
operators in analysis and these operators satisfy only some weak conditions on
the size of operators and are known to be bounded in the unweighted case.
Sufficient conditions on weighted functions ω and ω1 are given so that certain
sublinear operator is bounded from the weighted Lebesgue spaces Lp,ω(Rn) into
Lp,ω1(Rn).

In the paper, we will prove the boundedness of some sublinear operators on the
weighted Lp spaces.

Let Rn is the n-dimensional Euclidean space of points x = (x′, x′′) = (x1, ..., xn),
x′ = (x1, ..., xm), x′′ = (xm+1, ..., xn), 1 ≤ m ≤ n, |x′|2 =

∑n
i=1 x

2
i , An almost

everywhere positive and locally integrable function ω : Rn → R, will be called a
weight. We shall denote by Lp,ω(Rn) the set of all measurable function f on Rn

such that the norm

‖f‖Lp,ω(Rn) ≡ ‖f‖p,ω;Rn =
(∫

Rn

|f(x)|pω(x)dx
)1/p

, 1 ≤ p <∞,

is finite.

Definition 1. A function K defined on Rn \ {0}, is said to be a Calderon-Zygmund
(CZ) kernel in the space Rn if

i) K ∈ C∞(Rn \ {0}) ;
ii) K(rx) = r−nK(x) for each r > 0, x ∈ Rn \ {0};
iii)

∫
ΣK(x)dσx = 0 , where dσ is the element of area of the Σ = {x ∈ Rn : |x| =

1};

A sufficient condition for Calderon–Zygmund operator T : Lp,ω(Rn) → Lp,ω1(Rn)
was found by N.Fuji [6], however the condition he introduced is not easy to check
for given weights. Recently Guliyev [7] and Edmunds and Kokilashvili [14] found new
sufficient conditions easily verifiable for Calderon–Zygmund operator T : Lp,ω(Rn) →
Lp,ω1(Rn), whenever ω(·) and ω1(·) are radial monotone weights. In the paper Y.
Rakotondratsimba [16] was proved the following theorem
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Theorem 1. Let p ∈ (1,∞), T be a Calderon–Zygmund operator. Moreover, let
ω(x),ω1(x) be weight functions on Rn and the following three conditions be satisfied:

there exists a constant b > 0 such that

sup
|x|/4<|y|<4|x|

ω1(y) ≤ b ω(x) for a.e. x ∈ Rn,

sup
r>0

(∫
|x|>2r

ω1(x)|x|−npdx

)(∫
|x|<r

ω1−p′(x)dx

)p−1

<∞,

sup
r>0

(∫
|x|<r

ω1(x)dx

)(∫
|x|>2r

ω1−p′(x)|x|−np′dx

)p−1

<∞.

Then there exists a constant c, independent of f , such that for all f ∈ Lp,ω(Rn)∫
Rn

|Tf(x)|pω1(x)dx ≤ c

∫
Rn

|f(x)|pω(x)dx.

Moreover, condition (a) can be replaced by the condition
there exists a constant b > 0 such that

ω1(x)

(
sup

|x|/4<|y|<4|x|

1
ω(y)

)
≤ b for a.e. x ∈ Rn.

We say that a locally integrable function ω : Rn → (0,∞) satisfies Mucken-
houpt’s condition Ap = Ap(Rn) (briefly, ω ∈ Ap), 1 < p <∞, if there is a constant
C = C(ω, p) such that for any ball B ⊂ Rn(

|B|−1

∫
B
ω(x)dx

)(
|B|−1

∫
B
ω1−p′(x)dx

)p−1

≤ C,
1
p

+
1
p′

= 1,

where the second factor on the left is replaced by ess sup
{
ω−1(x) : x ∈ B

}
if p = 1.

First, we establish the boundedness in weighted Lp spaces for a large class of
sublinear operators.

Theorem 2. Let p ∈ (1,∞) and let T be a sublinear operator bounded from Lp(Rn)
to Lp(Rn) such that, for any f ∈ L1(Rn) with compact support and x /∈ suppf

|Tf(x)| ≤ c0

∫
Rn

|f(y)|
|x− y|n

dy, (1)

where c0 is independent of f and x.
Moreover, let ω(x) = u(x)φ(x), ω1(x) = u1(x)φ(x) be weight functions on Rn,

φ(x) ∈ Ap(Rn) and the following three conditions be satisfied:
(a) there exists a constant b > 0 such that

sup
|x|/4<|y|<4|x|

u1(y) ≤ b u(x) for a.e. x ∈ Rn,

(b) A ≡ sup
r>0

(∫
|x|>2r

ω1(x)|x|−npdx

)(∫
|x|<r

ω1−p′(x)dx

)p−1

<∞,
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(c) B ≡ sup
r>0

(∫
|x|<r

ω1(x)dx

)(∫
|x|>2r

ω1−p′(x)|x|−np′dx

)p−1

<∞.

Then there exists a constant c, independent of f , such that for all f ∈ Lp,ω(Rn)∫
Rn

|Tf(x)|pω1(x)dx ≤ c

∫
Rn

|f(x)|pω(x)dx. (2)

Moreover, condition (a) can be replaced by the condition
(a′) there exist b > 0 such that

u1(x)

(
sup

|x|/4≤|y|≤4|x|

1
u(y)

)
≤ b for a.e. x ∈ Rn.

Proof. For k ∈ Z we define Ek = {x ∈ Rn : 2k < |x| ≤ 2k+1}, Ek,1 = {x ∈ Rn :
|x| ≤ 2k−1}, Ek,2 = {x ∈ Rn : 2k−1 < |x| ≤ 2k+2}, Ek,3 = {x ∈ Rn : |x| > 2k+2}.
Then Ek,2 = Ek−1 ∪ Ek ∪ Ek+1 and the multiplicity of the covering {Ek,2}k∈Z is
equal to 3.

Given f ∈ Lp,ω(Rn), we write

|Tf(x)| =
∑
k∈Z

|Tf(x)|χEk
(x) ≤

∑
k∈Z

|Tfk,1(x)|χEk
(x)+

+
∑
k∈Z

|Tfk,2(x)|χEk
(x) +

∑
k∈Z

|Tfk,3(x)|χEk
(x) ≡ T1f(x) + T2f(x) + T3f(x), (3)

where χEk
is the characteristic function of the set Ek, fk,i = fχEk,i

, i = 1, 2, 3.
First we shall estimate ‖T1f‖Lp,ω1

. Note that for x ∈ Ek, y ∈ Ek,1 we have
ρ|(y) ≤ 2k−1 ≤ |x|/2. Moreover, Ek ∩ suppfk,1 = ∅ and |x − y| ≥ |x|/2. Hence by
(1)

T1f(x) ≤ c0
∑
k∈Z

(∫
Rn

|fk,1(y)|
|x− y|n

dy

)
χEk

≤

≤ c0

∫
|y|≤|x|/2

|x− y|−n|f(y)|dy ≤ 2nc0|x|−n

∫
|y|≤|x|/2

|f(y)|dy

for any x ∈ Ek. Hence we have∫
Rn

|T1f(x)|pω1(x)dx ≤ (2nc0)
p
∫

Rn

(∫
|y|<|x|/2

|f(y)|dy

)p

|x|−npω1(x)dx.

