
 
 

 
 

KHAZAR UNIVERSITY 

 

 

 

School: Graduate School of Science, Art and Technology 

Department: Petroleum Engineering 

Specialty: Development of Oil and Gas Fields 

 

 

 

 

 

 

MASTER’S THESIS  

 

MACHINE LEARNING-BASED RESERVOIR PERFORMANCE 

MODELLING AND OPTIMIZATION FOR IMPROVED PRODUCTION 

FORECASTING AND DECISION-MAKING 

 

 

 

 

 

 

Student: _____________     Khalid Orujov Nasraddin 

Supervisor: _____________     Assoc. Prof. Dr. Grigorii Penkov 

 

 

 

BAKU – 2025 

 



 
 

 
 

XƏZƏR UNİVERSİTETİ 

 

 

 

Fakültə: Təbiət elmləri, Sənət və Texnologiya yüksək təhsil 

Departament: Neft-qaz Mühəndisliyi 

İxtisas: Neft və qaz yataqlarının işlənməsi 

 

 

 

 

 

 

MAGİSTR DİSSERTASİYA İŞİ 

 

TƏKMİLLƏŞDİRİLMİŞ İSTEHSALIN PROQNOZLAŞDIRILMASI VƏ 

QƏRARLARIN QƏBULU ÜÇÜN MAŞIN TƏLİMİNƏ ƏSASLANAN 

YATAQ PERFORMANSININ MODELLƏŞDİRİLMƏSİ VƏ 

OPTİMALLAŞDIRILMASI 

 

 

 

 

 

İddiaçı: _____________     Xalid Orucov Nəsrəddin oğlu 

Elmi Rəhbər: _____________     Dosent Dr. Grigorii Penkov 

 

 

 

 

BAKI – 2025



 
 

3 
 

 

TABLE OF CONTENTS 

INTRODUCTION ........................................................................................................................................ 5 

CHAPTER I. LITERATURE REVIEW .................................................................................................... 8 

1.1. IMPACT OF DIGITALIZATION IN FORECASTING PRODUCTION AND ANALYSIS OF 

PROJECT DECISIONS .............................................................................................................. 9 

1.1.1. Level 0 ....................................................................................................................... 10 

1.1.2. Level 1 ....................................................................................................................... 11 

1.1.3. Level 2 ....................................................................................................................... 11 

1.1.4. Level 3 ....................................................................................................................... 13 

1.1.5. Level 4 ....................................................................................................................... 15 

1.1.6. Level 5 ....................................................................................................................... 19 

1.2. REVIEW OF INDIVIDUAL STUDIES. ......................................................................... 21 

1.2.1. Machine Learning for Performance Analysis in Carbonate Reservoirs ............................ 22 

1.2.2. Bayesian Deep Decline Curve Analysis (BDDCA) for Production Forecasting ................ 23 

1.2.3. Autoregressive and Ensemble ML Models for Forecasting Midland Basin in ................... 25 

1.2.4. Machine Learning versus Type Curves in the Appalachian Basin ................................... 26 

1.2.5. A Machine Learning and Data Analytics Approach for History Matching in a Mature 

Multilayered Field ................................................................................................................ 28 

1.2.6. Machine Learning Prediction versus Decline Curve Prediction in the Niger Delta ............ 30 

1.2.7. Data Conditioning and Machine Learning Forecasting on a North Sea Well Pad .............. 31 

1.2.8. Enhanced Asset Optimization Using ML, Type Wells, and RTA in the Marcellus ............ 33 

1.2.9. Implications for decision-making and research gaps ...................................................... 34 

1.3. OIL PRODUCTION PREDICTION USING TIME SERIES FORECASTING AND MACHINE 

LEARNING TECHNIQUES ..................................................................................................... 37 

1.3.1. Workflow ................................................................................................................ 40 



 
 

4 
 

1.3.2. Data cleaning and preprocessing ................................................................................. 40 

1.3.3. ARIMA forecasting model ........................................................................................ 45 

1.3.4. Prophet Forecasting Model ........................................................................................ 45 

1.3.5. XGBoost Statistical Model ........................................................................................ 46 

1.3.6. The CatBoost model ................................................................................................. 47 

1.3.7. Ensemble Random Forest Model ................................................................................ 47 

1.3.8. Forecasting Performance measures ............................................................................. 48 

1.3.9. Machine Learning Based Prediction ............................................................................ 48 

1.3.10. Stacking .............................................................................................................. 52 

1.3.11. Model Comparison ............................................................................................... 52 

CHAPTER II. METHODOLOGY ........................................................................................................... 54 

2.1. Data collection and analysis ................................................................................................ 54 

2.2. ARIMA Model .................................................................................................................. 55 

2.3. Holt Winters ...................................................................................................................... 56 

2.4. LSTM Model..................................................................................................................... 57 

2.5. XGBoost model ................................................................................................................. 58 

2.6. Error analysis .................................................................................................................... 59 

2.7. Output Generation .............................................................................................................. 60 

2.8. Visualization ..................................................................................................................... 60 

RESULTS ................................................................................................................................................... 61 

CONCLUSION ........................................................................................................................................... 72 

REFERENCES ........................................................................................................................................... 74 

 

 

 

 



 
 

5 
 

INTRODUCTION 

Actuality is that the oil and gas industry has been impacted by digitalization and artificial 

intelligence. Examples of the applications of these technologies include well drilling, predictive 

maintenance execution, and the establishment of digital fields. For several decades, numerical 

reservoir models and "digital twins" have been employed to estimate hydrocarbon production 

volumes. Conversely, recent advancements in computational power and artificial intelligence have 

enabled oil and gas companies to create "digital twins" of reservoirs, which are model ensembles 

that encompass the uncertainty range in static data (including petrophysics and geological 

structure), dynamic data (such as oil or gas properties), and economic factors (such as capital and 

operating expenditures). The application of machine learning and artificial intelligence enhances 

hydrocarbon production predictions under uncertainty. This is achieved by calibrating the model 

ensembles to the observed data. Estimating and predicting petroleum production is a significant 

difficulty for the upstream petroleum sector. The forecasting of production resources can assist 

engineers in multiple ways, including the analysis of production impacts, the preparation of 

schedules, the allocation of resources, and the formulation of project decisions. Nonetheless, the 

intricacies of data, coupled with restricted analytical insights, render the endeavor exceedingly 

formidable (Sagheer & Kotb, 2018). Modelling different scenarios may require an excessive 

amount of time, potentially leading to missed opportunities (Sagheer & Kotb, 2018). Hydrocarbon 

production forecasting includes estimating ultimate recoverable reserves and calculating oil 

production profiles, which are essential for business planning, asset appraisal, and decision-making 

in the oil and gas sector. Methods such as Decline Curve Analysis, Computer Simulations, Material 

Balance, Volumetric Calculations, and Pressure Transient Analysis have been utilized in various 

scenarios to accomplish production forecasting objectives. The advent of big data and 

advancements in computing technology have facilitated the creation of data-driven methodologies 

to address challenges in the oil and gas sector. 

The implementation of enhanced data management protocols has led to increased interest and 

utilization of machine learning models across multiple sectors, including oil and gas. Production 

forecasting is characterized by a time series examination of the well's output rate. This is regarded 

as a time-dependent issue. Time series forecasting entails anticipating future behaviours of systems. 

It relies on historical data and the present condition of the system (Sagheer, 2018). Statistical 
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approaches have been implemented to predict oil production rates from the wells. Techniques like 

ARIMA have been implemented to establish a balanced, precise, and dependable approach for 

forecasting petroleum output (Ediger, et al., 2006). The nonlinear characteristics of the production 

data and features necessitate the utilization of nonlinear time series models. Various neural network 

models have been examined to simulate the production behaviour of a reservoir due to its nonlinear 

dynamics. Machine learning techniques, including Recurrent Neural Networks (RNN), Long 

Short-Term Memory (LSTM), and Gated Recurrent Units (GRU), have been utilized for 

forecasting (Sagheer & Kotb, 2019; Alimohammadi & Rahmanifard, 2020). These studies have 

demonstrated the viability of deep neural networks. Traditional time-series forecasting techniques 

such as Autoregressive Moving Average (ARMA), Autoregressive Integrated Moving Average 

(ARIMA), and Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) 

have been effectively utilized for predicting petroleum production. They excel in predicting 

unconventional gas and oil reservoirs characterized by regular shifting patterns (Gupta et al., 2014; 

Morgan, 2018). Gupta et al. (2014) endeavoured to deploy neural networks (NN) to predict 

production rates in unconventional resources. The reduction in production is recorded during the 

neural networks training process and was utilized in the production data during the forecasting 

phase. These models were chosen because to their low data intensity and their capacity for 

automation, allowing application across multiple wells. In 2021, Al-Shabandar et al. utilized a deep 

gated recurrent neural network for forecasting petroleum production.    

 The proposed model featured a low-complexity design and the ability to monitor long-

interval time series datasets. Both numerical and categorical characteristics were utilized to predict 

oil output. Empirical testing demonstrated that Deep Gated Neural Networks might yield 

satisfactory results for a time series forecasting challenge. The results indicate that Deep Gated 

Neural Networks get superior computational efficiency regarding training duration. The proposed 

model demonstrated superior performance compared to existing common models.  

The purpose of the research is to apply the Machine Learning model to determine the production 

trend of the well based on different influencing parameters during this thesis.                                                           

This study presents the development of prediction models utilizing statistical approaches, tree-

based ensembles (XGBoost) and a deep learning algorithm, specifically LSTM, along with an 

evaluation and comparison of their applications and results. The efficacy of statistical approaches 

was assessed in comparison to tree-based ensemble ML model, XGBoost and the deep learning 

model derived from LSTM. 



 
 

7 
 

The objectives of the research are to determine the production trend of the reservoir and the 

changes through the life of the field will be a part of the evaluation of this thesis. During the 

study the following objectives are tried to be achieved: 

• The review of the different papers related to production forecasting techniques and Machine 

learning applications for forecasting well performance. 

• Preparing the methodology of the research for data collection and processing, applying ML 

for production forecasting. 

• Increasing the accuracy of the LSTM model for forecasting and comparing it with the real 

production data and trivial methods. 

• Applying XGBoost model for comparing the results obtained through LSTM model and 

selecting optimal model for reservoir management and decision-making. 
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CHAPTER I. LITERATURE REVIEW 

Machine Learning Techniques for Oil Well Production Forecasting 

Forecasting the production of oil well has always been a challenge because of the complexity of 

geological heterogeneity, nonlinearity in reservoir dynamics, and variety in conditions of the 

operations. Trivial methods like DCA (decline curve analysis) and numerical models for reservoirs 

simulation face with these issues and these complexities demand ML techniques which are able to 

model nonlinear correlations and handle big datasets. 

Modern studies have distributed that models of machine learning may vividly improvise the 

accuracy in forecasting through the integration of various types of data, such as production history, 

features of the geology, inputs of completion design, and variations of operations. 

It is a good illustration that one of ensemble-based ML models has been developed through the 

utilization of data of 80000 wells for unconventional reservoirs in Northern America, by integrating 

data related to geology, completion and production history for the forecast. This technique 

performed better in comparison to trivial techniques, specifically for the wells whose have 

production history no more than 1 year via the capture of the trends of the decline and modifications 

in the operations. The models of ensemble demonstrated robustness in prediction of not only short-

term, but also long-term profiles of production, highlighting the positives sides in the integration 

of multi-source data into the frameworks of ML. 

In a similar manner, the framework for the double-stage forecasting has been suggested that wells 

have been classified into low and high-yield selections on the basis of cumulative production, 

followed by the application of dedicated models of regression to each selection for enhancing the 

accuracy of the prediction. This technique addresses the essential variations amongst the wells 

formed due to the differences in geology and development strategy, which are the factors that are 

often overlooked in common models. 

Deep Learning Models 

The techniques of Deep Learning, specifically RNNs (recurrent neural networks) and their types 

like LSTM (long short-term memory) networks, have been popular in the forecast of oil production 

because of the ability of theirs for modelling temporal correlations of sequential data of production. 
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In one of the studies, which has applied Aramco’s dataset in the building deep learning and ML 

models, such as RNN, ANN, XGBoost, by succeeding the R2 scores of 0.98, 0.97 and 0.96, 

accordingly. These outputs show the models of deep learning may replicate the results of reservoir 

simulation closely, by lowering the time for the computation very drastically from hours, even days 

to several minutes. This makes these models heftily suitable for the rapid forecast of the production 

and making decisions. 

Another integrated model, which is the combination of deep learning and other techniques of ML, 

was built for improvising the efficiency and accuracy of the forecasting. Feature extraction and 

prediction of time-series were integrated into this model, by distributing superb results in the 

capture of the complexity of production dynamics. 

1.1. IMPACT OF DIGITALIZATION IN FORECASTING PRODUCTION AND 

ANALYSIS OF PROJECT DECISIONS  

Digitalization has shown its significant impact on production forecasting and making decisions 

(Clemens & Viechtbauer-Gruber, 2020) in the projects.      

According to Accenture (2017), forty percent of upstream oil and gas businesses are concerned that 

they may run out of competition in the digital race. The other side of the coin is that businesses that 

can successfully build advanced data analytics methodology and possess deep analytics expertise 

that is supported by a specialized talent strategy are outperforming their competitors (Bughin et al. 

