Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12323/4650
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKerimov, Nazim B.-
dc.contributor.authorKaya, Ufuk-
dc.date.accessioned2020-07-21T08:00:28Z-
dc.date.available2020-07-21T08:00:28Z-
dc.date.issued2013-
dc.identifier.citationCentral European Journal of Mathematicsen_US
dc.identifier.urihttp://hdl.handle.net/20.500.12323/4650-
dc.description.abstractIn this paper we consider the problem y ıv + p2(x)y 00 + p1(x)y 0 + p0(x)y = λy, 0 < x < 1, y (s) (1) − (−1)σy (s) (0) +Xs−1 l=0 αs,ly (l) (0) = 0, s = 1, 2, 3, y(1) − (−1)σy(0) = 0, where λ is a spectral parameter; pj(x) ∈ L1(0, 1), j = 0, 1, 2, are complex-valued functions; αs,l, s = 1, 2, 3, l = 0, s − 1, are arbitrary complex constants; and σ = 0, 1. The boundary conditions of this problem are regular, but not strongly regular. Asymptotic formulae for eigenvalues and eigenfunctions of the considered boundary value problem are established in the case α3,2 + α1,0 =6 α2,1. It is proved that the system of root functions of this spectral problem forms a basis in the space Lp(0, 1), 1 < p < ∞, when α3,2 +α1,0 6= α2,1, pj(x) ∈ W j 1 (0, 1), j = 1, 2, and p0(x) ∈ L1(0, 1); moreover, this basis is unconditional for p = 2.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesVol. 11;№ 1-
dc.subjectFourth order eigenvalue problemen_US
dc.subjectNot strongly regular boundary conditionsen_US
dc.subjectAsymptotic behavior of eigenvalues and eigenfunctionsen_US
dc.subjectBasis properties of the system of root functionsen_US
dc.titleSpectral properties of some regular boundary value problems for fourth order differential operatorsen_US
dc.typeArticleen_US
Appears in Collections:Publications



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.