Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12323/7509
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAllahverdiev, B. P.-
dc.contributor.authorTuna, H.-
dc.date.accessioned2024-04-25T08:12:36Z-
dc.date.available2024-04-25T08:12:36Z-
dc.date.issued2024-
dc.identifier.issn1683-3414 (Print)-
dc.identifier.issn1814-0807 (Online)-
dc.identifier.urihttp://hdl.handle.net/20.500.12323/7509-
dc.description.abstractIn this article, using a new calculus defined on fractal subsets of the set of real numbers, a Sturm-Lioville type problem is discussed, namely the fractal Sturm-Liouville problem. The existence and uniqueness theorem has been proved for such equations. In this context, the historical development of the subject is discussed in the introduction. In Section 2, the basic concepts of Fα -calculus defined on fractal subsets of real numbers are given, i.e., Fα -continuity, Fα -derivative and fractal integral definitions are given and some theorems to be used in the article are given. In Section 3, the existence and uniqueness of the solutions for the fractal Sturm-Liouville problem are obtained by using the successive approximations method. Thus, the well-known existence and uniqueness problem for Sturm-Liouville equations in ordinary calculus is handled on the fractal calculus axis, and the existing results are generalized.en_US
dc.language.isoenen_US
dc.publisherB. P. Allahverdiev1 and H. Tunaen_US
dc.relation.ispartofseriesVol. 26;№ 1-
dc.subjectfractal Sturm-Liouville problemsen_US
dc.subjectexistence problemsen_US
dc.titleExistence Theorem for a Fractal Sturm-Liouville Problemen_US
dc.typeArticleen_US
Appears in Collections:Publications

Files in This Item:
File Description SizeFormat 
Existence Theorem for a Fractal Sturm-Liouville Problem.pdf202.06 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.