2017, Bisson et al. 2018). Companies in the oil and gas industry have been impacted by 

digitalization in a variety of ways. The transition from corrective to predictive maintenance was 

accomplished with the help of big data analytics, and the utilization of data analytics has resulted 

in improvements to offshore operations. Additionally, digitalization is influencing drilling 

operations, seawater treatment, seismic interpretation, and subsea operations. The use of digital 

twins (Poddar 2018) in offshore developments and the implementation of digital oilfields (Salman 

et al. 2018) are two further topics. The oil and gas industry has also adopted computerized 

analytical methodologies in the process of forecasting the production of hydrocarbons (Shahkarami 

et al. 2014, Eltahan et al. 2019). According to Lucchesi (2019), the production of hydrocarbons has 

a significant influence on the economics of oil and gas projects. Several different approaches are 

utilized by oil and gas businesses to forecast the production of hydrocarbons. A Value of 

Information (Vol) analysis is carried out (Steineder et al. 2019) and field development options are 
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selected (Mantatzis et al. 2019) based on the hydrocarbon production forecast as well as other 

economic parameters such as the price of oil, capital expenditures (CAPEX), operating 

expenditures (OPEX), and the tax regime.       

 In the below figure, different levels for decision analysis and the forecast of production 

have been provided. Level 0 means no automation, while level 5 means full automation. 

 

Figure 1.1.1.   The levels of production forecasting & decision analysis 

1.1.1. Level 0 

The application of analytical solutions to the forecasting of hydrocarbon production gives this level 

its distinctive characteristics (Crawford 1960). The structure of oil and gas businesses was 

traditionally hierarchical (Tannenbaum et al. 1974) and discipline-oriented; hence, decision 

analysis was heavily dependent on the expertise of the teams engaged and management. 

The application of general physics and engineering concepts to reservoirs is typically the basis for 

making judgments regarding field development (Buckley and Craze 1943). It is important to 

consider the costs of various appraisal methods when determining how to develop fields. Because 

of the constraints imposed by the analytical solutions, the uncertainty that is associated with the 

various development possibilities is not taken into consideration quantitatively. 
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1.1.2. Level 1 

The investigation of many processes, such as in-situ combustion (Coats 1980), which are difficult 

to cover by analytical solutions, was carried out with the use of numerical models (Crookston et al. 

1979). It is via the incorporation of the outcomes of the numerical models that decisions are formed 

(Bennett 1981). The limited processing capacity that is available results in a significant 

simplification of geological data (Poston and Gross 1986). There is integration of several 

disciplines; nevertheless, the influence of uncertainty on decisions is not quantified within this 

framework. In certain instances, several geological scenarios are taken into consideration and 

examined to determine the impact that they have on the development options available (Khandwala 

et al. 1984). The scope of decision analysis is restricted, and it is distinct from other fields of study. 

There is a hierarchical structure within the organization, and the decisions that are made are heavily 

influenced by the level of expertise that the associated team and management possess. 

1.1.3. Level 2 

As the computing power of computers continues to improve, digital models are being utilized more 

frequently than they were in Level 1. The performance of GPUs and other specialized processors 

has surged significantly, with GPU performance apparently escalating by about 7,000 times since 

2003. This increase in power facilitates the implementation of intricate algorithms and extensive 

data processing, which are crucial for contemporary digital modeling methodologies. 

Consequently, activities that were once computationally prohibitive are now achievable, enabling 

the development and use of more advanced models.        

Based on the advances in processing power, integrated studies (Bastian et al. 1998) are utilized for 

assisted history matching (Grussaute & Gouel 1998) and enhanced workflows. An example of this 

may be seen in Figure 1.1.3.1 (Chiotoroiu et al. 2013). A comprehensive data analysis that is based 

on analytical solutions and data visualization is the first step in the workflow that is illustrated in 

Illustration 2. After that, a stage that involves a global history match is carried out, and feedback 

loops are utilized in the numerous subsurface disciplines. Once a "history match" with the global 

parameters (such as reservoir pressure and field oil production) has been accomplished to a 

satisfactory level, diagnostic diagrams are utilized to determine which wells are the most significant 

to match. Through the utilization of streamline modeling, it is possible to make "minimal invasive" 

adjustments to the reservoir parameter to produce local matches between the wells. The quality of 
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the history match can be evaluated spatially, and if the result is poor, modification of the geological 

model can be implemented if the evaluation is unsuccessful. 

 

 

Figure 1.1.3.1. Workflow of Level 2 

The ability to comprehend the physical and chemical processes involved in the feedback loops and 

data analysis are among the most important abilities that are required. The explanation behind this 

is that a significant number of parameters need to be handled and altered on a consistent basis. In 

addition, the ability to analyze data and use a computer is required to assist the discussion of many 

disciplines, as well as to consistently characterize and simulate the reservoir. The goal is to locate 

a model of the subsurface that is consistent and that corresponds to the data that has been measured. 

This is done with the intention of producing a "digital twin" of the subsurface. According to Poddar 

(2018), a digital twin is defined as "a virtual and simulated model of a physical asset that can be 

used for various purposes." When it comes to subsurface modelling, one of the instances of how a 

digital twin can be utilized is to investigate the impacts of varying operating conditions or drilling 

additional wells on the production of hydrocarbons. There are other sections of the oil and gas 

business that have effectively implemented digital twins, such as the simulation of surface physical 

and chemical processes or the simulation of plants (Nixon, and Pena 2019). According to Scheidt 
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et al. (2018), the utilization of a subsurface "digital twin" presents a variety of challenges. One of 

these challenges is that a plethora of alternative parameter combinations can lead to an acceptable 

"history match," but they also result in varied forecasts. Level 2 firms invest significant effort in 

creating a "digital twin" to showcase it in peer evaluations at stage-gate processes. The "digital 

twin" undergoes continuous updating as it is manipulated by the data collected over consecutive 

years.  (Ibrahimov 2015). Limited uncertainty assessment based on high-mid-low situations is a 

common characteristic of Level 2, which is typically defined by this. The economics department 

receives hydrocarbon production profiles from the subsurface teams so that they can do decision 

analysis on them respectively. The restricted number of simulations and subsequent economic 

evaluation of each of the production profiles are the foundations upon which decision analysis is 

built (Evens 2000). It is necessary to have feedback loops going to both the surface and subsurface 

teams after the economic evaluation has been completed. The decisions are made based on the 

limited information that is contained in high-mid-low cases and the examination of economics 

separately. Since this information is not included in high-mid-low scenarios, it is not possible to 

conduct a quantitative study of the impact that different factors have on the development of 

alternatives. When it comes to field development planning, decisions are made based on the 

experience of the technical team and management. The outcomes of numerical modelling are 

utilized as a source of guidance and to calculate deterministic high-mid-low Net Present Values 

(NPVs) for the various development alternatives. Expected Value in Terms of Money (EMV) is 

only estimated in certain circumstances by employing methods such as Swanson's mean, which are 

approximations of the NPV distributions (Hurst et al. 2000). Field development decisions are 

heavily influenced by the collective experience of the individuals participating (Malhotra et al. 

2004). This is because the approach has inherent flaws that make it difficult to implement. It is the 

goal of businesses to transition from rigid hierarchical structure to flatter hierarchies to progress 

from Level 1 production forecasting to Level 2 production forecasting. Flatter companies allow for 

more open lines of communication and collaboration, as well as enhanced involvement of teams in 

the decision-making process. As a result, they can make decisions more quickly since there are less 

layers of hierarchy. 

1.1.4. Level 3 

This stage involves the generation of ensembles of digital models, which are then utilized for the 

purpose of forecasting hydrocarbon output in the presence of uncertainty (Sieberer et al. 2019). 
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Figure 3 depicts an example of a workflow that fits this description. A geo-sensitive component is 

included in the workflow to capture static uncertainty, which encompasses a few different 

geological categories. Because of a dynamic reaction, the geological models are grouped together 

in a space that is multi-dimensional (Scheidt and Caers 2009). Different dynamic responses, such 

as tracers or flow pattern maps (Thiele and Baticky 2016), can be utilized to carry out the clustering 

process. 

 

Figure 1.1.4.1. Example of workflow which consists of geo-sensitivity section 

Since the clustering, a subset of the geological models that are representative of the geological 

uncertainty space is chosen. Additionally, the dynamic sensitivity portion of the workflow makes 

use of these models, which have been matched to their respective histories (Thiele and Batycky 

2016). The evaluation of the physical and chemical description of the processes, the 

characterization of the reservoir, and the integration with several disciplines are all essential skills. 

In addition, it is required to evaluate the parameter ranges, and it is necessary to possess data 

science abilities to make use of the data that is produced by the simulations (clustering, distance-

based generalized sensitivity analysis, evolutionary algorithms). The method of operation shifts 

from attempting to locate a calibrated "digital twin" of the subsurface, which is then utilized for 

forecasting, to gaining an awareness of the uncertainties and conditionalizing the models to the 
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data that has been observed. An alternative to the generation of a "digital twin" of the reservoir is 

the development of "digital siblings" that embrace the ambiguity that is present in the data. The 

term "digital siblings" refers to a collection of models that take specific measurements into 

consideration, such as pressures or manufacturing data. In contrast to "digital twins," "digital 

siblings" are not attempting to locate a precise digital representation of the subsurface; rather, they 

are attempting to evaluate the ambiguity while understanding that the challenge of matching the 

history is an ill-posed problem.  In Level 3 companies, decision making is frequently kept distinct 

from the forecasting of hydrocarbon production.  The production profiles are then given to the 

economics department so that they can analyse the number of different development choices.  

When it comes to improving resource allocation and increasing formal lateral communication, 

Level 3 organizations usually arrange their organizational structures in the form of matrix 

frameworks. The leadership of matrix organizations is comprised of both functional and project 

management, with the goal of ensuring that both technical and economic issues are addressed. 

According to Schnetler et al. (2015), some of the common issues that arise in such an organization 

include the need for a relatively large number of managers and the possibility of power disputes 

transpiring.  The development of Net Present Value (NPV) Cumulative Distribution Functions 

(CDF) and the calculation of the Expected Utility (Begg et al. 2003) are two of the decision-making 

processes that are utilized by some Level 3 firms. These processes are utilized to take into 

consideration the risk attitude of the company (Sieberer et al. 2017). Because numerical modelling 

allows for the quantification of risk and uncertainty, these approaches result in quantitative decision 

making for field development planning. Calculating and optimizing the value of information is 

something that can be done (Steineder et al. 2019), and it is possible to quantify the impact that 

different factors have on decisions (Steineder and Clemens 2020).  According to Mantatzis et al. 

2019, decisions about field development planning are frequently made based on the Expected 

Utility that has been calculated. Management at the upper and top levels are responsible for making 

strategic decisions that cannot be measured. 

1.1.5. Level 4 

The utilization of probability distributions is the foundation for the fourth level of hydrocarbon 

production forecasts and decision analysis. Both theory-based models and data science models are 

utilized for the purpose of estimating hydrocarbon output, although the choice is ultimately 

determined by the availability of data.       
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 The information that is contained in the data is what data-based models rely on. They 

require a substantial amount of data samples that are indicative of the whole. Text mining and 

object recognition are two examples of models that fall into this category (Karpatne et al. 2017). A 

plot of these kinds of models can be found in the bottom right corner of Figure 1.1.5.1. (Cao et al. 

(2016) and Kumar (2019)) both state that data-driven models are utilized for shale reservoirs in the 

process of projecting hydrocarbon production. 

 

Figure 1.1.5.1. Picking between theory-based and data-driven models is contingent upon the 

level of scientific knowledge and the accessibility of pertinent data. 

Theory-based models are derived from fundamental principles. Training examples can be 

generated using them to include input and output variables for the purpose of developing a data 

science model capable of extracting correlations between the variables (Karpatne et al. 2017). 

Models of this nature are shown in the upper left corner of Figure 1.1.5.1 Theory-guided data 

science models can be employed in situations where available scientific knowledge and data are 

inadequate (Karpatne et al. 2017).         

 The subsequent section provides a more comprehensive discussion on the integration of 

theory-based models with data science. Insufficient data is available for conventional hydrocarbon 

reservoirs to support the application of data-based models solely for hydrocarbon output forecasts.

 A method within theory-based models is Bayesian Evidential Learning (BEL), which 

comprises the subsequent stages as outlined by Scheidt et al. (2018): 
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• Development of the question and specification of predictive variables 

• Statement of the complexity and prior uncertainty of the model 

• Monte Carlo simulation and data-driven falsification of prior uncertainty 

• An investigation of sensitivity on both the data and prediction factors. 

• A design for reducing the amount of uncertainty on prediction variables based on the 

measurements. 

• Making decisions, as well as falsification and sensitivity of the posterior. 

The quantitative study of a number of different possibilities is the foundation upon which Level 

1.1.5.1 enterprises construct their decision-making processes for field developments (Steineder et 

al. 2019). For the purpose of ensuring that statistically significant numbers of models are developed 

and that these models may be updated in the event that new data becomes available, the quantitative 

analysis makes use of techniques such as machine learning.    

 Because decisions of this nature cannot be quantified, upper and top management are the 

ones who make significant strategic choices. Companies need to change from the view that people 

need to be directed and managed to give them explicit responsibility and authority in order to enable 

them to produce inventive solutions, according to Aghina et al. 2017's list of mind-set shifts that 

need to be done in order to enable data-centric decision making. Rapid decision-making and 

learning cycles need to be established, and technology needs to be viewed as a facilitator rather 

than a tool that supports it. Data democratization is essential in order to support the shift from Level 

3 to Level 4, which means that teams need to have access to a significant volume of raw data. In 

order to eliminate silos and cut down on the amount of work that is duplicated, data democratization 

is essential (Yoder 2019, Anand and Krishna 2019). The integration of advanced analytics into the 

company is necessary in order to achieve major improvements in decision-making. According to 

Bisson et al. (2018), the characteristics that enable businesses to be ahead of their competitors (also 

known as "breakaway companies") in the process of creating value from digitization were 

investigated. They make the assertion that "breakaway companies are more likely to use 

sophisticated analytics techniques, such as reinforcement and deep learning, which can provide a 

substantial lift in value over using more traditional analytics approaches". Handscomb et al. (2016) 

and de Smet (2018) suggest that the organizational structure of businesses that are transitioning 

from Level 3 to Level 4 may evolve in the direction of organizational agility.   

