Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12323/4657
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGoktas, Sertac-
dc.contributor.authorKerimov, Nazim B.-
dc.contributor.authorMaris, Emir A.-
dc.date.accessioned2020-08-09T07:14:11Z-
dc.date.available2020-08-09T07:14:11Z-
dc.date.issued2017-
dc.identifier.citationJournal of the Korean Mathematical Societyen_US
dc.identifier.issn0304-9914 (pISSN)-
dc.identifier.issn2234-3008 (eISSN)-
dc.identifier.urihttp://hdl.handle.net/20.500.12323/4657-
dc.description.abstractThe spectral problem −y ′′ + q(x)y = λy, 0 < x < 1, y(0) cos β = y ′ (0) sin β, 0 ≤ β < π; y ′ (1) y(1) = h(λ), is considered, where λ is a spectral parameter, q(x) is real-valued continuous function on [0, 1] and h(λ) = aλ + b − XN k=1 bk λ − ck , with the real coefficients and a ≥ 0, bk > 0, c1 < c2 < · · · < cN , N ≥ 0. The sharpened asymptotic formulae for eigenvalues and eigenfunctions of above-mentioned spectral problem are obtained and the uniform convergence of the spectral expansions of the continuous functions in terms of eigenfunctions are presented.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesVol. 54;Issue 4-
dc.titleOn The Uniform Convergence Of Spectral Expansions For A Spectral Problem With A Boundary Condition Rationally Depending On The Eigenparameteren_US
dc.typeArticleen_US
Appears in Collections:Publications



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.