Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12323/2466
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAzakov, S.-
dc.contributor.authorJoos, H.-
dc.contributor.authorWipf, A.-
dc.date.accessioned2013-04-23T04:59:01Z-
dc.date.available2013-04-23T04:59:01Z-
dc.date.issued2011-05-
dc.identifier.citation14en
dc.identifier.urihttp://hdl.handle.net/20.500.12323/2466-
dc.description.abstractThe Witten-Veneziano relation between the topological susceptibility of pure gauge theories without fermions and the main contribution of the complete theory and the corresponding formula of Seiler and Stamatescu with the so-called contact term are discussed for the Schwinger model on a circle. Using the (Euclidean) path integral and the canonical (Hamiltonian) approaches at finite temperatures we demonstrate that both formulae give the same result in the limit of infinite volume and (or) zero temperature.en
dc.titleWitten-Veneziano Relation for the Schwinger Modelen
dc.typeArticleen
Appears in Collections:Personal archive of DS Siyavush Azakov

Files in This Item:
File Description SizeFormat 
wittenveneziano relations.pdf100.21 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.