 There has been a significant improvement in development cycles. Level 4 decision analysis 
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makes it possible to undertake integrated development planning, evaluation of uncertainties, and 

evaluation of the value of information analysis. This is in contrast to the traditional method of teams 

working in parallel and then developing fields. It is important to take into consideration the risk 

attitude of the person making the decision during this process (Steineder et al. 2019). According to 

Aghina et al. (2017), the democratization of data has allowed for the coverage of uncertainties in 

the subsurface, surface, and economic dimensions.       

 When it comes to decision making, a Level 4 organization has the potential to be changed 

into a Learning Organization. One definition of a Learning Organization is a business that provides 

its employees with opportunities to learn and that also undergoes constant self-improvement. 

Within the oil and gas business, there has been a shift toward learning organizations in the field of 

health, safety, and the environment. Additionally, there has been an improvement in technical 

abilities, which has included the use of systems thinking. Therefore, learning from previous 

decisions is difficult (Nandurdikar and Wallace 2011). This is because experience-based, leader-

driven decision making makes it difficult to learn from past decisions. Due to the fact that such 

decisions are founded on quantitative data (for example, Tsuchiya 1993), level 4 decision analysis 

makes it possible for businesses to gain knowledge from their previous choices.    

For the purpose of forecasting and making decisions regarding hydrocarbon output at the Level 4 

level, profound technical capabilities are necessary. The reason for this is that the specification of 

the prior uncertainty ranges and the selection of the model are both quite important and depend on 

the abilities that the members of the team possess in terms of technology. When it comes to the use 

of theory-based models, the experts in the relevant fields (such as Special Core Analysis, PVT, 

Enhanced Oil Recovery, and Fractured Reservoirs) play a significant role. This is because these 

models are utilized to build the training sets for machine learning. Inaccuracies in the description 

of the chemical and physical processes lead to incorrect training of the machine learning models 

and forecasting that is not accurate.        

 In addition, extensive data science abilities are required in order to make use of the suitable 

approach and evaluate the outcomes. Overfitting, low-representation training due to insufficient 

data, spurious correlations, Ramsey-type correlations and the suitability of the instrumentation for 

the construction of interest are some of the potential pitfalls that need to be understood and avoided 

because they have the potential to result in incorrect decisions. According to the findings of 

Shepperd et al. 2019, out of the 49 papers that pertain to Machine Learning research, 22 of them 

have flaws that can be demonstrated. When it comes to the petroleum business, applying machine 
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learning takes a significant amount of expertise in order to avoid making conclusions that are 

incorrect. 

1.1.6. Level 5 

The process of decision making is increasingly being augmented by Artificial Intelligence (AI) 

with each passing level. A "Bayesian Agent" is an autonomous, goal-directed creature that observes 

and acts upon an environment (Russel and Norvig 2010). The corporations are developing this type 

of agent in order to better serve their customers. In the context of hydrocarbon production 

predictions and decision analysis, there is an illustration of a Bayesian Agent in Figure 1.1.6.1. 

 

Figure 1.1.6.1. Bayesian Agent in the field of production forecasting & decision making. 

Both a learning rule and a decision rule are what distinguish a Bayesian Agent from other agents. 

A number of different worlds that are feasible are defined by the learning rule, which is based on 

a variety of uncertain parameters. The conceivable worlds are realizations of the geology model, 

but they also include data on the economy and dynamics. In the realm of subsurface modelling, 

numerous worlds are formed through the utilization of numerical models (Reichstein et al. 2019). 

This is due to the fact that there is an insufficient amount of data from oil and gas fields to fully 

implement data science techniques. A number of different "worlds" are produced by the numerical 

models. Through the application of Al, the subsurface models, which include uncertainty, are 
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improved. Both generative adversarial nets (Goodfellow et al. 2014) and reinforcement learning 

(Silver et al. 2016) are examples of methods that could be considered in this category. The decision 

rule begins with the definition of actions and continues with the maximization of expected utility. 

The posterior distributions are constructed on the basis of further knowledge, and the possible 

worlds are conditioned to the data that has been observed. The anticipated utility is then maximized 

at that point. A comparison is made between the anticipated utility of a project conducted with and 

without the measurement of additional data in order to determine the value of the information. A 

number of tasks, including decision making, the optimization of activities, and the updating of 

conceivable worlds, are all carried out with the assistance of artificial intelligence. As a means of 

enhancing Expected Utility and decreasing economic risk, the Bayesian Agent makes 

recommendations regarding actions and procedures. Upper and Top Management are responsible 

for making strategic decisions that are not accounted for by the learning and decision rule.  

 There is the possibility of introducing Al enhanced portfolio optimization approaches in 

addition to the learning that occurs throughout the process of project creation. Agrawal and Jaiswal 

(2012) and Nowe et al. (2012) are two examples of how multi-agent systems can be utilized in 

conjunction with Game Theory (Nash 1950) to do optimization on project portfolios. As a result 

of the fact that these technologies require a significant proportion of the projects in the project 

portfolio to be covered by stochastic approaches that result in quantitative cumulative distribution 

functions rather than mid-high-low situations, Level 5 businesses will be able to implement them. 

This makes it possible to have a two-stage learning process, which includes learning within the 

creation of individual projects as well as making use of the learnings from the project portfolio to 

better individual projects. These kinds of organizations require skills that are comparable to those 

required by Level 4 organizations. For the purpose of enhancing the partially unsupervised 

Bayesian Agent, it is necessary to possess core scientific knowledge in order to be able to explain 

physical chemical processes in numerical models. Data labelling (and possible reinforcement 

learning to overcome this challenge), judging if a data set is sufficiently large and comprehensive, 

explainability of the Al results, generalization of the learning, distinction of causation from 

correlation, and bias in data and algorithms are some of the questions that need to be addressed in 

order to evaluate the limitations of the Bayesian Agent and the methodologies. In-depth data 

science skills are required in order to evaluate these limitations and address these questions (Chui 

et al. 2018).           

 Some of the difficulties associated with decision making that is aided by artificial 
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intelligence include "Reward Hacking" due to effects such as partially seen goals, abstract rewards, 

Goodhart's Law, or feedback loops, amongst other types of impacts (Amodei et al. 2016). It is 

possible for businesses to face risks in their financial performance, non-financial performance, 

legal and compliance, and reputation if they make mistakes in conceptualization, data management, 

model development, model implementation and model use, and decision-making processes. The 

increasing complexity of Al necessitates the development of substantial abilities in order to 

comprehend the patterns of behavior exhibited by these algorithms. In order to enhance the 

comprehension of artificial intelligence models, many techniques are utilized. These techniques 

include testing with Concept Activation Vectors, the utilization of tiny systematic perturbations 

(Ghorbani et al. 2019), and the utilization of Partial Dependence Plots (Guidotti et al. 2018). It is 

essential to use these techniques in order to comprehend the reasoning behind the decisions made 

by the agent system. Carvalho et al. 2019 provides a concise summary of the current state of 

interpretability in machine learning. In petroleum engineering, having the ability to understand Al 

choices is absolutely necessary in order to prevent a negative influence on the operation of the 

organization. 

1.2. REVIEW OF INDIVIDUAL STUDIES. 

The petroleum sector recently experiences the transformation stage from traditional techniques to 

integrated data-driven technologies, especially ML (machine learning). As the operations and 

explorations are getting more costly and complex, ML plays the role in the extraction of deep 

insights from the big datasets, automation of the time-taking workload, and enhancement of 

decision-making for the reservoir engineering.  Amidst multitude of applications, machine learning 

demonstrates key roles in a couple of areas: forecast of production and decision making.  The 

forecasting of the production is the key for management of the reservoir, by impacting on essential 

activities, like planning of the field development, estimation of the reserves, budgeting, and 

valuation of the assets. Trivially, models relying on physics and empirical methods like DCA and 

numerical simulators for the reservoir were significantly the main reference point. But the struggles 

the conventional techniques face are the heterogeneities, variations in operations, and the amount 

of data connected with mature fields and the unconventional types of the reservoirs. 

Hence, machine learning has started to play the role as alternative approach, which is capable of 

capturing nonlinearity in the relationships, incorporation of various sources of data and 

improvisation of the accuracy of forecasting outputs. 
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The oil and gas operation demands very critical skills of decision-making from the optimization of 

well placement and the strategies of the completion to prioritization of scenarios of the 

development. The tools of ML are heavily applied to support in these scenarios based on the 

judgements of engineering. The advantage of this technique is that hidden patterns can be 

uncovered in historical data. The drivers of the production can be identified and improvised 

operational plans can be proposed, by assisting the engineers through making more detailed 

decisions more effectively and confidently. The review of the case studies covers 8 different 

applications of ML in real-life examples of machine learning applied in the forecasting of 

production and the process of decision-making. The papers cover different geological features from 

the geology of Middle East to Midland and Appalachian Basins, utilizes quite a big range of 

approaches of machine learning, ensemble models, neural networks and the interference of 

Bayesian.  Detailed review per study, then the synthesis of themes, highlights the current situation 

of the research, determines the upsides and downsides of multiple methods and gives the direction 

for potential future work in this area. 

1.2.1. Machine Learning for Performance Analysis in Carbonate Reservoirs 

Huang et al. (2021) demonstrated an application of the ML techniques in the evaluation and 

optimization of the performance of the well for quite heterogeneous reservoir of carbonate in the 

Middle East. The research highlights the complexities in geology and operations in the typical 

carbonate formations, like porosity variations, complicated networks of the fracture, 

inconsistencies in the productivity of the well. In such reservoirs, for benchmarking and analysis 

of the production, by using trivial techniques through empirical rules or deterministic models, it is 

quite a big challenge to obtain a decisive pattern. In order to overcome this challenge, Huang et al. 

(2021) suggests a data-driven approach relying on PCA (principal component analysis) and k-

means clustering, assisting for well classification based on their profiles of the production through 

the utilization of dynamic and static data.  In the dataset, the combination of the geological features 

(permeability, porosity and net pay thickness), metrics of production (GOR, oil rate and water cut), 

and details of well geometry have been collected in the period of 15 years. The initial purpose of 

using PCA was to lower the dimensionality for 27-feature data, maintaining its main variance. The 

transition contributes to simplifying the task of clustering, through the projection of the data into 

smaller pieces of orthogonal axes which cover the key trends of the performance. The components 

which were reduced are followingly fed into the algorithm of K-means clustering to classify the 
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wells based on their performance. The actionable insights are offered by the resulting clusters. For 

instance, a group of wells could show the high production oil, but high value of water cut as it may 

have the connectivity of the reservoir to the aquifer or the poor design of the completion. Another 

group could distribute the stable performance in production with moderate gas rate, which is the 

indication of a more desirable segment of the reservoir.  Through mapping the clusters spatially, 

the distribution of the performance across the field can be visualized and the outputs can be 

correlated with the features of the geology.  This leads to a powerful tool which can be used to 

target the re-completions, redesigning the plans of drilling, and modifying the strategies of the lift. 

The essential part of this approach is to own the ability for the integration of disparate datasets to 

the framework, which is analytical and gives holistic diagnostics of the well, which are related to 

static and dynamics behavior.  Furthermore, the need for the labeled data is removed by the 

unsupervised behavior of the method, which is generally not available in fields of legacy. This 

suggests scalability, too. The workflow can be broadened to up to thousands of wells in relatively 

low overhead of computation. But certain limitations exist in this study.  As the major components 

are the combinations of input parameters. The transformation of PCA is effective for the reduction 

of dimensionality and may sacrifice interpretability to some extent. This makes the difficult the 

clusters to correlate with specific characteristics of the reservoir. Moreover, the descriptive insights 

are provided by clustering, hence it is not for predicting production or determining the uncertainty. 

This technique is consequently considered more diagnostically, and the quality and the 

completeness of the inputs impacts on the effectiveness of the model. In spite of those caveats, the 

valuable contribution of the study is highlighted through the demonstration of enhancement of the 

unsupervised learning on analysis of the performance development for the complex reservoir 

patterns. This gives the chance for wider utilization of clustering and reduction of the 

dimensionality in the workflows of the field optimization, specifically trivial techniques lacking. 

As long as the sector goes on growing with big dataset as of today, the essentiality of the 

frameworks will increase in order to obtain the useful pattern and assist to reach projected decision-

making. 

1.2.2. Bayesian Deep Decline Curve Analysis (BDDCA) for Production Forecasting 

Tadjer and colleagues present (Tadjer et al. (2022)) the hybrid modelling framework for production 

forecasting, which is called BDDCA developed for the enhancement of the forecasting oil 
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production in long-term focus, while preserving the physical realism and capturing the uncertainty 

explicitly. The study recognizes the DCA fast and interpretable technique as traditional techniques, 

but when it comes to unconventional reservoirs, it provides unrealistic forecasts for long-term. 

Although the pure models of machine learning are powerful, they frequently lack the physical 

grounding, and the prediction results violate the known behavior of the reservoir. In order to 

highlight this dichotomy, Tadjer et al. (2022) uses the integration of DCA to neural networks’ 

flexibility and Bayesian statistics rigor.  The integrated approach operates in a couple of stages. 

