Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12323/4668
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMusaev, Hummet K.-
dc.contributor.authorShakhmurov, Veli B.-
dc.date.accessioned2020-08-09T08:29:18Z-
dc.date.available2020-08-09T08:29:18Z-
dc.date.issued2016-
dc.identifier.citationBoundary Value Problemsen_US
dc.identifier.urihttp://hdl.handle.net/20.500.12323/4668-
dc.description.abstractThe coercive properties of degenerate abstract convolution-elliptic equations are investigated. Here we find sufficient conditions that guarantee the separability of these problems in Lp spaces. It is established that the corresponding convolution-elliptic operator is positive and is also a generator of an analytic semigroup. Finally, these results are applied to obtain the maximal regularity properties of the Cauchy problem for a degenerate abstract parabolic equation in mixed Lp norms, boundary value problems for degenerate integro-differential equations, and infinite systems of degenerate elliptic integro-differential equations.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesVol. 2016;Issue 1-
dc.subjectpositive operatorsen_US
dc.subjectabstract weighted spacesen_US
dc.subjectoperator-valued multipliersen_US
dc.subjectboundary value problemsen_US
dc.subjectconvolution equationsen_US
dc.subjectintegro-differential equationsen_US
dc.titleRegularity properties of degenerate convolution-elliptic equationsen_US
dc.typeArticleen_US
Appears in Collections:Publication

Files in This Item:
File Description SizeFormat 
Regularity properties of degenerate convolution-elliptic equations.pdf1.57 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.