Since A <∞, the Hardy inequality∫
Rn

ω1(x)|x|−np

(∫
|y|<|x|/2

|f(y)|dy

)p

dx ≤ C

∫
Rn

|f(x)|pω(x)dx

holds and C ≤ c′A, where c′ depends only on n, a and p. In fact the condition
A < ∞ is necessary and sufficient for the validity of this inequality (see [1], [13]).
Hence, we obtain ∫

Rn

|T1f(x)|pω1(x)dx ≤ c1

∫
Rn

|f(x)|pω(x)dx. (4)
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where c1 is independent of f .
Next we estimate ‖T3f‖Lp,ω1

. As is easy to verify, for x ∈ Ek, y ∈ Ek,3 we have
|y| > 2|x| and |x− y| ≥ |y|/2. Since Ek ∩ suppfk,3 = ∅, for x ∈ Ek by (1) we obtain

T3f(x) ≤ c0

∫
|y|>2|x|

|f(y)|
|x− y|n

dy ≤ 2nc0

∫
|y|>2|x|

|f(y)||y|−ndy.

Hence we have∫
Rn

|T3f(x)|pω1(x)dx ≤ (2nc0)
p
∫

Rn

(∫
|y|>2|x|

|f(y)||y|−ndy

)p

ω1(x)dx.

Since B <∞, the Hardy inequality∫
Rn

ω1(x)

(∫
|y|>2|x|

|f(y)||y|−ndy

)p

dx ≤ C

∫
Rn

|f(x)|pω(x)dx

holds and C ≤ c′B, where c′ depends only on n and p. In fact the condition B <∞
is necessary and sufficient for the validity of this inequality (see [1], [13]). Hence, we
obtain ∫

Rn

|T3f(x)|pω1(x)dx ≤ c2

∫
Rn

|f(x)|pω(x)dx, (5)

where c2 is independent of f .
Finally, we estimate ‖T2f‖Lp,ω1

. By the Lp,φ(Rn) boundedness of T and condition
(a) we have∫

Rn

|T2f(x)|pω1(x)dx =
∫

Rn

(∑
k∈Z

|Tfk,2(x)|χEk
(x)

)p

ω1(x)dx =

=
∫

Rn

(∑
k∈Z

|Tfk,2(x)|p χEk
(x)

)
ω1(x)dx =

∑
k∈Z

∫
Ek

|Tfk,2(x)|p u1(x)φ(x)dx ≤

≤
∑
k∈Z

sup
x∈Ek

u1(x)
∫

Rn

|Tfk,2(x)|p φ(x)dx ≤ ‖T‖p
φ

∑
k∈Z

sup
x∈Ek

u1(x)
∫

Rn

|fk,2(x)|p φ(x)dx =

= ‖T‖p
φ

∑
k∈Z

sup
y∈Ek

u1(y)
∫

Ek,2

|f(x)|pφ(x)dx,

where ‖T‖φ ≡ ‖T‖Lp,φ(Rn)→Lp,φ(Rn). Since, for x ∈ Ek,2, 2k−1 < |x| ≤ 2k+2, we have
by condition (a)

sup
y∈Ek

u1(y) = sup
2k−1<|y|≤2k+2

u1(y) ≤ sup
|x|/4<|y|≤4|x|

u1(y) ≤ b u(x)

for almost all x ∈ Ek,2. Therefore∫
Rn

|T2f(x)|pω1(x)dx ≤

≤ ‖T‖p
φb
∑
k∈Z

∫
Ek,2

|f(x)|pu(x)φ(x)dx ≤ c3

∫
Rn

|f(x)|pω(x)dx, (6)
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where c3 = 3‖T‖p
φb, since the multiplicity of covering {Ek,2}k∈Z is equal to 3.

Inequalities (3), (4), (5), (6) imply (2) which completes the proof.
Analoguoslu proved the following weak variant Theorem 1.

Theorem 3. Let p ∈ [1,∞) and let T be a sublinear operator bounded from Lp(Rn)
to WLp(Rn) and satisfying (1). Moreover, let ω(x) = u(x)φ(x), ω1(x) = u1(x)φ(x)
be weight functions on Rn, φ(x) ∈ Ap(Rn) and conditions (a), (b), (c) be satisfied.

Then there exists a constant c, independent of f , such that for all f ∈ Lp,ω(Rn)∫
{x∈Rn : |Tf(x)|>λ}

ω1(x)dx ≤
c

λp

∫
Rn

|f(x)|pω(x)dx. (7)

Let K is a Calderon–Zygmund kernel and T be the corresponding integral oper-
ator

Tf(x) = p.v.

∫
Rn

K(x− y)f(y)dy.

Then T satisfies the condition (1). See [15] for details. Thus, we have

Corollary 1. Let p ∈ (1,∞), K be a Calderon–Zygmund kernel and T be the
corresponding integral operator. Moreover, let ω(x) = u(x)φ(x), ω1(x) = u1(x)φ(x)
be weight functions on Rn, φ(x) ∈ Ap(Rn) and conditions (a), (b), (c) be satisfied.
Then inequality (2) is valid.

Corollary 2. Let p ∈ [1,∞), K be a Calderon–Zygmund kernel and T be the cor-
responding integral operator. Moreover, let ω(x) = u(x)φ(x), ω1(x) = u1(x)φ(x)
be weight functions on Rn, φ(x) ∈ Ap(Rn) and conditions (a), (b), (c) be satisfied.
Then inequality (7) is valid.

Remark 1. Note that, Corollary 1 were proved in [16] and for singular integral
operators, defined on homogeneous groups in [12], [8] ( see also [10], [2], [3], [7]).

Theorem 4. Let p ∈ (1,∞), T be a sublinear operator bounded from Lp(Rn) to
Lp(Rn) and satisfying (1). Moreover, let ω(x) = u(|x|)φ(x), ω1(x) = u1(|x|)φ(x) be
weight functions on Rn, φ(x) ∈ Ap(Rn), u(t) be a weight function on (0,∞), u1(t)
be a positive increasing function on (0,∞) and the weighted pair (ω, ω1) satisfies
the conditions (a), (b).