Initially, the tool of automated machine learning is utilized to determine the correlation among the 

completion and geological parameters, such as proppant volume, lateral length, and cluster spacing 

and the features of the modified model of Arps decline. The forecast of DCA parameters is enabled 

by this mapping technique for the well, whose production history is not so long. The following 

stage is the introduction of a neural ordinary differential equation model of Bayesian (BN-ODE) 

that considers the oil production time-dependent system which is governed by learnt differential 

equations. Essentially, the above-mentioned equations are modified to match the physical behavior 

illustrated by decline models. The component of Bayesian gives the chance to framework in order 

to sample from the DCA parameters’ posterior distribution; by producing the forecasts in terms of 

probabilistic perspective and it considers uncertainty in such a principled manner. There are around 

400 horizontal wells, which have detailed production data and completion diagrams. In the training 

part of the model, the production rates are considered as time-series data and validated against 

taken well data.  In order to measure the accuracy of the forecasts, MAPE (mean absolute 

percentage error) is utilized, for the computation of uncertainty intervals, NUTS (No-U-Turn 

Sampler), which is a type of Hamiltonian Monte Carlo, is applied. The outputs show that the hybrid 

model outperforms both types of methods, which are DCA and typical neural networks for long-

term forecasts. Futhermore, the forecasts obtained via BN-ODE are more reliable, more 

interpretable and they can be connected to known physical mechanisms. The approach of the model 

to uncertainty is one of its most significant contributions. In comparison with the ML models called 

black box which output the estimate of the point, BDDCA model outputs the interval of the 

confidence, which are balanced at both theory and data. The capability of the framework in this 

instance is priceless to make risk-informed decisions, like reserve estimation, modelling of the 

financial analysis, and allocation of the capital.  Moreover, the utilization of SHAP (Shapley 

Additive Explanations) which is for interpreting model’s inputs, gives the transparent distribution 

and contributes to determine the main drivers of performance of the well like stage count or 
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proppant intensity.  In spite of its sophistication, the model contains few downsides.  The load of 

computation which is associated with training of Bayesian and sampling of NUTS is very high, 

which makes the model less favorable for low-resource environment and real-time utilizations. 

Additionally, although the physical constraints are included in the model, high-quality, granular 

data to demonstrate in optimal conditions are still required, and this is not something that can be 

available in all reservoirs.  The model demands expertise in Bayesian inference, differential 

equations, and architecture of the neural network, so this framework contains the complexity to 

implement. In conclusion, this study suggests such a methodology that perfectly correlates data-

driven forecasts with the knowledge of the domain. With embedding the constraints into the 

framework and evaluating the uncertainty via the methods of Bayesian, the standard for the forecast 

of the production for conventional reservoirs is elevated. This provides both accurate forecasts and 

a strong alternative to integrate into the workflows of the reservoir management. 

1.2.3. Autoregressive and Ensemble ML Models for Forecasting Midland Basin in  

Gupta et al. (2021)) investigated the utilization of ML and time-series forecasting techniques in 

order to automate the forecasting of the production in the Midland Basin, which is the core region 

within Permian Basin. This study is dedicated to a known clear operational challenge, which is to 

obtain the scalable, accurate, and timely forecast of the production of thousands of wells on the 

basis of planning of the development and budgeting quarterly. Trivial techniques like DCA are not 

the optimal solution for solving this task as they are manual and contain assumptions, which are 

human factor based. The authors of the paper delve into the problem through the integration of AR 

(autoregressive models) and tree-based ensemble learning, especially, ETR (extra trees regressor) 

to a robust forecasting pipeline. There are more than 2000 post-drills and around 350 pre-drill 

horizontal wells in the dataset. The input parameters include geological properties, artificial lift 

types, completion data, inter-well spacing, and values of past production. This kind of wide dataset 

gives a chance to model for understanding cross-sectional relationships and temporal patterns. AR 

models are applied to cover sequential correlations in the rates of production, whereas the ETR 

deals with non-linear relationships amidst operational and static features. The estimations are 

mainly generated at 5- and 30-days intervals, which aligns with the internal planning cycles of the 

company. One of the key learnings from the study is that models of ML outperform traditional 

DCA, especially in the wells, which are post-drill, after the period of transient to pseudo-steady 
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state transition (around 60 days). The models of DCA might match better in the early stage of 

production because of the aligning regime with initial flow, whereas they start to deviate in the 

long-term estimations. In comparison, the models of ML adapt better for changes in mid-life 

production and intervention operations, suggesting the accuracy for improved planning quarterly. 

It is noteworthy to mention that the framework of ML is completely automated, which enables fast 

response of re-forecasting to update the data of the field, which can be considered a major 

efficiency for the companies who are operators. 

The study provides ML importance in the forecasting of pre-drill wells utilizing the learning, which 

is based on analogues, too.  Through the train of the model in similar wells and context of geology, 

authors generate the forecasts to provide the prioritization of the drilling and planning of the capital 

for the locations which have not been drilled yet. The capacity is so relevant in basins, which are 

high activity like Permian, where the schedule of the development is so dynamic and the turnover 

of the data is rapid. However, like other studies, this study has certain limitations.  The model of 

ETR is powerful but has some gaps in interpretability. This model does not give clear insight to 

the importance of the feature or reasoning of models, unlike SHAP-enabled trees or linear models. 

Moreover, the uncertainty qualification was not addressed in the study: the estimations are provided 

as estimates of point, which may put limitations for their utilization in risk management or 

probabilistic planning. The model drift or the maintenance cycle, essential assumptions for the 

applied models evolving in environments of the continuous operations have not been covered very 

well. In spite of the constraints, the study highlights the ML applicability and the relevance of the 

operation. Integration of ML into regular forecasting and cycles of planning can give reduced 

workload for humans, the enhancement of the consistency and supporting the strategical decisions. 

It can assist as a guide for the companies, who are looking for embedding the ML into workflows 

of the asset management, especially in reservoirs, which are high volume and fast-paced. 

1.2.4. Machine Learning versus Type Curves in the Appalachian Basin 

Cui et al. (2024) conducted comparative study using the forecasting techniques of the ML and 

traditional type curve in the formation of Lower Marcellus of the Basin of Appalachian. In this 

play, more than 2000 horizontal wells of gas were drilled. The purpose of the study is to respond 

to the need for the industry: development of forecasting methods and its alignment with complexity 

in geology, heterogeneity and the practices of the completion. Through the application of the tree-
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based ML models and the techniques of the advanced explainability, Cui et al. (2024 tries to 

enhance the accuracy of the forecast and give useful insight for the planning strategically, 

especially the optimization of the acreage and the design of the completion. Typical type curves, 

which are the core part of the reservoir engineering, contain the generation of the decline curve, 

which is representative for the certain group of the wells, which locate in close operational and 

geological characteristics. Despite its effectiveness and intuitiveness, the method assumes that 

wells in type curve area (TCA) are assumed to behave similarly during the certain time. The model 

fails sometimes as it does not consider nuances in variations due to completion design, orientation 

of the well, spacing, and underlying geology. In order to address this, around 30 TCAs have been 

constructed across the area of the study, hyperbolic models of decline have been calibrated for each 

TCA and their performance against the ML approach has been compared via the usage of the 

gradient-boosted decision trees. The models of ML are trained on the basis of a rich dataset which 

contains the static data, geological features (thickness, depth, rock type), the completion design 

(count of the stage, loading of proppant, the volume of the fluid), and the metrics of well spacing. 

The targeted variable is the cumulative production of the gas in specific duration of time window 

(12, 24, 36, 48 months), and for each TCA, the models are separately trained.  The outputs vividly 

distribute the superb performance of the model of ML: in ML models of 88% of TCAs, higher R2, 

lower RMSE are achieved in comparison to the forecasts of type curve. Those advancements are 

specially pronounced in the sections where the complexity in geology or irregular spacing of wells 

exists, where trivial techniques try to simplify the behaviour of the production. The special 

innovative approach of this research is to build the ML derived RQI (rock quality index) utilizing 

SHAP values.  This SHAP value gives the chance to the authors for the assessment of relative 

impact of each input parameter on the production prediction for each of well. Via the integration 

of these attributions spatially, the RQI is built as the continuous map of the surface, by suggesting 

the granular insight into the quality of the reservoir. This intelligence provides an opportunity to 

asset teams to get better decisions made about the acquisition of the acreage, targeting of the wells, 

and prioritizing the drilling sequence. Although conventional maps of reservoir quality are heavily 

relying on hand-picked features or the discrete cutoff, RQI evaluates the combo effects for 

multitude of factors learnt by the model. The strength of the study lies in the blends of accuracy of 

the forecast, practical utility and explainability. It describes that ML both outperform trivial 

methods and provides extra layers of insights, which are actionable. The application of SHAP is 

dedicated to one of the major barriers to adoption of ML, which is interpretability, and this assists 
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to develop the trust amidst engineers, which are utilized to models, which are deterministic. 

Furthermore, the various scenarios for completion uplift are stimulated through the variation of 

input parameters, hence giving the opportunity to do “what-if” analysis, which is challenging to 

perform with the static types of curves. 

Nevertheless, the study does have some flaws: When they are far from the training data or when 

the training quantity is less than ideals with noise in it. For instance, in areas close to asset 

boundaries where there is higher geological heterogeneity as well as few historic wells. This means 

that the model's performance will not extend organically beyond its original range of applications, 

as does traditional linear fitting. Interpreters of SHAP describe how it works; yet at root, the actual 

model remains a black box in many respects. Additionally, uncertainty quantification is not fed 

into the forecast outputs--which might be critical for risk-informed planning! One weakness of this 

model is that we cannot predict with confidence what its effect on prediction performance will be. 

The other is in the decision support function. By offering a convincing argument for using machine 

learning to predict output in real time or at least avoid under-for forecasting large development 

projects that would normally be broken into small increments due to its lack of trend knowledge 

(i.e., "heterogeneity"), for instance, Cui et al. have revived old questions about just what we do 

with all our big data. Not only does their work increase both prediction voucher accuracy and 

decision reinforcement, but it also shows how ML can help close the chasm between field authentic 

righteousness in unconventional resource plays. 

1.2.5. A Machine Learning and Data Analytics Approach for History Matching in a 

Mature Multilayered Field 

One of the most challenging tasks in reservoir modeling is the history matching of a mature 

multilayered field that has been in production for decades. Suwito et al. (2022) have tackled just 

such a problem with their study set in Handil field of the Mahakam Delta area Indonesia.Thus, 

their research illustrates the opportunity to employ machine learning not merely for forecasting, 

but also speeding up simulation, quantifying uncertainty and supporting decisions.For example, 

while many studies using ML typically take aim at flawlessly drilling their first few wells or some 

peculiar kind such as 'tight', this work is aimed at a mature historic brownfield asset with extensive 

gauntlet-layering, complex well interactions, and thousands of historical data points.The chief 
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contribution of this paper lies in combining machine learning--in the form, random forest 

regression--with traditional reservoir simulation tools to build a proxy model. This allows for rapid 

evaluation of hundreds of development scenarios by replacing computationally expensive full-

physics simulations with statistically-trained surrogate models.Thus the workflow is conducted 

through four gated phases: data conditioning and quality control, feasibility analysis, dynamic 

modeling and calibration, forecasting and optimization. Python scripts do the model runs and post-

processing and a cloud-based dashboard offers visual back for engineering teams.The authors 

leverage data from wells in more than 50 reservoir zones, with logs and coring nearly 100 contact 

regions, and some 50 years of oil, gas, and water production. Static properties such as porosity and 

permeability are derived from supervised learning algorithms based on log and core 

data.Meanwhile, historical production trends are fit using the random forest model, which is trained 

to predict production outcomes as a convolution of geological inputs and development 

parameters.This dual capacity—of accelerating history matching and directing optimization—is 

key to differentiating the present study from more narrowly focused applications that harness ML.A 

notable facet of this paper is how it lays stress on scale and practical application. The authors take 

their framework and apply it to a full-field model that encompasses hundreds of wells, instead of 

confining themselves in a limited pilot. This shows the method's scalability nature worth and real-

world worthiness.The cloud-ready dashboard means that simulation outputs can be interacted with 

on real time, easing collaboration and scenario exploration for a variety of engineering teams. In 

addition, the research is able to give quantitative measurement of the relative importance for each 

input parameter, aiding engineers' task in prioritizing collection and execution efforts.However, 

there are still some challenges. Although the random forest model performs well in interpolating 

known scenarios, its extrapolation capability is limited, especially in data-sparse areas or when 

there is an operational regime change. Reliance on historical patterns also means that novel 

completion designs or new well types may lie far beyond the model’s training distribution, reducing 

forecast reliability.Furthermore, although the model enhances computational efficiency, it does not 

inherently embed physical laws. Therefore its predictions must still be validated against physics-

based simulations.Uncertainty quantification comes from Monte Carlo simulation. However, the 

treatment is essentially statistical rather than probabilistic or Bayesian, limiting its value in 

frameworks for risk management.Despite these shortcomings, the study makes a strong case for 

using ML to complement, not replace, traditional history matching-by speeding up simulation, 

orienting around key variables, and forging through the tangle of alternative scenarios, the ML-
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aided method can impart distinct operational and strategic value. It is especially suited for mature 

assets where there are many data available and even incremental benefits from optimization yield 

big economic returns.As digital oilfield technologies continue to develop, the methodolgy proposed 

by Suwito et al. is an example of hybrid field planning that is based on data and physics alike. 

