Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12323/4647
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKerimov, N. B.-
dc.contributor.authorAliyev, Y. N.-
dc.date.accessioned2020-07-21T07:41:44Z-
dc.date.available2020-07-21T07:41:44Z-
dc.date.issued2006-
dc.identifier.citationStudia Mathen_US
dc.identifier.urihttp://hdl.handle.net/20.500.12323/4647-
dc.description.abstractWe consider a Sturm–Liouville operator with boundary conditions rationally dependent on the eigenparameter. We study the basis property in Lp of the system of eigenfunctions corresponding to this operator. We determine the explicit form of the biorthogonal system. Using this we establish a theorem on the minimality of the part of the system of eigenfunctions. For the basisness in L2 we prove that the system of eigenfunctions is quadratically close to trigonometric systems. For the basisness in Lp we use F. Riesz’s theorem.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesVol. 174;№ 2-
dc.titleThe basis property in Lp of the boundary value problem rationally dependent on the eigenparameteren_US
dc.typeArticleen_US
Appears in Collections:Publication



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.