Then inequality (2) is valid.

Proof. Suppose that f ∈ Lp,ω(Rn) and ω1 are positive increasing functions on
(0,∞) and (ω(|x|), ω1(|x|)) satisfied the conditions (a), (b).

Without loss of generality we can suppose that u1 may be represented by

u1(t) = u1(0+) +
∫ t

0
ψ(λ)dλ,

where u1(0+) = limt→0 u1(t) and u1(t) ≥ 0 on (0,∞). In fact there exists a se-
qence of increasing absolutely continuous fuctions $n such that $n(t) ≤ ω1(t) and
lim

n→∞
$n(t) = ω1(t) for any t ∈ (0,∞) ( see [10], [2], [7], [3], [9] for details ).

We have ∫
Rn

|Tf(x)|pω1(x)dx = u1(0+)
∫

Rn

|Tf(x)|pφ(x)dx+
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+
∫

Rn

|Tf(x)|p
(∫ |x|

0
ψ(λ)dλ

)
φ(x)dx = J1 + J2.

If u1(0+) = 0, then J1 = 0. If u1(0+) 6= 0 by the boundedness of T in Lp,φ(Rn),
φ ∈ Ap thanks to (a)

J1 ≤ ‖T‖p
φu1(0+)

∫
Rn

|f(x)|pφ(x)dx ≤

≤ ‖T‖p
φ

∫
Rn

|f(x)|pu1(|x|)φ(x)dx ≤ b ‖T‖p
φ

∫
Rn

|f(x)|pω(x)dx.

After changing the order of integration in J2 we have

J2 =
∫ ∞

0
ψ(λ)

(∫
|x|>λ

|Tf(x)|pφ(x)dx

)
dλ ≤

≤ 2p−1

∫ ∞

0
ψ(λ)

(∫
|x|>λ

|T (fχ{|x|>λ/2})(x)|pφ(x)dx +

+
∫
|x|>λ

|T (fχ{|x|≤λ/2})(x)|pφ(x)dx

)
dλ = J21 + J22.

Using the boundedness of T in Lp,φ(Rn) and condition (a) we have

J21 ≤ ‖T‖p

∫ ∞

0
ψ(t)

(∫
|y|>λ/2

|f(y)|pφ(y)dy

)
dt =

= ‖T‖p

∫
Rn

|f(y)|p
(∫ 2|y|

0
ψ(λ)dλ

)
φ(y)dy ≤

≤ ‖T‖p

∫
Rn

|f(y)|pu1(2|y|)φ(y)dy ≤ b ‖T‖p

∫
Rn

|f(y)|pω(y)dy.

Let us estimate J22. For |x| > λ and |y| ≤ λ/2 we have |x|/2 ≤ |x− y| ≤ 3|x|/2,
and so

J22 ≤ c4

∫ ∞

0
ψ(λ)

(∫
|x|>λ

(∫
|y|≤2λ

|f(y)|
|x− y|n

dy

)p

φ(x)dx

)
dλ ≤

≤ c5

∫ ∞

0
ψ(λ)

(∫
|x|>λ

(∫
|y|≤2λ

|f(y)|dy

)p

|x|−npφ(x)dx

)
dλ =

= c6

∫ ∞

0
ψ(λ)λ−np+n

(∫
|y|≤λ/2

|f(y)|dy

)p

dλ.

The Hardy inequality∫ ∞

0
ψ(λ)λ−np+n

(∫
|y|≤λ/2

|f(y)|dy

)p

dλ ≤ C

∫
Rn

|f(y)|pω(|y|)dy
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for p ∈ (1,∞) is characterized by the condition C ≤ c′A′ (see [4], [11]), where

A′ ≡ sup
τ>0

(∫ ∞

2τ
ψ(t)t−np+ndτ

)(∫ τ

0
ω1−p′(t)dt

)p−1

<∞.

Note that ∫ ∞

2t
ψ(τ)τ−np+ndτ = n(p− 1)

∫ ∞

2t
ψ(τ)dτ

∫ ∞

τ
λn−1−npdλ =

= n(p− 1)
∫ ∞

2t
λn−1−npdλ

∫ λ

2t
ψ(τ)dτ ≤

≤ n(p− 1)
∫ ∞

2t
λn−1−npω1(λ)dλ = c10

∫
|x|>2r

ω1(|x|)|x|−npdx.

Condition (b) of the theorem guarantees that A′ ≤ c10A <∞. Hence, applying
the Hardy inequality, we obtain

J22 ≤ c7

∫
Rn

|f(x)|pω(|x|)dx.

Combining the estimates of J1 and J2, we get (2) for ω1(t) = ω1(0+)+
∫ t
0 ψ(τ)dτ .

By Fatou’s theorem on passing to the limit under the Lebesgue integral sign, this
implies (2). The theorem is proved.

Theorem 5. Let p ∈ [1,∞), T be a sublinear operator bounded from Lp(Rn) to
WLp(Rn) and satisfying (1). Moreover, let ω(x) = u(|x|)φ(x), ω1(x) = u1(|x|)φ(x)
be weight functions on Rn, φ(x) ∈ Ap(Rn), u(t) be a weight function on (0,∞), u1(t)
be a positive increasing function on (0,∞) and the weighted pair (ω, ω1) satisfies the
conditions (a), (b).

Then inequality (7) is valid.

Corollary 3. Let p ∈ (1,∞), K be a Calderon–Zygmund kernel and T be the
corresponding operator. Moreover, let ω(x) = u(|x|)φ(x), ω1(x) = u1(|x|)φ(x) be
weight functions on Rn, φ(x) ∈ Ap(Rn), u(t) be a weight function on (0,∞), u1(t)
be a positive increasing function on (0,∞) and the weighted pair (ω, ω1) satisfies
the conditions (a), (b). Then inequality (2) is valid.

Corollary 4. Let p ∈ [1,∞), K be a Calderon–Zygmund kernel and T be the corre-
sponding operator. Moreover, let ω(x) = u(|x|)φ(x), ω1(x) = u1(|x|)φ(x) be weight
functions on Rn, φ(x) ∈ Ap(Rn), u(t) be a weight function on (0,∞), u1(t) be a
positive increasing function on (0,∞) and the weighted pair (ω, ω1) satisfies the
conditions (a), (b). Then inequality (7) is valid.

Theorem 6. Let p ∈ (1,∞), T be a sublinear operator bounded from Lp(Rn) to
Lp(Rn) and satisfying (1). Moreover, let ω(x) = u(|x|)φ(x), ω1(x) = u1(|x|)φ(x) be
weight functions on Rn, φ(x) ∈ Ap(Rn), u(t) be a weight function on (0,∞), u1(t)
be a positive decreasing function on (0,∞) and the weighted pair (ω, ω1) satisfies
the conditions (a), (c). Then inequality (2) is valid.