1.2.6. Machine Learning Prediction versus Decline Curve Prediction in the Niger Delta 

This study, led by Jayeola and colleagues (Jayeola et al. (2022)), provides a clear example of how 

machine learning may be applied in the Niger Delta Basin. this is particularly true on complex 

offshore oilfields where traditional statistical models such as Grand Orateur Analysis (DCA) miss 

some subtle trends. Focusing of 15 oil wells with eight years of daily production data, the authors 

use Long Short-Term Memory (LSTM) neural networks to forecast time-series production and 

compare their results with Arps based DCA predictions. Although conventional DCA is widely 

used, it is unable to produceviable forecasts under the changing, non-linear conditions that 

increasingly govern field operations as a saturation offshore asset matures. By contrast, LSTM may 

be capable of modeling long-term time-series dependencies. The system i sensitive to adjust 

production forecasts for results as subtle as changing gas and water output from associated 

reservoirs. The abundance of detailed data motivates one contrast, involving the degree of 

optimization obtained by theAdam algorithm versus Stochastic Gradient Descent (SGD). While 

SGD has traditionally been used for training neural networks, the authors argue that Adam gives 

significantly improved convergence rates and forecast accuracy. An LSTM model adapted with 

Adam showed 96% validation accuracy and lower root mean squared error (RMSE) than its SGD 

equivalent. This insight points up the broader signal that machine performance is not simply a 

function of model structure; are also importantly influenced by source data preparation and 

hyperparameter optimization. The ML pipeline for this study includes data normalization with 

MinMaxScaler, turning time-series inputs into 3D tensors suitable for LSTM input, and employing 

dropout layers to filter out noise. All in all, it offes a good example of best practices in ML for 

temporal forecasting. The results provide convincing proof of how deep learning can be used in 

reservoir engineering, especially when it comes to data-rich but physics-poor reservoirs. The 

LSTM forecasts westbound closely with actual production values and were more robust to 

operational noise and transient behaviour than DCA. In fields like those found in the Niger Delta 

oil province, where fluctuating reservoir pressure and complex well designs lead to widely differing 



 
 

31 
 

flow regimes, LSTM's ability to identify and learn from hidden temporal patterns has market value. 

The findings are particularly relevant for operators in less developed areas, where it may be 

impossible to carry out high-fidelity reservoir simulations due to lack of data, budgetary 

considerations, or simply lack of computing power. However, the study cannot answer all 

questions. The LSTM model, like many deep learning architectures, operates essentially as a black 

box—there is little insight into what variables are important or why a given forecast is made. This 

may create obstacles to adoption in workplaces that value transparency and traceability in 

engineering judgement. Nor does the study explore how these forecasts could be incorporated into 

wider operational workflows such as reserves calculation, field development planning, or economic 

modelling. There is no examination of the impact which ML-derived predictions would have on 

well interventions, 'field of the future' strategies, or how capital ought to be allocated. Furthermore, 

uncertainty quantification is entirely lacking. The model performs well in point prediction, but 

offers no prediction intervals or confidence bands—increasingly important requirements for 

decision-critical settings. Despite these shortcomings, the paper still makes a major contribution in 

demonstrating that post-modern ML architectures such as LSTM can bring a higher return than old 

style methods in real world, intricate production scenarios. Confirmation against traditional 

techniques makes the argument stronger for using it; especially in parts of the world like West 

Africa which are underappreciated by the Petroleum Engineering research community. By showing 

both methodological rigor and practical application, the study offers a strong case for expanding 

the use of ML techniques in reservoir forecasting—particularly when conventional tools do not 

provide much insight. 

1.2.7. Data Conditioning and Machine Learning Forecasting on a North Sea Well Pad 

A comprehensive methodology is described in this study, presented by Bagheri and colleagues. 

Data conditioning - that is, preparing data for use in production forecasting through machine 

learning (ML) applications or otherwise-is considered here as essential to such work from the 

outset.Using data from a well pad in the southern Norwegian North Sea—a multiphase well from 

Volve field—the authors highlight how data quality, cleaning and pre-processing can have a 

negative effect on later downstream machine learning models. The work stands out in this respect 

from many other ML studies published on the web that use petroleum data by supposing their 

original datum sets are clean and ready to use.The dataset spans over eight years of operation. It 
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contains production rates, injection data, pressure readings, and downhole temperature 

measurements from a number of production and injection wells, all placed in multiples throughout 

the field. About sixty percent (60%) of the dataset were missing or empty, or have abnormal values. 

The situation is common but rarely given full consideration in field data, even less so at ML 

conferences. The authors use z-score methods for anomaly detection and support vector regression 

(SVR) and multilayer perceptron (MLP) models for data impuration.By filling in gaps in time 

series production and injection records, they are able to improve the completeness and coherence 

of the datateset. The authors restate that decreasing dimensionality with principal components 

analysis (PCA) took place next. This addressed multicollinearity among features and retained only 

the most informative inputs for final forecasting models. Finally, the performance of conditioned 

SVR, MLP and LSTM models is compared by the authors. As expected, LSTM outperforms all 

others, by capturing long-term temporal dependencies that are inherent in time-series production 

data it scored an R² of 0.98 and the lowest RMSE for all comparisons.SVR, as a model for 

regression and also as one that is capable of filling in gaps, concluded their results under fluctuating 

production regimes and multi-step forecasting was not as good as might have been hoped. One of 

the key contributions of the paper is a well-detailed and systematic approach to data cleaning and 

reconstruction--an area that is often ignored but should be indispensible for successful ML 

deployment. By demonstrating how dirty data cripples model accuracy and how strategic 

imputation can improve forecasting performance the authors prove that data preprocessing is not 

mere slingernuther preparatory work but constitutes a major link in ML modelling pipeline.As 

sensor degradation, drilling platform failures and data gaps all are common situations in offshore 

wells and old oil fields, this issue is particularly salient.In its methodology the paper may be strong 

but it does not examine the extent of interpretability or apply empirical methods to costs. There is 

no attempt to measure how particular features bear on outcome with tools like SHAP or 

permutation importance used for explanation purposes. As a result the model remains mostly 

opaque in the eyes of its users, thus lacking in integration with either oilfield development planning 

scenarios or production optimization cases.Also, there are no bounds to the uncertainty of the 

predictions or probabilistic forecasts at all. In an operational setting (or really whenever decision 

makers need to comprehend risk in any form), such probabilistic forecasts might prove quite 

important.It is to be noted, however, that Bagheri et al. provide a significant solution; they 

effectively break one of the oil and gas sector's main barriers to ML use the poor quality of its data. 

Its approach offers guidance for others having problems similar in nature.In short, by showing that 
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time and effort spent in data preprocessing can directly translate into forecasting accuracy and 

model reliability, this paper convincingly argues for the adoption of data conditioning as an 

essential factor in the machine learning lifecycle. This work bridges a gap between academic model 

development and field applications, especially useful for entities in early stages of digital 

transformation. 

1.2.8. Enhanced Asset Optimization Using ML, Type Wells, and RTA in the Marcellus 

Haghighat and Burrough (Haghighat and Burrough (2024)) This study provides a rare masterpiece 

for the workshop in unconventional development: combining diziterfily techniques of machine 

learning with tradition restutvoirengool workshops to achieve an unprecedented height. However, 

relying on the cars of fired well construction through decline curve an alysis (DCA), rate transient 

analysis (RTA) and machine learning-based gradient boosting scope boost (XGBoost) As the 

authors explain distinguishes this study ceasless when compared reach its library. Running from 

physics-based modeling to production forecasting and economic decision-making, all these paths 

entail their own distinctive but largely automated steps. They start by constructing a type well from 

production data of 52 offset wells rooted in history which is adjusted for lateral length. This type 

well serves as the benchmark for per formance expectations in a given geo graphic area or basin. 

Next. the authors apply RTA to quantitatively understand reservoir properties such as fracture half-

length, conductivity, and permeability. These parameters feed a numerical simulator that generates 

forward production scenarios under different development con figurations, including changes in 

well spacing, number of stages per well, and amount proppant used. To complement and expand 

these simulations, the authors train an XGBoost model with data from 300 wells. This includes 

geologic and engineering as well as spatial features. Crucially, they employ SHAP-based Factor 

Contribution Analysis (FCA) to explain the model’s predictions. This not only increases the 

interpretability but also allows identification of diminishing returns on variables such as proppant 

concentration and lateral length. For example. while higher proppant loads and tighter fracture 

networks maximizewell EUR optimal net present value (NPV) occurs at more moderatelevels 

because of diminishing cost efficiency trade-offs. Such insights are critical in planning field 

development work so one can balance productivity with economic returns. This study offers a rare 

integrated blueprint for asset development planning. Instead of treating machine learning as an 

isolated solution in its own right, its real aim is to integrate this with well-established engineering 
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tools in order to give the developer a more comprehensive understanding of reservoir behavior and 

development outcomes. Meanwhile, the combination of RTAC and ML allows for insights coming 

from physics-based reasoning as well as data-driven input; whereas economic modeling links the 

whole flowchart up to business objectives. This is particularly useful in resource-intensive plays 

like the Marcellus, where momentary gains in overall design yield large changes across your stocks. 

However, some limitations need to be mentioned. Our model assumes uniform data accuracy and 

measurement uniformity among all wells, which may be different in other geographies. Even if 

SHAP values make things more transparent they do not totally solve one problem unique to 

ensemble models like XGBoost: their black-box nature. Moreover, we have not yet explicitly built 

any uncertainty quantification into the forecast or economic analysis. This would make it more 

serviceable in high-risk investment scenarios. Bearing these omissions in mind, the article puts up 

an extremely practical and replicable template for adding ML to the reservoir engineer or asset 

manager’s toolbox. 

1.2.9. Implications for decision-making and research gaps 

The literature reviewed consists of eight different and technically advanced works,reflecting the 

increasing maturity of machine learning (ML) as an effective tool in production forecasting and 

decision-making within petroleum engineering. These studies differ in their geological settings, 

model types, and objectives-- yet they all cast light on common themes and strategic applications, 

while underscoring the remaining challenges. Collectively, taken together, these studies sketch out 

a composite picture of where we stand today. Forpractitioners and researchers alike, this cross-

sectional view of the field is of high value. This strategic use of diverse and integrated data is 

common across all the papers. From unconventional shale plays like Bakken and Marcellus in the 

Midland Basin, to complex offshore and mature carbonate formations such as those in Nigeria's 

Niger Delta or Indonesia's Gulf Mahakam. Even in an established producing area like the North 

Sea, it closely links the progress of ML applications with ability to synthesize dynamic production 

data, static geological properties, completion details and spatial context. This is exemplified by the 

studies of Huang et al. and Suwito et al., which blend both static and dynamic data sources to 

understand heterogeneity and history matching, respectively, while those of Cui et al. and 

Haghighat & Burrough utilize geospatial insights or feature attribution tools as decision aids. 

Meanwhile, in a specialized and unique contribution, Bagheri et alhighlight the importance of data 
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preparation itself — stressing that data quality is make-or-break for the reliability and 

generalization ability of models. In terms of model selection and method design, the papers cover 

the full spectrum of ML - from unsupervised clustering (Huang et al.), ensemble methods (Gupta 

et al., Suwito et al.), and time-series neural networks (Jayeola et al., Bagheri et al.), to hybrid 

implementations that blend physics with machine learning (Tadjer et al.) or integrate RTA and 

DCA with ML and economic modeling (Haghighat & Burrough). This diversity in methods reflects 

the need to tailor ML approaches to each individual task: unsupervised learning for discovering 

patterns, supervised regression forecasting, and hybrid models which incorporate domain 

knowledge and build trust. Explanability tools like SHAP (Cui et al., Haghighat & Burrough) are 

now a growing trend, which plays an especially important role in improving model transparency 

and acceptance among engineers. Forecasting accuracy is still an urgent goal; and all studies 

demonstrate that often ML models can outperform traditional techniques—particularly in capturing 

the non-linear, time varying patterns which DCA or type curves have difficulty with. Gupta et al. 

conclude that tree-based regressors are particularly good at prediction post-transient production, 

while Jayeola et al. and Bagheri et al. find that in managing sequence-based data which is noisy or 

variable LSTMs are better than other regressors. Tadjer et allgo one step further: not only do they 

present Bayesian neural ODEs that ensure highest accuracy while also offering forecasting 

probabilities, they combine physical behavior and uncertainty quantification in a single framework. 

However, high predictive performance alone is no longer sufficient.Increasingly, these studies look 

at how ML supports decision-making and operational efficiency. In practical terms, ML can 

improve short and midterm field operations by automating production forecasts (Gupta et al., 

Jayeola et al.), pointing out underperforming wells (Huang et al.), and suggesting current 

adjustments to artificial lift or completion strategies (Bagheri et al.). At a strategic level, ML 

outputs now influence well spacing decisions, completion intensity optimization, acreage 

valuation, and economic planning. A sophisticated example of this is provided by Haghighat & 

Burrough, who show how ML predictions can be combined with DCA, RTA, and NPV in a multi-

layered evaluation approach–transforming ML’s role from forecasting alone to full-blown 

optimization and capital planning. The studies reviewed also reveal that there are several gaps in 

research and application which need to be filled in order for ML to realize its full potential. 

Interpretive abilities continue to be a headache, especially with deep learning models like LSTM 

which are far from transparent compared with tree-based algorithms. True, Cui et al. and Haghighat 

& Burrough have effectively deployed SHAP for interpreting features, but others like Jayeola et 
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al.and Bagheri et al.provide highly accurate yet fundamentally opaque forecasts. To bridge this 

gap, we need farther advances in explainable AI tailored to the characteristics of reservoirs, 

especially in sequence-based models. Another problem that urgently needs to be addressed is 

uncertainty quantification. Only Tadjer et al.model forecast uncertainty explicitly, using Bayesian 

inference to provide confidence intervals. The remaining studies produce point forecasts, which 

may limit their value in risk-based decisions such as reserves booking, scenario planning, and 

infrastructure investment. Introducing probabilistic frameworks — whether Bayesian deep 

learning or Monte Carlo dropout— into time-series models and tree-based regressors is an area 

ripe for future exploration. Data availability and quality are further obstacles. Bagheri et al.show 

howcoponditioning the data can dramatically improve the performance of ML; but in many fields 

the data is either sparse, noisy, or incomplete. There is a need for robust data preparation 

workflows, uniform imputation strategies and feature engineering templates that can be transferred 

and modified across fields or organizations. Nor have many of these papers tackled the full lifecycle 

management for ML models— how one monitors models as they move into the field, retrains them 

with new data, or sustains them in real production environments. An investigation into “MLOps” 

(Machine Learning Operations) on subsurface forecasting could supply actual blueprints for 

establishing and maintaining robust ML tools within enterprises. 

