Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12323/4645
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAliyev, Yakub N.-
dc.contributor.authorKerimov, Nazim B.-
dc.date.accessioned2020-07-21T07:33:34Z-
dc.date.available2020-07-21T07:33:34Z-
dc.date.issued2008-
dc.identifier.citationArabian Journal for Science and Engineeringen_US
dc.identifier.urihttp://hdl.handle.net/20.500.12323/4645-
dc.description.abstractWe study basisness of root functions of Sturm–Liouville problems with a boundary condition depending quadratically on the spectral parameter. We determine the explicit form of the biorthogonal system. Using this we prove that the system of root functions, with arbitrary two functions removed, form a minimal system in L2, except some cases where this system is neither complete nor minimal. For the basisness in L2 we prove that the part of the root space is quadratically close to systems of sines and cosines. We also consider these basis properties in the context of general Lp.en_US
dc.language.isoenen_US
dc.publisherKing Fahd University of Petroleum and Mineralsen_US
dc.relation.ispartofseriesvol. 33;№ 1-
dc.subjectSturm–Liouvilleen_US
dc.subjecteigenparameter-dependent boundary conditionsen_US
dc.subjectbasisen_US
dc.subjectminimal systemen_US
dc.subjectcompletenessen_US
dc.subjectquadratically close systemsen_US
dc.titleThe Basis Property Of Sturm–Liouville Problems With Boundary Conditions Depending Quadratically On The Eigenparameteren_US
dc.typeArticleen_US
Appears in Collections:Publication



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.