10 V.S.Guliyev, Sh.A.Nazirova

Proof. Without loss of generality we can suppose that ω1 may be represented by

ω1(t) = ω1(+∞) +
∫ ∞

t
ψ(τ)dτ,

where ω1(+∞) = lim
t→∞

ω1(t) and ω1(t) ≥ 0 on (0,∞). In fact there exists a se-

quence of decreasing absolutely continuous fuctions $n such that $n(t) ≤ ω1(t)
and limn→∞$n(t) = ω1(t) for any t ∈ (0,∞)( see [7], [9] for details ).

We have ∫
Rn

|Tf(x)|pω1(|x|)dx = ω1(+∞)
∫

Rn

|Tf(x)|pdx+

+
∫

Rn

|Tf(x)|p
(∫ ∞

|x|
ψ(τ)dτ

)
dx = I1 + I2.

If ω1(+∞) = 0, then I1 = 0. If ω1(+∞) 6= 0, by the boundedness of T in Lp(Rn)
and condition (a) we have

J1 ≤ ‖T‖ω1(+∞)
∫

Rn

|f(x)|pdx ≤

≤ ‖T‖
∫

Rn

|f(x)|pω1(|x|)dx ≤ b ‖T‖
∫

Rn

|f(x)|pω(|x|)dx.

After changing the order of integration in J2 we have

J2 =
∫ ∞

0
ψ(λ)

(∫
|x|<λ

|Tf(x)|pdx

)
dλ ≤

≤ 2p−1

∫ ∞

0
ψ(λ)

(∫
|x|<λ

|T (fχ{|x|<2λ})(x)|pdx +

+
∫
|x|<λ

|T (fχ{|x|≥2λ})(x)|pdx

)
dλ = J21 + J22.

Using the boundedness of T in Lp(Rn) and condition (a′) we obtain

J21 ≤ ‖T‖
∫ ∞

0
ψ(t)

(∫
|y|<2λ

|f(y)|pdy

)
dt = ‖T‖

∫
Rn

|f(y)|p
(∫ ∞

|y|/2
ψ(λ)dλ

)
dy ≤

≤ ‖T‖
∫

Rn

|f(y)|pω1(|y|/2)dy ≤ b ‖T‖
∫

Rn

|f(y)|pω(|y|)dy.

Let us estimate J22. For |x| < λ and |y| ≥ 2λ we have |y|/2 ≤ |x− y| ≤ 3|y|/2,
and so

J22 ≤ c8

∫ ∞

0
ψ(λ)

(∫
|x|<λ

(∫
|y|≥2λ

|f(y)|
|x− y|n

dy

)p

dx

)
dλ ≤

≤ 2nc8

∫ ∞

0
ψ(λ)

(∫
|x|<λ

(∫
|y|≥2λ

|y|−n|f(y)|dy

)p

dx

)
dλ =

= c9

∫ ∞

0
ψ(λ)λn

(∫
|y|≥2λ

|y|−n|f(y)|dy

)p

dλ.
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The Hardy inequality∫ ∞

0
ψ(λ)λn

(∫
|y|≥2λ

|y|−n|f(y)|dy

)p

dλ ≤ C

∫
Rn

|f(y)|pω(|y|)dy

for p ∈ (1,∞) is characterized by the condition C ≤ cB′ (see [4], [11]), where

B′ ≡ sup
τ>0

(∫ τ

0
ψ(t)tndτ

)(∫ ∞

2τ
ω1−p′(t)t−np′dt

)p−1

<∞.

Note that ∫ τ

0
ψ(t)tndt = n

∫ τ

0
ψ(t)dt

∫ t

0
λn−1dλ =

= n

∫ τ

0
λn−1dλ

∫ t

λ
ψ(τ)dτ ≤ n

∫ τ

0
λn−1ω(λ)dλ = c

∫
|x|<τ

ω1(x)dx.

Condition (c′) of the theorem guarantees that B′ ≤ nB < ∞. Hence, applying the
Hardy inequality, we obtain

J22 ≤ c10

∫
Rn

|f(x)|pω(|x|)dx.

Combining the estimates of J1 and J2, we get (2) for ω1(t) = ω1(+∞)+
∫∞
t ψ(τ)dτ .

By Fatou’s theorem on passing to the limit under the Lebesgue integral sign, this
implies (2). The theorem is proved.

Theorem 7. Let p ∈ [1,∞), T be a sublinear operator bounded from Lp(Rn) to
WLp(Rn) and satisfying (1). Moreover, let ω(x) = u(|x|)φ(x), ω1(x) = u1(|x|)φ(x)
be weight functions on Rn, φ(x) ∈ Ap(Rn), u(t) be a weight function on (0,∞), u1(t)
be a positive decreasing function on (0,∞) and the weighted pair (ω, ω1) satisfies
the conditions (a), (c). Then inequality (7) is valid.

Corollary 5. Let p ∈ (1,∞), K be a Calderon–Zygmund kernel and T be the
corresponding operator. Moreover, let ω(x) = u(|x|)φ(x), ω1(x) = u1(|x|)φ(x) be
weight functions on Rn, φ(x) ∈ Ap(Rn), u(t) be a weight function on (0,∞), u1(t)
be a positive decreasing function on (0,∞) and the weighted pair (ω, ω1) satisfies
the conditions (a), (c). Then inequality (2) is valid.

Corollary 6. Let p ∈ [,∞), K be a Calderon–Zygmund kernel and T be the corre-
sponding operator. Moreover, let ω(x) = u(|x|)φ(x), ω1(x) = u1(|x|)φ(x) be weight
functions on Rn, φ(x) ∈ Ap(Rn), u(t) be a weight function on (0,∞), u1(t) be a
positive decreasing function on (0,∞) and the weighted pair (ω, ω1) satisfies the
conditions (a), (c). Then inequality (7) is valid.

Theorem 8. Let p ∈ (1,∞) and let T be a sublinear operator bounded from Lp(Rn)
to Lp(Rn) and satisfying (1). Moreover, ω(x′), ω1(x′) be weight functions on Rm

and the following three conditions be satisfied:
(a1) there exists a constant b > 0 such that(

1
ω(x′)

)(
sup

|x′|/4<|y′|≤4|x′|
ω1(y′)

)
≤ b for a.e. x′ ∈ Rn,
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(b1) A ≡ sup
r>0

(∫
|x′|>2r

ω1(x′)|x′|−mpdx′

)(∫
|x′|<r

ω1−p′(x′)dx′
)p−1

<∞,

(c1) B ≡ sup
r>0

(∫
|x′|<r

ω1(x′)dx′
)(∫

|x′|>2r
ω1−p′(x′)|x′|−mp′dx′

)p−1

<∞.