Finally, the econom in the use of databases is a maping dimension of implications. DarkHorse uses 

a loadstream from the feed to network data into Zabbix, while crawlers and so on getting run once 

each time complain to user traffic for downloading a failed document and not again after successful 

retrieval go through such tasks progress within your browser-at least there that's how things should 

be In their current version some pieced-out examples were merely collected for different interfaces, 

instead producing a bit of a mess. But with the directional flow chart mechanism, people find it 

easier to get these details nicely squared away They. also came up with a graphical tool Weka at 

that stage. Now many algorithms have been put into it which some intelligence-aware mathematical 

geeks gathered from around the world Future work should do more of this integration, e.g. by 

feeding ML predictions as inputs into financial models. And it needs to increase understanding 

That combinations also must link up development planning parameters and riskweighted asset 

investment strategy so that other people deeply involved in both sides of those business 

undertakings than the original technical work can then realize their work alongside your 'technical 

work-dlings' All eight of these case studies are a comprehensive and multi-faceted examination 



 
 

37 
 

into ML's impact on reservoir forecasting and production scheduling. They provide proof that not 

only razor sharp accuracy but also increased speed, capacity for scalability (scalability is another 

name for volume) and decision support are major benefits of ML applications. However, as this 

field evolves, attention must move from a single model's isolated performance to more general 

themes like interpretability and uncertainty. Workflows need responding properly in order for them 

work both efficiently and economically together. These shortcomings, therefore, are key issues in 

achieving the full value from ML as a critical element of modern reservoir management. 

1.3. OIL PRODUCTION PREDICTION USING TIME SERIES FORECASTING AND 

MACHINE LEARNING TECHNIQUES 

In the oil and gas industry, anticipating the oil output has remained challenging, given the 

importance it holds for an organization’s strategic decision-making. In the past, several empirical 

correlations along with different mathematical models served this purpose. Today, the shift to data-

oriented extrapolation has led to the adoption of machine learning algorithms such as Random 

Forest (RF), Artificial Neural Network (ANN), Long Short-Term Memory neural network 

(LSTM), Recurrent Neural Network (RNN), and even DeepAR among others. This paper presents 

a comparative analysis between time series and machine learning techniques to forecast oil 

production. To reach this goal, the ARIMA, Prophet, Random Forest, CatBoost, and XGBoost 

algorithms will be used. Time series forecasting uses historical data to build predictive models, and 

the machine learning approach builds a model on a dataset which can reliably be utilized to make 

predictions. In recent years, advancement in computing technology, including data analytics, has 

enabled the development of precise and sophisticated models to aid in accurately projecting crude 

oil production. Methods based on artificial intelligence (AI) and machine learning (ML) have 

attracted considerable attention in this field owing to their ability to handle large volumes of data 

and provide accurate predictions. Various ML approaches such as Random Forest (RF), Artificial 

Neural Network (ANN), Long Short-Term Memory (LSTM), and Recurrent Neural Network 

(RNN), alongside Deep-AR, have been utilized for forecasting crude oil production. These 

algorithms are capable of recognizing and determining the relationship between oil production and 

other data captured from the field through sensor devices using machine learning techniques. 

Temitope James Omotosho, (2024) applied a time-series forecasting techniques and a machine 

learning methodology to anticipate oil output. Time series forecasting is the application of a 
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forecasting model to estimate future values based on historical time-stamped data. Modelling is the 

process of constructing models by analysing previous data and applying them to generate forecasts 

that will inform future decision-making. A fundamental differentiation in forecasting is that the 

future result is completely unknown at the moment of study and can only be approximated through 

comprehensive examination and priors based on evidence. The objective of time series analysis is 

to derive valuable statistical properties (such as trend, pattern, and seasonality) from a time series, 

construct a model that explains these properties, employ the model for prediction, and ultimately 

use the knowledge acquired from the study to make informed decisions. A machine learning-based 

forecast is the outcome of an algorithm that has undergone training using a historical dataset. The 

method thereafter produces likely values for unidentified variables in every entry of the new data. 

The objective of prediction in machine learning is to forecast a probable dataset that aligns with 

the input data. This facilitates the oil and gas sector in predicting forthcoming crude oil output and 

market patterns. In order to accomplish optimal outcomes in machine learning prediction, 

businesses need to provide infrastructure to facilitate the solutions, together with high-quality data 

to input into the algorithm. Numerous scholars have conducted studies on the forecasting of crude 

oil production by employing various time series forecasting models and machine learning 

techniques. According to Omekara et al. (2015), the multiplicative Seasonal Autoregressive 

Integrated Moving Average model (SARIMA) (1, 1, 1) (0, 1, 1) was identified as the most effective 

model for predicting crude oil production data in Nigeria. The proposed model was recommended 

to the appropriate authorities for the purpose of predicting future crude oil volumes in the country. 

The ARIMA model was employed by Fatoki et al. (2017) to conduct an estimation of crude oil 

production in Nigeria. The order of the ARIMA model (1, 2, 2) appropriately corresponds to the 

data. The model projected a consistent upward trend in crude oil output from 2014 to 2023. 

However, the actual production of crude oil experienced a significant decline after 2015. In August 

2016, Nigeria achieved its lowest crude oil production of 1.5 million barrels per day (mmbpd) 

between 2006 and 2020. In their 2015 study, Balogun and Ogunleye examined an ARIMA model 

with varying orders (1,1,1), (2,1,2), (2,1,1), and (2,1,0) to forecast short-term crude oil output. The 

findings indicated that the model with the order (1,1,1) outperformed the other models. An 

investigation was carried out by Sadeeq and Ahmadu (2018) to determine the most effective time 

series model for monthly crude oil output in Nigeria, employing the ARIMA model. ARIMA 

(2,1,0) (2,1,1) excelled as the optimal model for the given data. Exhibited strong predictive 

capabilities for monthly crude oil output. In their study, Tadjer et al. (2021) investigated the use of 
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machine learning-based decline curve analysis for short-term oil production forecasting. They 

specifically considered two prominent models, namely DeepAR and Prophet. The efficacy of the 

proposed models was evaluated on a specific well from the Midland fields in the United States. It 

was deduced that both DeepAR and Prophet analysis are valuable tools for enhancing 

comprehension of oil well behavior. Moreover, these strategies can effectively reduce the 

occurrence of over/underestimations that may arise from relying solely on a single decline curve 

model for forecasting. A comparative analysis was conducted by Zou et al. (2021) to assess the 

accuracy of shale oil production prediction using long-term and short-term memory neural network 

(LSTM), ARPS production decline model, and Prophet algorithm. The results demonstrate that the 

Prophet algorithm has superior prediction accuracy, particularly in the context of complex shale 

oil production. 

Despite the promising results obtained by Omekara et al. (2015) and Zou et al. (2021) using 

ARIMA and Prophet for prediction, the scope of their methodology is restricted to univariate data. 

Specifically, the dataset used only the date column as its input parameter for forecasting oil 

production. Consequently, it does not accurately represent the other factors that influence oil 

production in real-life applications. The objective of this publication is to demonstrate the 

drawbacks of using univariate data for forecasting oil production in comparison to considering 

other factors. To address the difficulties of predicting oil output using a single variable, it is 

essential to adopt a method that considers other factors influencing oil production, such as 

employing a non-parametric machine learning model. Although machine learning (ML) is a 

relatively new approach in the petroleum business, some academics have explored its potential 

uses in predicting crude oil production. Liu et al (2019) discovered that conventional back 

propagation neural networks are unable to effectively capture the temporal correlation among data. 

This led to the development of a long short-term memory (LSTM) model for creation of a 

production prediction model that considers both production data trends and context correlations.  

The findings indicate that the projected output generated by the LSTM network has a strong 

correlation with the real output, thereby effectively representing the dynamic fluctuations in 

production. In their study, Luo et al. (2019) constructed non-linear models and employed Random 

Forest (RF) and Deep Neural Network (DNN) algorithms to predict the total oil output over a 

period of 6 months. The complete dataset was acquired from approximately 3600 wells located in 

the Eagle Ford formations. The analysis revealed key geological characteristics, including 

structural depth, formation thickness, and total organic carbon (TOC), as input variables that 
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influenced the productivity of wells in Eagle Ford. Obite et al (2021) conducted a comparative 

analysis of a classical model (ARIMA) and two machine learning models (ANN and RF) at the 

level of crude oil production modeling in Nigeria. The Artificial Neural Network (ANN) model 

that achieved the optimal balance between Root Mean Square Error (RMSE), Mean Absolute 

Percentage Error (MAPE), and Nash—Sutcliffe Efficiency (NSE) parameters was employed for 

the prediction of crude oil output in Nigeria. The present study has conducted a comprehensive 

examination of machine learning and time series forecasting methodologies employed in the 

analysis of oil production. Furthermore, the model performance criteria employed to assess the 

accuracy of the forecast were elucidated, and the findings were thereafter presented and deliberated 

about. 

1.3.1. Workflow 

The input and output data that were gathered from the Volve production field in Norway served as 

the basis for the crude oil production data that was utilized in this academic investigation. For the 

period beginning in September 2007 and ending in September 2016, the data consists of daily 

production estimates. The data was separated into two sets, often known as the training set and the 

test set, in a manner that was not random but rather sequential. There is a way to prevent data 

leakage for future prediction, and that way is through the sequential split. Sixty percent of the data 

is comprised of the training set, while the remaining thirty percent is for the test set. The training 

set is utilized for the purpose of estimating the parameters of the model, whereas the test set is 

utilized for the purpose of validating the model and gaining an understanding of how well the 

model performs on new datasets. There were five different models that were applied to the data. 

These models included time series forecasting methods such as ARIMA and Prophet, as well as 

machine learning models such as Random Forest, CatBoost, and XGBoost algorithms. Using the 

RMSE, MAE, and R2 score, the best model was chosen to represent the data. 

1.3.2. Data cleaning and preprocessing 

As part of the data cleaning procedure, several useless columns related to oil production forecast, 

including well_bore_code, npd_well_bore_code, npd_well_bore name, npd_field_code, and others 

were eliminated. Descriptive statistics analysis of the data revealed the presence of outliers, which 

were subsequently substituted with zero. The presence of numerous readings per day, which were 

not necessarily taken at a certain moment for some days, resulted in a significant amount of lost 
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data. The method employed in this study to address the missing values was to consolidate the data 

into a daily frequency instead of removing or replacing the missing values. To do this, the various 

readings for each day were grouped based on the date column and then the sum for each day was 

determined.  Only two essential data elements were necessary for the univariate analysis: the date 

column and the goal variable (oil production). Hence, a single-dimensional data frame was 

generated for the purpose of time series prediction utilizing ARIMA and Prophet models. 

 Comprehending the distribution of variables is essential while performing data analysis. 

The Kalman Filter (KDE) is a nonparametric technique employed for the estimation of the 

probability density function of variables. A significant observation is that the majority of the 

distributions exhibit non-normality, with certain distributions being bimodal and others being left-

skewed. Consequently, data transformation is essential to standardize the data, so enhancing the 

efficiency of the model. Presented in this context, Figures 1.3.2.1-1.3.2.7 depict the univariate 

distribution of each characteristic by constructing a histogram and applying a kernel density 

estimate (KDE) for fitting. 

 

Figure 1.3.2.1. Distribution of downhole pressure 
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Figure 1.3.2.2. Choke size distribution 

 

Figure 1.3.2.3. Distribution of averaged choke size 

 

Figure 1.3.2.4. Distribution of average annulus pressure 
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Figure 1.3.2.5. Distribution of average downhole pressure tubing pressure 

 

Figure 1.3.2.6. Distribution of average downhole temperature 

Following the completion of the data cleaning procedure, it was imperative to analyze the 

association among the variables in the dataset. This measure was implemented in order to mitigate 

the problem of multicollinearity, which can greatly affect the precision of the findings. A heatmap 

was created to visually represent the correlation between the variables. The heatmap illustrated the 

interrelationships among the several variables in the dataset. This facilitated a rapid and effortless 

ascertainment of any robust correlations, which could then be taken into consideration during the 

study.            

 Through careful analysis of the heatmap (Figure 1.3.2.7), it is evident that there is a flawless 

correlation between the amounts of oil production and gas output. To mitigate the risks of data 

leaking and overfitting, the variables related to gas production and water production were 
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eliminated. Furthermore, as oil, gas, and water are generated simultaneously, it is not feasible to 

use these variables as predictors for oil production volume in real-life applications. As a result of 

their low feature importance and minimal effect on the accuracy of the model, the average wellhead 

pressure and temperature were eliminated from the dataset in order to enhance the precision of the 

forecast. 

 

Figure 1.3.2.7. Heatmap of correlation of the dataset features 

To facilitate the machine learning-based prediction, the data underwent normalization using the 

MinMaxScaler. Only the pertinent characteristics that resulted in improved precision in forecasting 

oil production were preserved in the dataset. Table 1.3.2.1 presents a concise overview of the six 

main characteristics that made a substantial contribution to the forecast of oil output. The precise 

selection of these features enabled the study to enhance the forecast accuracy and guarantee the 

relevance and effectiveness of the analysis. 
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Table 1.3.2.1. The overview of the parameters impacting on the forecast. 

