Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12323/4605
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBilalov, B. T.-
dc.contributor.authorGarayev, T. Z.-
dc.date.accessioned2020-07-14T08:40:48Z-
dc.date.available2020-07-14T08:40:48Z-
dc.date.issued2012-
dc.identifier.citationAmerican Journal of Mathematics and Statisticsen_US
dc.identifier.issn2162-948X-
dc.identifier.issn2162-8475-
dc.identifier.urihttp://hdl.handle.net/20.500.12323/4605-
dc.description.abstractSome approximative issues related to function systems in Lebesgue spaces are treated in this work, such as the continuation of basis, the non-minimality of basis in subinterval, the relationship between completeness and minimality of sine and cosine type systems. It is proved that the basis properties of sines and cosines type systems in Lebesgue space of functions depend on the number of exponential summands in expressions of these systems.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesVol. 2;№ 6-
dc.subjectCompletenessen_US
dc.subjectMinimalityen_US
dc.subjectLebesgue Spaceen_US
dc.titleOn Basis Properties of Function Systems in Lebesgue Spacesen_US
dc.typeArticleen_US
Appears in Collections:Publication

Files in This Item:
File Description SizeFormat 
On Basis Properties of Function Systems in Lebesgue.pdf325.46 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.