Then there exists a constant C, independent of f , such that for all f ∈ Lp,ω(Rn)∫
Rn

|Tf(x)|pω1(x′)dx ≤ C

∫
Rn

|f(x)|pω(x′)dx. (8)

Moreover, condition (1) can be replaced by the condition
(a′1) there exists a constant b > 0 such that(

ω1(x′)
)(

sup
|x′|/4≤|y′|≤4|x′|

1
ω(y′)

)
≤ b for a.e. x′ ∈ Rn.

Proof. For k ∈ Z we define Ek = {x ∈ Rn : 2k < |x′| ≤ 2k+1}, Ek,1 = {x ∈ Rn :
|x′| < 2k−1}, Ek,2 = {x ∈ Rn : 2k−1 ≤ |x′| ≤ 2k+2}, Ek,3 = {x ∈ Rn : |x′| > 2k+2}.
Given f ∈ Lp,ω(Rn), we write

|Tf(x)| =
∑
k∈Z

|Tf(x)|χEk
(x) ≤

∑
k∈Z

|Tfk,1(x)|χEk
(x)+

+
∑
k∈Z

|Tfk,2(x)|χEk
(x) +

∑
k∈Z

|Tfk,3(x)|χEk
(x) ≡ T1f(x) + T2f(x) + T3f(x),

where χEk
is the characteristic function of the set Ek, fk,i = fχEk,i

, i = 1, 2, 3. We
shall estimate ‖T1f‖Lp,ω1

. Note that for x ∈ Ek, y ∈ Ek,1 we have |y′| ≤ 2k−1 ≤
|x′|/2. Moreover, |x′ − y′| ≥ |x′|/2 and we obtain

|T1f(x)| ≤ c
∑
k∈Z

(∫
Rn

|fk,1(y)|
|x− y|n

dy

)
χEk

≤

≤ c

∫
Rn

|fk,1(y)|
|x− y|n

dy ≤ c1

∫
Rn

|fk,1(y)|
(|x′ − y′|+ |x′′ − y′′|)ndy

′dy′′ ≤

≤ c1

∫
Rn−m

∫
|y′|<|x′|/2

|f(y)|
(|x′|+ |x′′ − y′′|)ndy

′dy′′

for any x ∈ Ek. Using this last inequality we have∫
Rn

|T1f(x)|pω1(x′)dx ≤

≤ c2

{∫
Rn

(∫
Rn−m

∫
|y′|<|x′|/2

|f(y)|
(|x′|+ |x′′ − y′′|)ndy

′dy′′

)p

ω1(x′)dx

}1/p

.

For x = (x′, x′′) ∈ Rn let

I(x′) =
∫

Rn−m

(∫
Rn−m

∫
|y′|<|x′|/2

|f(y′, y′′)|
(|x′|+ |x′′ − y′′|)n

dy′dy′′

)p

dx′′ =

=
∫

Rn−m

(∫
|y′|<|x′|/2

(∫
Rn−m

|f(y′, y′′)|
(|x′|+ |x′′ − y′′|)n

dy′′
)
dy′

)p

dx′′.
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Using the Minkowski and Young inequalities we obtain

I(x′) ≤

[∫
|y′|<|x′|/2

(∫
Rn−m

|f(y′, y′′)|pdy′′
)1/p(∫

Rn−m

dx′′

(|x′|+ |x′′|)n

)
dy′

]p

=

=

(∫
|y′|<|x′|/2

‖f(y′, ·)‖p,Rn−mdy′

)p(∫
Rn−m

dx′′

(|x′|+ |x′′|)n

)p

=

=
c3

|x′|mp

(∫
|y′|<|x′|/2

‖f(y′, ·)‖p,Rn−mdy′

)p(∫
Rn−m

dx′′

(|x′′|+ 1)n

)p

=

=
c4

|x′|mp

(∫
|y′|<|x′|/2

‖f(y′, ·)‖p,Rn−mdy′

)p

.

Integrating in Rm we get∫
Rn

|T1f(x)|pω1(x′)dx ≤ c4

∫
Rm

ω1(x′)|x′|−mp

(∫
|y′|<|x′|/2

‖f(y′, ·)‖p,Rn−mdy′

)p

dx′.

Since A <∞, the Hardy inequality∫
Rm

ω1(x′)|x′|−mp

(∫
|y′|<|x′|/5

‖f(y′, ·)‖p,Rn−mdy′

)p

dx′ ≤

≤ C

∫
Rm

‖f(x′, ·)‖p,Rn−mω(x′)dx′

and C ≤ cA where c depends only on p. In fact the condition A < ∞ is necessary
and sufficient for the validity of this inequality (see [1], [13]). Hence, we obtain∫

Rn

|T1f(x)|pω1(x′)dx ≤ c5

∫
Rn

|f(x)|pω(x′)dx.

Let us estimate ‖T3f‖Lp,ω1
. As is easy to verify, for x ∈ Ek, y ∈ Ek,3 we have

|y′| > 2|x′| and |x′ − y′| ≥ |y′|/2. For x ∈ Ek we obtain

|T3f(x)| ≤ c6

∫
Rn−m

∫
|y′|>2|x′|

|f(y)|
(|y′|+ |x′′ − y′′|)ndy

′dy′′.

Using this last inequality we have

I1(x′) =
∫

Rn−m

(∫
|y′|>2|x′|

∫
Rn−m

|f(y)|
(|y′|+ |x′′ − y′′|)ndy

′dy′′

)p

dx′′.

Using the Minkowski and Young inequalities we obtain

B1(x′) ≤

[∫
|y′|>2|x′|

(∫
Rn−m

|f(y′, y′′)|pdy′′
)1/p(∫

Pn−m

dy′′

(|y′|+ |y′′|)n

)
dy′

]p

=

= c7

(∫
|y′|>2|x′|

|y′|−m‖f(y′, ·)‖p,Rn−mdy′

)p(∫
Rn−m

dy′′

(|y′′|+ 1)n

)p

=
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= c8

(∫
|y′|>2|x′|

|y′|−m‖f(y′, ·)‖p,Rn−mdy′

)p

.

Using this last inequality we have∫
Rn

|T3f(x)|pω1(x′)dx ≤ c8

∫
Rm

(∫
|y′|>|7x′|

‖f(y′, ·)‖p,Rn−m |y′|−mdy′

)p

ω1(x′)dx′.