Feature description Value 

Average Downhole Temperature 101.06 

Average Tubing Downhole Pressure 244.28 

Average Choke Size 198.2 

Choke Size DP Ratio 8.078 

Average Downhole Pressure 242.73 

Average Annulus Pressure 36.44 

 

1.3.3. ARIMA forecasting model 

The ARIMA model, which was formulated by Box and Jenkins in 1976, integrated the Moving 

Average (MA) and Autoregressive (AR) models for stationary population data. The formula given 

is ARIMA (p, d, q), where "d" represents the number of differenced data points required to reach 

stationarity, "p" denotes the number of lags in the Partial Autocorrelation Function (PACF) plot 

that surpasses the significant threshold, and "q" represents the number of lags in the Autocorrelation 

Function (ACF) plot that surpass the significant threshold. This topic is thoroughly elucidated in 

the work of Nwosu and Obite (2021). An ARIMA (p, d, q) model for a time series data X is defined 

by Equation 1: 

𝜑(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = 𝜃(𝐵)𝑍𝑡  (1.3.3.1) 

where: 

φ (B) - characteristic polynomial of order “p”, θ(B) - characteristic polynomial of order “q”, (1 - 

B)d - differencing of order “d” of the data, Xt - observed value at time t, Zt - random error 

1.3.4. Prophet Forecasting Model 

Prophet forecasting, a Bayesian nonlinear generative model for time series forecasting, was 

developed by the Facebook Research team (Taylor and Letham, 2007) with the aim of providing 

high-quality multistep-ahead forecasting. Prophet facilitates the automation of term computations 

in the model and mitigates forecast inaccuracies. This library predicts data using either the logistic 

growth model for non-linear data or the piecewise linear model for data with linear characteristics, 
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with the selection of the latter being the default choice. The library offers user-friendly and intuitive 

settings that can be readily adjusted by anyone without expertise in forecasting. The Prophet 

forecasting model employs the additive regression model expressed by Equation 1.3.4.1. This 

model consists of the following components:        

 Given by: 

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝐴𝑡    (1.3.4.1) 

Where:            

 Let y(t) be the variable of interest. The figure g(t) represents a piecewise linear or logistic 

growth curve. Let s(t) represent periodic changes. Variable h(t) represents the impact of irregular 

holidays. Δ, - error term that considers any unpredictable fluctuations. 

1.3.5. XGBoost Statistical Model 

XGBoost or Extreme Gradient Boosting stands out amongst the rest as a go-to option and favorite 

in the field of machine learning, such as benchmarking appears effortless due to its uses in 

customized ensemble learning technique. XGBoost’s algorithm works on a decision-tree model 

that unites the pros of both bagging and boosting methods. In Bagging, a number of decision tree 

models are developed using random samples of the training set, after which their predictions are 

statistically averaged to obtain the final result. Using this method reduces the variance within the 

model, making it more robust. In boosting, there is a conditioning algorithm that adds a new tree 

onto the model that was previously fitted on the data, with the next tree learning from the biases of 

the previous tree. The basic learners in boosting are weak learners who have high bias and low 

prediction power. But, when these are combined, they produce a learner that is low in bias and 

variance. Both bagging and boosting improve the strength and accuracy of decision tree models 

tremendously. In XGboost, the process of constructing the decision trees is iterative, with new trees 

correcting errors of older trees. Bagging and boosting allows the construction of multiple decision 

trees and therefore enabling more precise forecasts. 

Additionally, XGBoost incorporates the regularization technique to reduce overfitting, so enabling 

it to be more robust and better at generalizing to new data. XGBoost is very effective when working 

with large datasets containing a lot of features because it is designed to perform best with high-

dimensional data. This model is recognized for its speed and scalability, facilitating training and 

prediction on large datasets significantly faster. 
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1.3.6. The CatBoost model 

Catboost is a quantile regression method with an integrated gradient boosting learning 

algorithm built from the ground up to deal with categorical features. Like other boosting schemes, 

this strategy is based on decision trees, but it has a unique approach to handling categorical values. 

Categorical features do not need to be one-hot encoded or preprocessed because CatBoost is able 

to do so automatically. Stubbs said CatBoost, along with other machine learning algorithms, does 

a good job handling missing values as well. Due to the implementation of a symmetric tree structure 

for decision tree construction, CatBoost delegates pruning and boosting. As a result, training is 

faster and more accurate than with other methods that use decision trees. Moreover, the innovation 

in calculating gradients and hessians boost training speeds. Training is done by iteratively 

generating/adding a set of decision trees, each with superior accuracy to the last. As the index of 

newly added trees becomes higher, the accuracy gets closer to that of previously added trees, 

meaning the addition of less accuracy. Starting criteria defines how many trees must be planted.   

CatBoost also adds other optimizations like adaptive learning, early stopping, computing 

importance of features, and rate calculating defined on the number of features added to the model. 

These improve the efficiency of training, prevent overfitting, and augment model interpretability. 

1.3.7. Ensemble Random Forest Model 

The Random Forest approach integrates multiple decision trees and applies ensemble learning to 

classification and regression problems. The final output value is the average predicted value (in 

regression) or the class that appears most frequently (in classification) among all of them, according 

to Ho’s definition (1998). This paper by Nwosu et al. (2021) gives an exhaustive account of the 

Random Forest algorithms. The Random Forest algorithm employs a subset of attributes to split 

nodes, which have been preselected randomly. Thus, a model which is improved over predecessors 

can be created. To grow each tree, the following steps are taken: 

1. Start with choosing the cases: to build the tree, choose M case records from the given 

dataset. Assume that the dataset contains M records and you can choose them multiple times. 

2. Do the same for each node: With the set of explanatory variables P, you need to choose 

a specific number p that is less than P. Then you make a random selection of p variables to limit 

yourself to. 
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With the optimal split algorithm, this node will be divided on the p selected variables. While 

growing each decision tree in the forest, p is a fixed value. If two trees are correlated, the error rate 

in the forest will increase. When “p” is lowered, the degree of association among trees is less. 

1.3.8. Forecasting Performance measures 

Precise evaluation of our models using suitable metrics is crucial. Within time series forecasting, 

several metrics can be employed to assess the performance of a model. The optimal model for 

crude oil production in the Volve Field in Norway was determined using the Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R2 score). The 

algorithm exhibiting the lowest RMSE and MAE values, together with the greatest R2 score value, 

is selected as the most effective algorithm. The performance evaluation metrics can be calculated 

using the formulas provided in equations 1.3.8.1-1.3.8.3. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝐴𝑖 − 𝐹𝑖|  (1.3.8.1)

𝑛

𝑖=1

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐴𝑖 − 𝐹𝑖)2 𝑛

𝑖=1  (1.3.8.2) 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
   (1.3.8.3) 

Where, 

Ai = Actual value, Fi = Forecasted value, RSS = Residuals sum of squares, TSS = Total sum of 

squares 

1.3.9. Machine Learning Based Prediction 

The present work employed decision-tree based machine learning algorithms, which possess the 

ability to take into account several variables and generate precise predictions. Through the 

integration of reservoir conditions and production equipment data, our system attains superior 

accuracy and reliability in its forecasts compared to conventional time series forecasting methods. 

Three machine learning algorithms, namely XGBoost, CatBoost, and Random Forest, were 

deployed to forecast crude oil production. 70% of the data was used to fit the models, while the 

remaining 30% was used for evaluation. Following the training of the models using the training 

data, an analysis was conducted on the factors that influenced the prediction accuracy of the three 
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models. Analysis of the top features revealed that related features enhanced the model's accuracy, 

as depicted in Figure 1.3.9.1. 

 

 

Figure 1.3.9.1. Feature importance diagram for 3 top performing models 

Only six characteristics were found to be important to the correct prediction of crude oil output 

after meticulous iterations of training had been performed to achieve the highest possible accuracy 

across all three models. Figures 1.3.9.2a-1.3.9.2c illustrate the outcomes that were discovered as a 

consequence of the predictions made by the three models. 
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Figure 1.3.9.2a. Random Forest Algorithm performance 

 

Figure 1.3.9.2b. CatBoost Algorithm Performance 



 
 

51 
 

 

Figure 1.3.9.2c XGBoost Algorithm Performance 

The analysis of Figure 1.3.9.2a:1.3.9.2c revealed that the Random Forest method exhibited the 

highest performance in terms of the Mean Absolute Error (MAE). This metric is crucial as it 

provides insight into the proximity of our forecast to the actual values. In contrast, the CatBoost 

algorithm exhibited superior performance in terms of the RMSE and R2 score. Given the absence 

of a model exhibiting superior accuracy across the assessment measures, the prediction accuracy 

was enhanced by the implementation of hyperparameter tuning and stacking techniques.  

The data presented in Figure 1.3.9.2a:1.3.9.2c represent the outcomes of the baseline models 

without any optimization. In order to achieve a more optimal outcome and a corresponding 

improvement in accuracy, we conducted hyperparameter tweaking on each of the models using the 

GridSearchCV package. Table 1.3.9.1 displays the findings for the optimal hyperparameters. 

Random Forest continues to exhibit the highest performance in terms of Mean Absolute Error 

(MAE), with a limited improvement compared to the baseline model.    

   Table 1.3.9.1. ML model prediction results 

 MAE RMSE R2 

XGBoost 197.41 461.91 0.967 

CatBoost 184.49 413.83 0.973 

Random Forest 173.7 436.74 0.971 
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Given the comparable prediction accuracies of the fine-tuned models and the baseline models, we 

opted to leverage the respective strengths of each algorithm by performing a stacking operation to 

see if it would result in an enhancement in accuracy. 

1.3.10. Stacking 

The stacking procedure was performed using the stacking regressor tool in the sklearn machine 

learning toolkit. The estimators used were XGBoost, CatBoost, and Random Forest, with RigdeCV 

serving as the final estimator. Following the stacking procedure, there was a notable improvement 

in the precision of the forecasts across all evaluation criteria. The outcome is depicted in Figure 

1.3.10.1.

 

Figure 1.3.10.1. Stacking Regressor Model Performance 

1.3.11. Model Comparison 

Upon evaluating the several approaches employed in this work to forecast crude oil production, it 

has been confirmed that the stacking regressor outperforms all other techniques in terms of 

assessment metrics. Figure 1.3.11.1 presents a concise overview of the performance of all the 

models employed in this investigation, categorized by mean absolute error (MAE) and coefficient 

of determination (R2 score), arranged in order of decreasing order of performance. 
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Figure 1.3.11.1. Model comparison outcomes. 

Created models undergo thorough evaluation through statistical analysis and error measures, 

demonstrating varying levels of predictive accuracy. Considering the model performances, the 

LSTM model is suitable for forecasting petroleum output, effectively addressing seasonality and 

production anomalies throughout the reservoir's lifespan. The analysis of several statistical models 

suggests that, instead of relying solely on oil output as the input variable, it is essential to 

incorporate additional characteristics to predict oil production in a reservoir. The forecasting 

efficacy demonstrates that the suggested LSTM model is applicable to long-term time series 

predictions in the petroleum sector. The research demonstrates that selecting the appropriate 

optimizer is crucial for training the LSTM model. An LSTM architecture optimized by the ADAM 

(Ifeoluwa Jayeola, Bukola Olusola and Kale Orodu, 2022) algorithm yields enhanced training and 

validation accuracy across all forecasts. The suggested utilization of computational tools in 

forecasting issues has demonstrated itself as a robust and dependable approach for predicting the 

future performance of production wells. Hence, in this research, as ML model, LSTM and XGBoost 

model will be utilized. 
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CHAPTER II. METHODOLOGY 

As the toolkit for making the models, Python and its libraries will be used. The core part of the 

model, LSTM model, through each layer’s 50 memory units will be able to provide a sequence of 

output rather than single value. The LSTM layer can receive 3D input. A dropout layer is included 

after each LSTM layer to prevent overfitting and enhance generalization error. The output layer is 

dense and uses a linear activation function to collect input from the previous layer's neurons. The 

libraries required for constructing the model are: 

▪ NumPy. 

▪ Matplotlib. 

▪ Pandas. 

▪ Keras; 

▪ Scikit-learn. 

As feature engineering stuff, using data mining techniques to extract features from existing datasets 

improves prediction model performance by better representing the underlying problem. 

Scikit-Learn's MinMaxScaler was used to scale our dataset to a range of zero to one for feature 

scaling. The input data is converted to a 3-dimensional array with 60 timestamps and one feature 

for each step. 

2.1. Data collection and analysis 

For the goal of high accuracy results in the model, data collection and processing are the key stage 

at beginning of the model, while tackling data inconsistencies. As data sources, production data 

from Volve field wells (choke position, downhole pressure and temperature, wellhead pressure, 

GOR, oil rate, water rate, water injection rate, reservoir pressure and time-series data) will be 

utilized in the model. As parts of methodology, 3 different models will be used for the production 

forecasting: ARIMA, Holt Winters and LSTM models. 
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2.2. ARIMA Model 

This study's first model was the auto-Arima model. The model used autoregressive terms, seasonal 

and non-seasonal differences, and moving averages for the number of lagged forecasts in the 

prediction equation. The general formula for describing ARIMA models is given in Equation 2.2.1 

below: 

𝑥(𝑡) = ∑ 𝑎𝑖𝑥(𝑡 − 𝑖) − ∑ 𝛽𝑖𝜀(𝑡 − 1)

𝑞

𝑖=1

𝑝

𝑖=1

  (2.2.1) 

The model's fit was created using Python's statsmodel module. Hyperparameters were used to 

optimize the auto-regressive, integrated, and moving average parameters of the generated model. 

The training dataset was first obtained from the train-test split, conducted during preprocessing. 

The auto-regressive parameter (p) and moving averages were assigned values between 1 and 3. 

The integrated parameter (d) was set at 0 with a maximum value of 1. The dataset's seasonality was 

set to 12 for True Boolean states. A maximum order of 12 was chosen for the model with 50 fits. 

The ARIMA model's order was determined using Akaike's Information Criterion (AIC).  

An example from the ARIMA model: 

 

Figure 2.2.1. Normalized residual plot for this model 
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Figure 2.2.2.  ARIMA model’s standardized Autocorrelation residual plot. 

2.3. Holt Winters 

The Holt-Winters statistical model, which employs the exponential smoothing procedure, was 

utilized next in this investigation. Forecasting for this model was based on the previous period's 

forecast and actual value. Equation 2.3.1 represents the general mathematical expression for basic 

exponential smoothing. 

