Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12323/7407
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAllahverdiev, Bilender P.-
dc.contributor.authorTuna, Hüseyin-
dc.contributor.authorYalçınkaya, Yüksel-
dc.date.accessioned2024-03-27T07:58:48Z-
dc.date.available2024-03-27T07:58:48Z-
dc.date.issued2023-
dc.identifier.issn2676-7260-
dc.identifier.urihttp://hdl.handle.net/20.500.12323/7407-
dc.description.abstractIn this article, we study a conformable fractional heat conduction equation. Applying the method of separation variables to this problem, we get a conformable fractional Sturm–Liouville eigenvalue problem. Later, we prove the existence of a countably infinite set of eigenvalues and eigenfunctions. Finally, we establish uniformly convergent expansions in the eigenfunctions.en_US
dc.language.isoenen_US
dc.publisherCaspian Journal of Mathematical Sciences (CJMS)en_US
dc.relation.ispartofseriesVol. 12;№ 2-
dc.subjectConformable Fractional Sturm-Liouville operatoren_US
dc.subjecteigenfunction expansionen_US
dc.subjectGreen’s functionen_US
dc.subjectcompletely continuous operatoren_US
dc.titleOn the solution of conformable fractional heat conduction equationen_US
dc.typeArticleen_US
Appears in Collections:Publications

Files in This Item:
File Description SizeFormat 
On the solution of conformable fractional heat conduction equation.pdf124.72 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.