Since B <∞, tee Hardy inequality∫
Rm

ω1(x′)

(∫
|y′|>2|x′|

‖f(y′, ·)‖p,Rn−m |y′|−mdy′

)p

dx′ ≤

≤ C

∫
Rm

‖f(x′, ·)‖p
p,Rn−mω(x′)dx′ = C

∫
Rn

|f(x)|pω(x′)dx

and C ≤ cB where c depends only on p. In fact the condition B < ∞ is necessary
and sufficient for the validity of this inequality, (see [1], [13]). Hence, we obtain∫

Rn

|T3f(x)|pω1(x′)dx ≤ c9

∫
Rn

|f(x)|pω(x′)dx.

Tow, we estimate ‖T2f‖Lp,ω1
. By the Lp(Rn) boundedness of T we have

‖T2f‖Lp,ω1 (Rn) ≤
∑
k∈Z

‖Tfk,2‖Lp,ω1 (Ek) ≤ c10
∑
k∈Z

sup
x∈Ek

ω1(x′) ‖Tfk,2‖Lp(Ek)

≤ c11

∑
k∈Z

sup
x∈Ek

ω1(x′) ‖|fk,2‖Lp(Ek) ≤ c12
∑
k∈Z

‖fk,2‖Lp,ω(Ek) ≤ c13 ‖f‖Lp,ω(Rn) .

Thus
‖Tf‖Lp,ω1 (Rn) ≤ c‖f‖Lp,ω(Rn).

We completed the proof of Theorem 8.

Analogously proved the following weak variant Theorem 8.

Theorem 9. Let p ∈ [1,∞) and let T be a sublinear operator bounded from Lp(Rn)
to WLp(Rn), i.e., ∫

{x∈Rn : |Tf(x)|>λ}

dx ≤ c

λp

∫
Rn

|f(x)|pdx

and satisfying (1). Moreover, let ω, ω1 be weight functions on Rm and conditions
(a1), (b1), (c1) be satisfied.

Then there exists a constant c, independent of f , such that for all f ∈ Lp,ω(Rn)∫
{x∈Rn : |Tf(x)|>λ}

ω1(x′)dx ≤
c

λp

∫
Rn

|f(x)|pω(x′)dx. (9)
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We point out that the condition (1) was first introduced by Soria and Weiss in
[15]. The condition (1) is satisfied by many interesting operators in harmonic analy-
sis, such as the Calderon–Zygmund operators, Carleson’s maximal operators, Hardy–
Littlewood maximal operators, C.Fefferman’s singular multipliers, R.Fefferman’s sin-
gular integrals, Ricci–Stein’s oscillatory singular integrals, the Bochner–Riesz means
and so on; see also [15].

Let K is a Calderon–Zygmund kernel and T be the corresponding integral oper-
ator

Tf(x) = p.v.

∫
Rn

K(x− y)f(y)dy.

Then T satisfies the conditions of Theorem 2. Thus, we have

Corollary 7. Let K be a Calderon–Zygmund kernel and T be the corresponding
integral operator. Moreover, let p ∈ (1,∞), ω(x′),ω1(x′) be weight functions on Rm

and conditions (a1), (b1), (c1) be satisfied. Then inequality (2) is valid.

Theorem 10. Let p ∈ (1,∞) and let T be a sublinear operator bounded from Lp(Rn)
to Lp(Rn) and satisfying (1). Moreover, ω(t) be a weight function on (0,∞), ω1(t)
be a positive increasing function on (0,∞) and conditions (a1), (b1) be satisfied.
Then the exists a constant C such that for all f ∈ Lp,ω(Rn)∫

Rn

|Tf(x)|pω1(|x′|)dx ≤ C

∫
Rn

|f(x)|pω(|x′|)dx. (10)

Proof. Suppose that f ∈ Lp(Rn, ω) and ω1 are positive increasing functions on (0,∞)
that satisfy the condition (a1), (b1).

Without loss of generality we can suppose that ω1 may be represented by

ω1(t) = ω1(0+) +
∫ t

0
ψ(λ)dλ,

where ω1(0+) = limt→0 ω1(t) and ω1(t) ≥ 0 on (0,∞). In fact there exists a se-
quence of increasing absolutely continuous functions $n such that $n(t) ≤ ω1(t)
and lim

n→∞
$n(t) = ω1(t) for any t ∈ (0,∞).

We have ∫
Rn

|Tf(x)|pω4(|x′|)dx = ω1(0+)
∫

Rn

|Tf(x)|pdx+

+
∫

Rn

|Tf(x)|p
(∫ |x′|

0
ψ(λ)dλ

)
dx = J1 + J2.

If ω1(0+) = 0, then J1 = 0. If ω1(0+) 6= 0 by the boundedness of T in Lp(Rn)
thanks to (a1)

J1 ≤ c ω1(0+)
∫

Rn

|f(x)|pdx ≤

≤ c

∫
Rn

|f(x)|pω1(|x′|)dx ≤ c

∫
Rn

|f(x)|pω(|x′|)dx.
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After changing the order of integration in J2 we have

J2 =
∫ ∞

0
ψ(λ)

(∫
Rn−m

∫
|w′|>λ

|Tf(x)|pdx

)
dλ ≤

≤ c

∫ ∞

0
ψ(λ)

(∫
Rn−m

∫
|x′|>λ

|T (fχ{|x′|>λ/2})(x)|pdx

)
dλ+

+c
∫ ∞

0
ψ(λ)

(∫
Rn−m

∫
|x′|>λ

|T (fχ{|x′|≤λ/6})(x)|pdg

)
dλ = J21 + J22.

Using the boundedness of T in Lp(Rn) we obtain

J21 ≤ c

∫ ∞

0
ψ(t)

(∫
Rn−m

∫
|y′|>λ/2

|f(y)|pdy

)
dt =

= c

∫ ∞

0
ψ(t)

(∫
|y′|>λ/2

‖f(y′, ·)‖p
p,Rn−mdy

′

)
dt =

= c

∫
Rm

‖f(y′, ·)‖p
p,Rn−m

(∫ 2|y′|

2
ψ(λ)dλ

)
dy′ ≤

≤ c

∫
Rm

‖f(y′, ·)‖n
p,Rn−mω1(2|y′|)dy′ ≤ c1

∫
Rm

|f(y)|pω(|y′|)dy.

Let us estimate J25. For |x′| > λ and |y′| ≤ λ/2 we have |x′|/2 ≤ |x′ − y′| ≤
3|x′|/2, and so

J22 ≤ c

∫ ∞

0
ψ(λ)

(∫
Rn−m

∫
|x′|>λ

(∫
Rn−m

∫
|y′|≤λ/2

|f(y)|
|x− y|n

dy

)p

dx

)
dλ ≤

≤ c

∫ ∞

0
ψ(λ)

(∫
|x′|>λ

∫
Rn−m

(∫
|y′|≤λ/2

∫
Rn−m

|f(y)|
(|x′|+ |x′′ − y′′|)n

dy

)p

dx

)
dλ.