𝑦𝑡+1
′ = 𝑎𝑦𝑡 + (1 − 𝑎)𝑦𝑡−1

′  (2.3.1) 

In this equation, y' indicates anticipated values at specific intervals, y is the actual value, and an is 

a smoothing factor ranging from 0 to 1. The Holt-Winters model was selected because it anticipates 

time series data with both trend and seasonal fluctuations. The model's hyperparameters were 

tweaked to get an optimal fit. The arguments supplied through the model included dependent 

variables, seasonal periods, trends, and seasonal states. The dependent variable was the oil 

production rate, which was adjusted for trend and seasonality. 

Examples of the model output from the literature review: 
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Figure 2.3.1. Distribution plot for Holt Winters model of exponential smoothing. 

2.4. LSTM Model 

A multivariate LSTM model was also created to anticipate oil output using many observations over 

a single time step/period. A stacked LSTM approach was utilized, with the amount of time steps 

and parallel series specified in the input layer. The number of parallel series was used to designate 

how many values the built model should predict in the output layer. This was counted as two. 

During model creation, the Mean Absolute Error served as the loss function, and Adam was used 

to identify the best model selection. Following model design, the training dataset was used to train 

the model. For this case, there were five hyperparameters: number of epochs, batch size, validation 

data, verbose, and a Boolean for shuffle. 400 epochs were employed, with a batch size of 36 and 

two hidden layers. Cross-validation was utilized to each iteration of the model creation process, 

and the loss for each iteration was calculated.  

The training dataset was utilized to train all of the models. The approach produced results, and the 

models were tested for prediction using the test dataset. The models' performance was tested using 

statistical error metrics, including MAE, MSE, R2, and RMSE.  

The example output from the model: 
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Figure 2.4.1. The losses of value in the LSTM model development. 

 

Figure 2.4.2. Prediction performance of LSTM model. 

2.5. XGBoost model 

For the prediction, XGBRegressor (XGBoost) model is used, as that is good at handling complexity 

in production data, robust to outliers and missing parameters and supporting early stopping in order 

to prevent overfitting. For estimating the uncertainty, HistGradientBoostingRegressor (Scikit-
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learn) is utilized. This one deals with uncertainty of the prediction, by applying confidence 

intervals. This model is more memory-efficient and faster than typical Gradient Boosting, handles 

NaN values natively and made for quantile regression in comparison to XGBoost. 

2.6. Error analysis 

The mean absolute percentage error compares the expected values to the actual values. A forecast 

model with an MAE value around zero is considered good, however zero MSE indicates no error, 

which is nearly impossible. The mean absolute error for this investigation was calculated using a 

scale similar to the time series data being simulated. The Mean Absolute Error (MAE) was 

determined using Equation 2.6.1:  

𝑀𝐴𝐸 =
1

𝑛
∑ 𝑎𝑏𝑠(𝐸𝑖)     (2.6.1)

𝑛

𝑖=1

 

Where, E stands for Error. 

The Mean Square Error (MSE) represents the standard deviation of residuals (prediction mistakes). 

It indicates the proximity of a regression line to a group of points. It calculates the squares of the 

absolute residuals. A lower MSE, similar to the MAE, indicates a more accurate prediction model. 

Equation 2.6.2 yields the Mean Square Error (MSE):  

𝑀𝐴𝐸 = [
1

𝑛
∑ 𝐸𝐼

2

𝑛

𝑖=1

]

1/2

 (2.6.2) 

The Root Mean Square Error (RMSE) is the average of the mean square error values in Equation 

2.6.2.  

The equation 2.6.3 yielded the following relationship: 

𝑅𝑀𝐴𝐸 = [
1

𝑛
∑ 𝐸𝑖

2

𝑛

𝑖=2

]

1
2

(2.6.3) 

The coefficient of determination (R2) assesses the correlation between the output and the goal 

variable.  

The coefficient of determination (R2) value is assessed on a scale of 0 to 1. The R2 value, 

comparable to the coefficient of correlation, indicates the strength of a linear relationship between 
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expected output and target variables. Equation 2.6.1 provides the mathematical expression for the 

coefficient of determination:  

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦′)2𝑁

𝑖=1

∑ 𝐸𝑖
2 𝑛

𝑖=1

     (2.6.1) 

Where, y’ shows the mean of the values, while yi distributes the actual target values. The variance 

of the data is proportional to the numerator. 

2.7. Output Generation 

To develop a production forecast, the model is evaluated using the testing data set. After a few 

epochs, the model accurately predicts based on the shape and position of the historical time series. 

To evaluate our simulation results, we select an existing well that was previously unknown to the 

LSTM model and anticipate its production. The prediction profile from the Neural Network is 

compared to the actual production profile to determine the trend of the findings.  

2.8. Visualization 

Data visualization uses visual tools like charts, graphs, and maps to highlight trends, anomalies, 

and patterns in historical well data. Data visualization is the visual display of data. Matplotlib, a 

Python-based charting package, was utilized in this study to show projected and actual production 

profiles.  
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 RESULTS 

As was mentioned in the above sections, the production dataset of Volve field belonging to Equinor 

will be used. Before showing the results, it is good to show what has been provided from publicly 

available wells. Figure 3.1 shows the water and oil production from each well. The 15/9-F-5 well 

is on the list of both injector and producer. It was an injector, then converted into an oil producer. 

15/9-F-12 and 15/9-F-14 are the producers which produced the longest time. 15/9-F-14 has been 

selected as one of the longest producing wells and has quite a long production history. 

 

Figure 3.1. Oil and water production from the wells 
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Figure 3.2. Oil and water production from the wells 

If it is visualized in the form of pie chart, the contribution of produced reservoir fluids from each 

well can be shown below: 
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Figure 3.3. The contribution of oil production per well. 

 

Figure 3.4. Contribution of gas production per well 
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Figure 3.5. Contribution of water production per well. 

 For the optimization of performance of the model, the extraction of all important features from the 

dataset is needed. The data for the model optimization is both temporal and spatial. To build a 

comprehensive model of the reservoir, data extraction from surface related operational conditions, 

PTA results, different petrophysical logs (open and cased holes), well tests, survey of temperature, 

injection and production history, well design details, core data, etc are needed. 

But for this research, the focus will be on Machine Learning rather than extraction of the feature. 

Dynamic (temporal) data will be utilized: downhole pressure, downhole temperature, tubing 

pressure, annulus pressure, choke size, wellhead pressure, oil, water and gas production data 

(Figure 3.6): 
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Figure 3.6. The distribution of the data needed for consideration of production prediction 

For the production forecasting ML model, the production data of 15/9-F-14 will be utilized. The 

plots for production of oil, water and gas versus the date have been provided below: 
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Figure 3.7. Oil production distribution of 15/9-F-14. 

 

Figure 3.8. Gas production distribution of 15/9-F-14. 

 

Figure 3.9. Water production distribution of 15/9-F-14.  

In LSTM, the previous time step data is fed, and current time step’s target is predicted. For this 

case, given production data will be fed into the previous step, and we will forecast the current one 

for water, gas and oil production. If the data will be separated into two parts: features and targets. 

LSTM utilizes the data type of NumPy; hence the data must be converted into DataFrame type to 

NumPy data type. Sklearn will be utilized to split data into 70% for training, 15% for validation, 

and 15% for test data. 

Visualized form of the data after split is shown below plot: 
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Figure 3.10. Training, validation and test data for oil rate 

 

Figure 3.11. Training, validation and test data for gas rate 

 

Figure 3.12. Training, validation and test data for water rate 

After testing, it has been clear that utilization of 5 time steps (days) for input and only one time 

step (day) for output provides the desirable result. Consequently, the data will be: 

• The features for the 5 days and the target for the 6th day. 

• The next is that all features for next 5 days (2nd to 6th days) and target of the 7th day and in 

this order, these steps will continue. 

To provide better understanding, for the first batch, sample data can be examined: 
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• As input, 5 time steps, each one containing a dozen of features, as output, single time step, 

which has 3 targeted values. 

• It is noteworthy to mention that the last 3 data from 12 input data are related to production 

of oil, gas and water for the previous time step, accordingly. 

• The targets for the current one then turn into input for the next step of time. The following 

steps of time will be continued in this pattern. 

While starting training model, EarlyStopping from TensorFlow is utilized to stop the training 

early in case of not making significant improvements on data validation stage. After the training 

of the model, EarlyStopping is activated in around 220 epochs. The following plot shows the 

losses for training and validation: 

 

Figure 3.13. The training and validation data losses. 

Now the trained model can be used for prediction for production on the test data. 



 
 

69 
 

 

Figure 3.14. Actual and predictable data for the produced fluids. 

From the plots, it is seen that the model has very good prediction for, however that for oil and gas 

near to the end of the production deviation starts to increase. 

For the comparison, another ML model can be used, as LSTM shows some imperfections. For the 

prediction, XGBRegressor (XGBoost) model is used, as that is good at handling complexity in 

production data, robust to outliers and missing parameters and supporting early stopping in order 

to prevent overfitting. For estimating the uncertainty, HistGradientBoostingRegressor (Scikit-

learn) is utilized. This one deals with uncertainty of the prediction, by applying confidence 

intervals. This model is more memory-efficient and faster than typical Gradient Boosting, handles 

NaN values natively and made for quantile regression in comparison to XGBoost. The combo of 

two models provides the following results (Figure 3.15-3.17) 
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Figure 3.15. Actual and predicted production for oil with 80% confidence  

 

Figure 3.16. Actual and predicted production for gas with 80% confidence 

 

Figure 3.17. Actual and predicted production for water with 80% confidence 

When it comes to the comparison of the models with numbers, the following table (Table 3.1) 

and the bar chart summarize all the prediction accuracies: 
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Table 3.1. Comparison of the models: 

ML Model Fluid MAE RMSE R2 

XGBoost 

Oil  0.75 1.60 0.9975 

Gas 132.18 355.28 0.9941 

Water 0.71 2.88 0.9999 

LSTM 

Oil  7.53 12.15 0.8535 

Gas 1255.85 2007.62 0.8114 

Water 150.48 239.90 0.1069 

 

 

Figure 3.18. The visual distribution of model comparisons. 
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CONCLUSION 

In this paper, we tested and compared two different methods, XGBoost and Long Short-Term 

Memory (LSTM), for time-series forecasting of oil, gas, and water production in petroleum 

reservoirs. The real-field data comparison highlights drastic differences in accuracy, computing 

costs, and reliability, of relevance not exclusively at field level, but also at corporate level. 

The findings indicated that XGBoost had a superior performance to LSTM in terms of the target 

variables. It was highly accurate in oil production prediction (R² = 0.997, MAE < 1 bbl/day) with 

similar performances for gas (R² = 0.994, MAE = 132 Mcf/day) and water (R² = 0.999, MAE = 

0.71 bbl/day). Such accuracy allows reservoir engineers to make decisions with confidence about 

XGBoost predictions within a short and mid-term operational plan - e.g. production allocation, 

well intervention scheduling, lift optimization. Furthermore, the stability of the model with 

multiphase flow and varying pressure demonstrates the applicability of the model in complex 

reservoir. On the other hand, the LSTM model tended to fail to figure out the production tuning, 

especially for water (R² = 0.107) and demanded more computational burden, resulting in less 

accurate and less efficient outputs. 

From an economic perspective, the backtesting differential between the two models has 

measurable value. For a 10,000 BOPD producing field, a 1% improvement in forecast accuracy 

can save around $1 million a year (by minimizing over or underproduction and better utilizing the 

surface facilities). On the same note, accurate gas prediction enables limited flaring, and the 

potential to save up to $300,000 in annual regulatory penalties and lost revenues based on the 

current gas prices. Near-perfect water prediction is not only used for forward planning for 

injections and disposals, but it is also helping to avoid unnecessary handling charges and to reduce 

problems, such as scaling and corrosion, that can extend equipment life, and that often reduces 

capex over a decade by up to 30%. 

In addition to delivering direct cost savings, the implications of this work are of interest in the 

context of asset planning and strategic decision making. Accurate predictions allow well 

workovers to be prioritized by indicating poorly producing wells or re-fracturing candidates. For 

instance, a single well that has the potential to increase production by 5% could yield more than 

$2,000,000 in additional revenue per year. Precise forecasting also underpins risk management, 
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such as hedging financial risk based on production certainty, and this improves the precision of 

reserve reporting under regulations such the SEC or NPR, lower exposure to litigation or audit 

risk. 

Currently, this work provides insights into future deployment. Fleetwide integration of XGBoost 

can be rolled out in the short term across live assets by ensuring that it flows to SCADA systems 

and real-time dashboards to optimize daily operations. Educating field engineers to interpret 

SHAP values and feature importance metrics can drive ML democratization and improve the cross-

collaboration between domains. In the medium term, hybrid models such as using XGBoost 

alongside reservoir simulators could help long-term depletion forecasting – and the 

underperforming LSTM may be useful for detecting anomalies as its sensitivity to ‘odd’ patterns 

becomes an advantage. More-long term strategies may involve things like incorporating these 

models into digital twin models or tying gas forecasting to flare power projects which are 

connected to sustainability and ESG initiatives. 

In summary, the results strongly demonstrate that XGBoost is a better machine learning model for 

data-driven production forecasting than the studied reservoir setting due to its unprecedented 

accuracy, interpretability and model efficiency. Although deep learning remains promising for 

future applications—such as when a hybrid model is trained and/or a larger dataset is available-

current evidence indicates a preference for ensembled methods such as XGBoost in practical 

deployment. The findings not only improve the technical understanding of ML model performance 

in reservoir forecasting but also provide a practical guideline for embedding data science in asset 

optimization, capital planning, and long-term field development strategy. 
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