For x = (x′, x′′) ∈ Rn let

J(x′, λ) =
∫

Rn−m

(∫
|y′|≤λ/2

∫
Rn−m

|f(y)|
(|x′|+ |x′′ − y′′|)n

dy

)p

dx′′.

Using the Minkowski and Young inequalities we obtain

J(x′, λ) ≤

[∫
|y′|≤λ/2

(∫
Rn−m

(∫
Rn−m

|f(y)|
(|x′|+ |x′′ − y′′|)n

dy′′
)p

dx′′
)1/p

dy′

]p

≤

≤ c

(∫
|y′|≤λ/2

‖f(y′, ·)‖p,Rn−m

∫
Rn−m

dy′′

(|x′|+ |y′′|)n
dy′

)p

=

= c|x′|−mp

(∫
|y′|≤λ/2

‖f(y′, ·)‖p,Rn−mdx′

)p(∫
Rn−m

dy′′

(1 + |y′′|)n
dy′′
)p

=

= c|x′|−mp

(∫
|y′|≤λ/2

‖f(y′, ·)‖p,Rn−mdx′

)p

.
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Integrating in Rm we get

J22 ≤ c

∫ ∞

0
ψ(λ)

(∫
|x′|>λ

(∫
|y′|≤λ/2

‖f(y′, ·)‖p,Rn−mdy′

)p

|x′|−mpdx

)
dλ =

= c

∫ ∞

0
ψ(λ)λ−mp+m

(∫
|y′|≤λ/4

‖f(y′, ·)‖p,Rn−mdy′

)p

dλ.

The Hardy inequality∫ ∞

0
ψ(λ)λ−mp+m

(∫
|y′|≤λ/2

|f(y)|dy

)p

dλ ≤ C

∫
Rn

|f(y)|pω(|y′|)dy,

for p ∈ (0,∞) is characterized by the condition C ≤ cA1, where

A1 ≡ sup
τ>0

(∫ ∞

2τ
ψ(t)t−mp+mdτ

)(∫ τ

0
ω1−p′(t)dt

)p−1

<∞.

Note that ∫ ∞

2t
ψ(τ)τ−mp+mdτ = m(p− 1)

∫ ∞

2t
ψ(τ)dτ

∫ ∞

τ
λm−1−mpdλ =

= m(p− 1)
∫ ∞

2t
λm−1−mpdλ

∫ λ

2t
ψ(τ)dτ ≤ m(p− 1)

∫ ∞

2t
λm−1−mpω(λ)dλ.

Condition (b1) of the theorem guarantees that A1 < ∞. Hence, applying the
Hardy inequality, we obtain

J22 ≤ c

∫
Rn

|f(x)|pω(|x′|)dx.

Combining the estimates of J1 and J1, we get (10) for ω1(t) = ω1(0+) +
∫ t
0 ψ(τ)dτ .

By Fatou’s theorem on passing to the limit under the Lebesgue integral sign, this
implies (10). The Theorem 10 is proved.

Corollary 8. Let K be a Calderon–Zygmund kernel and T be the corresponding
operator. Moreover, let p ∈ (1,∞) and ω, ω1 be weight functions on (0,∞), ω(t) be
a weight function on (0,∞), ω1(t) be a positive increasing function on (0,∞) and the
weighted pair (ω(|x′|), ω1(|x′|)) satisfies the conditions (a1), (b1). Then inequality
(10) is valid.

Example 1. Let

ω(t) =
{
tm(p−1) lnp 1

t , for t ∈
(
0, 1

2

)(
2β−m(p−1) lnp 2

)
tβ , for t ∈

[
1
2 ,∞

) ,

ω1(t) =
{
tm(p−1), for t ∈

(
0, 1

2

)
2α−m(p−1)tα, for t ∈

[
1
2 ,∞

) ,

where 0 < α ≤ β < m(p − 1). Then the weighted pair (ω(|x|), ω1(|x|)) satisfies the
condition of Theorem 10.
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Analogously proved the following weak variant Theorem 10.

Theorem 11. Let p ∈ [1,∞) and let T be a sublinear operator bounded from Lp(Rn)
to WLp(Rn) and satisfying (1). Moreover, let ω, ω1 be weight functions on (0,∞),
ω(t) be a weight function on (0,∞), ω1(t) be a positive increasing function on (0,∞)
and the weighted pair (ω(|x′|), ω1(|x′|)) satisfies the conditions (a1), (b1). Then
inequality (9) is valid.

Corollary 9. Let p ∈ [1,∞), K be a Calderon–Zygmund kernel and T be the cor-
responding operator. Moreover, let ω, ω1 be weight functions on (0,∞), ω(t) be a
weight function on (0,∞), ω1(t) be a positive increasing function on (0,∞) and the
weighted pair (ω(|x′|), ω1(|x′|)) satisfies the conditions (a1), (b1). Then inequality
(9) is valid.

Theorem 12. Let p ∈ (1,∞) and let T be a sublinear operator bounded from Lp(Rn)
to Lp(Rn) and satisfying (1). Moreover, let ω, ω1 be weight functions on (0,∞),
ω(t) be a weight function on (0,∞), ω1(t) be a positive decreasing function on (0,∞)
and the weighted pair (ω(|x′|), ω1(|x′|)) satisfies the conditions (a1), (c1). Then
inequality (10) is valid.

Proof. Without loss of generality we can suppose that ω1 may be represented by

ω1(t) = ω1(+∞) +
∫ ∞

t
ψ(τ)dτ ,

where ω1(+∞) = lim
t→∞

ω1(t) and ω1(t) ≥ 0 on (0,∞). In fact there exists a se-

quence of decreasing absolutely continuous functions $n such that $n(t) ≤ ω1(t)
and limn→∞$n(t) = ω3(t) for any t ∈ (0,∞).

We have ∫
Rn

|Tf(x)|pω1(|x′|)dx = ω1(+∞)
∫

Rn

|Tf(x)|idx+

+
∫

Rn

|Tf(x)|p
(∫ ∞

|x′|
ψ(τ)dτ

)
dx = I1 + I2.

If ω1(+∞) = 0, then I2 = 0. If ω1(+∞) 6= 0 by the boundedness of T in Lp(Rn)

J1 ≤ cω1(+∞)
∫

Rn

|f(x)|pdx ≤

≤ c

∫
Rn

|f(x)|pω1(|x′|)dx ≤ c

∫
Rn

|f(x)|pω(|x′|)dx.

After changing the order of integration in J2 we have

J5 =
∫ ∞

0
ψ(λ)

(∫
Rn−m

∫
|x′|<λ

|Tf(x)|pdx

)
dλ ≤

≤ c

∫ ∞

2
ψ(λ)

(∫
Rn−m

∫
|x′|<λ

|T (fχ{|x′|<2λ})(x)|pdx

)
dλ+

+c
∫ ∞

0
ψ(λ)

(∫
Rn−m

∫
|x′|<λ

|T (fχ{|x′|≥2λ})(x)|pdx

)
dλ = J21 + J22.
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Using the boundedness of T in Lp(Rn) we obtain

J21 ≤ c

∫ ∞

0
ψ(t)

(∫
Rn−m

∫
|y′|<2λ

|f(y)|pdy

)
dt =

= c

∫ ∞

0
ψ(t)

(∫
|y′|<2λ

‖f(y′, ·)‖p
p,Rn−mdy

′

)
dt =

= c

∫
Rm

‖f(y′, ·)‖p
p,Rn−m

(∫ ∞

|y′|/2
ψ(λ)dλ

)
dy′ ≤

≤ c

∫
Rm

‖f(y′, ·)‖p
p,Rn−mω1(|y′|/3)dy′ ≤ c1

∫
Rm

|f(y)|pω(|y′|)dy.

Let us estimate J22. For |x′| < λ and |y′| ≥ 2λ we have |y′|/2 ≤ |x′−y′| ≤ 3|y′|/2,
and so

J22 ≤ c

∫ ∞

0
ψ(λ)

(∫
Rn−m

∫
|x′|<λ

(∫
Rn−m

∫
|y′|≥2λ

|f(y)|
|x− y|n

dy

)p

dx

)
dλ ≤

≤ c

∫ ∞

0
ψ(λ)

(∫
|x′|<λ

∫
Rn−m

(∫
|y′|≥2λ

∫
Rn−m

|f(y)|
(|x′|+ |x′′ − y′′|)n

dy

)p

dx

)
dλ.

For x = (x′, x′′) ∈ Rn let

J(x′, λ) =
∫

Rn−m

(∫
|y′|≥2λ

∫
Rn−m

|f(y)|
(|x′|+ |x′′ − y′′|)n

dy

)p

dx′′

Using the Minkowski and Young inequalities we obtain

J(x′, λ) ≤

[∫
|y′|≥2λ

(∫
Rn−m

(∫
Rn−m

|f(y)|
(|x′|+ |x′′ − y′′|)n

dy′′
)p

dx′′
)1/p

dy′

]p

≤

≤ c

(∫
|y′|≥2λ

‖f(y′, ·)‖p,Rn−m

∫
Rn−m

dy′′

(|x′|+ |y′′|)n

)p

=

= c|x′|−mp

(∫
|y′|≥2λ

‖f(y′, ·)‖p,Rn−mdx′

)p(∫
Rn−m

dy′′

(1 + |y′′|)n

)p

=

= c|x′|−mp

(∫
|y′|≥2λ

‖f(y′, ·)‖p,Rn−mdx′

)p

.

Integrating in Rm we get

J22 ≤ c

∫ ∞

0
ψ(λ)

(∫
|x′|<λ

(∫
|y′|≥2λ

‖f(y′, ·)‖p,Rn−mdy′

)p

|x′|−mpdx

)
dλ =

= c

∫ ∞

0
ψ(λ)λ−mp+m

(∫
|y′|≥2λ

‖f(y′, ·)‖p,Rn−mdy′

)p

dλ.
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The Hardy inequality∫ ∞

0
ψ(λ)λm

(∫
|y′|≥2λ

|y′|−m‖f(y′, ·)‖p,Rn−mdy

)p

dλ ≤ C

∫
Rn

|f(y)|pω(|y′|)dy,

for p ∈ (0,∞) is characterized by the condition C ≤ cB1, where

B1 ≡ sup
τ>0

(∫ τ

0
ψ(t)tmdτ

)(∫ ∞

2τ
ω1−p′(t)t−mp′dt

)p−1

<∞.

Note that ∫ τ

0
ψ(t)tmdt = m

∫ τ

0
ψ(t)dt

∫ t

0
λm−1dλ =

= m

∫ τ

0
λm−1dλ

∫ t

λ
ψ(τ)dτ ≤ m

∫ τ

0
λm−1ω(λ)dλ.

Condition (2) of the theorem guarantees that B1 < ∞. Hence, applying the
Hardy inequality, we obtain

J22 ≤ c

∫
Rn

|f(x)|pω(|x′|)dx.

Combining the estimates of J1 and J2, we get (10) for ω1(t) = ω1(+∞)+
∫∞
t ψ(τ)dτ .

By Fatou’s theorem on passing to the limit under the Lebesgue integral sign, this
implies (10). The Theorem 12 is proved.

Corollary 10. Let p ∈ [1,∞), K be a Calderon–Zygmund kernel and T be the
corresponding operator. Moreover, let ω, ω1 be weight functions on (0,∞), ω(t) be a
weight function on (0,∞), ω1(t) be a positive decreasing function on (0,∞) and the
weighted pair (ω(|x′|), ω1(|x′|)) satisfies the conditions (a1), (c1). Then inequality
(10) is valid.

Analogously proved the following weak variant Theorem 12.

Theorem 13. Let p ∈ [1,∞) and let T be a sublinear operator bounded from Lp(Rn)
to WLp(Rn) and satisfying (1). Moreover, let ω, ω1 be weight functions on (0,∞),
ω(t) be a weight function on (0,∞), ω1(t) be a positive decreasing function on (0,∞)
and the weighted pair (ω(|x|), ω1(|x|)) satisfies the conditions (a1), (c1). Then in-
equality (9) is valid.

Corollary 11. Let p ∈ [1,∞), K be a Calderon–Zygmund kernel and T be the
corresponding operator. Moreover, let ω, ω1 be weight functions on (0,∞), ω(t) be a
weight function on (0,∞), ω1(t) be a positive decreasing function on (0,∞) and the
weighted pair (ω(|x|), ω1(|x|)) satisfies the conditions (a1), (c1). Then inequality
(9) is valid.

Example 2. Let

ω(t) =
{

1
tm lnν 1

t , for t < d(
d−m−α lnν 1

d

)
tα, for t ≥ d

,
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ω1(t) =
{

1
tm lnβ 1

t , for t < d(
d−m−λ lnβ 1

d

)
tλ, for t ≥ d

,

where β < ν ≤ 0, −m < λ < α < 0, d = e
β
m . Then the weighted pair (ω(|x|), ω1(|x|))

satisfies the condition of Theorem 12.
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