

KHAZAR UNIVERSITY

School: Graduate School of Science, Art and Technology

Department: Computer Science

Qualification: Software of Computer Systems and Networks

MASTER THESIS

TOPIC: Implementation of shortest route algorithms in Smart City

 Student: Mustafa Mustafayev Azer

 Supervisor: Assoc. Prof. Dr. Leyla Muradkhanli Gazanfar

 Baku – 2024

 XƏZƏR UNİVERSİTETİ

Fakültə: Təbiət elmləri, Sənət və Texnologiya yüksək təhsil

Departament: Kompüter elmləri

İxtisas: Kompüter sistemlərinin və şəbəkələrinin proqram təminatı

 MAGİSTR TEZİSİ

MÖVZU: Ağıllı şəhərdə ən qısa marşurutun tapılması alqoritmi

 Tələbə: Mustafa Azər oğlu Mustafayev

Elmi rəhbər: t.ü.f.d., dos. Leyla Qəzənfər qızı Muradxanlı

 Bakı – 2024

TABLE OF CONTENTS

INRODUCTION. ... 5

CHAPTER 1. LITERATURE REVIEW ... 6

1.1. Case of IoT Research within Azerbaijan .. 10

1.2. Literature review of work by Carlo Ratti .. 13

1.3. Literature review of work by Deborah Estrin ... 14

CHAPTER 2. METHODOLGY ... 15

2.1. Forecsted Solution based on Literature... 15

2.2. Explanation of criteria for algorithms selection and comprasion 17

2.3. Explanation of the performamce metrics employed to evaluate the algorithms 18

CHAPTER 3. STATE OF ART .. 20

3.1. Status of amalgamated research .. 23

3.2. Research done from Algorithmic point of view ... 23

3.3. Research done from Ecological point of view .. 28

3.4. Research done from IoT point of view ... 30

CHAPTER 4. SYSTEM ARCHITECRURE____________________________________29

4.1. Solution understanding basis .. 32

4.2. Theoretical Approach.. 32

4.3. Proposed Solution ... 35

4.4. Dataset Gathering.. 36

4.5. Conceptual Architecture ... 37

4.6. Pseudocode ... 39

4.7. Limitations & Improvements .. 41

CHAPTER 5. EXPERIMENTAL RESULT ... 43

5.1. Experimental Set-up & Goals ... 43

5.2. Measurement Results/Analysis/Discussion .. 46

5.3. Description & Interpretation ... 48

5.4. Discussion and Interpretation of Results .. 50

CONCLUSION .. 50

APPENDIX ... 51

 4

INTRODUCTION

In today's world, efficiently coordinating meetings among individuals located in different

geographical areas is a significant logistical challenge. A smart city uses technology to improve

people' quality of life, urban infrastructure efficiency, and sustainable development. Modern

cities depend on efficient mobility, therefore enhancing transportation networks is a major part

of this strategy. Traditional navigation systems, although useful, sometimes fail to meet urban

complexity and dynamics. Thus, smart city ecosystems need innovative route optimization

methods to address their specific difficulties and potential

This study addresses two primary research questions:

1) How can we determine the optimal meeting point based on users' geographic locations?

2) How can Google APIs be utilized to find the most convenient meeting points in real time?

To tackle this issue, an Android application has been developed that leverages Google APIs to

collect users' locations and calculate a central, convenient meeting point for all participants. The

main objective of this application is to simplify the process of organizing both social and

professional meetings.

Relevance. People often spend a considerable amount of time and effort coordinating meetups

from various geographical locations. Solving this problem can make social and professional

meetings more efficient and convenient.

Importance. The development of this application addresses logistical challenges, helping

individuals to plan their meetings more efficiently. This contributes to a more organized and

productive personal and professional life. Additionally, the application's real-time suggestions

provide accurate and convenient solutions for finding optimal meeting points. Such technology

facilitates the coordination of both personal and business meetings, thereby preventing time loss

and reducing energy expenditure.

Object. The object of this study is an Android application developed to determine optimal

meeting points based on geographical locations. The application uses Google APIs to collect

users' positions and calculate convenient meeting points.

Subject: The subject of this study is the application's algorithms and integration with Google

APIs. The primary goal is to use various geographical and logistical data to determine efficient

and accurate meeting points.

Application Description: This Android application integrates several Google APIs:

 5

Google Maps API: Used for location visualization.

Places API: Used for searching points of interest.

Distance Matrix API: Used for calculating travel distances and times.

Using these tools, the application can provide precise and convenient meeting point suggestions

in real-time. Users can input their current locations or allow the application to automatically

detect their positions. The system then calculates potential meeting points and ranks them based

on accessibility, travel time, and user preferences.

Algorithm and Interface: The application's core algorithm considers various factors:

- The geographical distribution of users.

- Modes of transportation (e.g., driving, walking).

- Real-time traffic conditions.

Link between Smart Cities & Shortest Route algorithms. In smart city development,

efficiency and optimization are constant goals. Local logic for shortest route algorithms is one

of several technical advances that advance smart cities. This unique navigation method

improves logistical processes and exemplifies how cutting-edge technology integrates into

individuals' everyday lives.

Shortest path algorithms find the fastest route between two network nodes. Global algorithms

like Dijkstra's or A* have traditionally used centralized data and substantial computation to do

this. Local logic algorithms provide a decentralized strategy that uses localized data and real-

time information.

Local logic for shortest route algorithms has several advantages. First, it makes the navigation

system adaptable and sensitive to traffic jams and road closures. This real-time optimization

saves travel time, fuel consumption, and greenhouse gas emissions, supporting current urban

planning sustainability objectives.

Local logic empowers and engages communities. By using data from local organizations,

companies, and individuals, the navigation system learns about each neighborhood's distinctive

traits. Localized knowledge improves route accuracy and gives locals a feeling of ownership

and pride in their city's infrastructure. This is particularly important within our historical sites

& specific routes that no other knowledge-based accounts information for other than the people

of those regions.

 6

In addition, local logic algorithms make smart city integration easier. The navigation system

supports a comprehensive urban ecosystem by using data from IoT sensors, mobile apps, and

municipal databases. This integration boosts municipal efficiency and prepares for future

breakthroughs in public transit, emergency response, and urban planning.

Local logic for shortest route algorithms is important for government agencies. Applications

include from optimizing public utility service delivery routes to improving law enforcement

and medical emergency response times. Local data and community participation may boost

government efficiency and effectiveness, improving people' quality of life.

Local logic for shortest route algorithms might transform Azerbaijan transportation networks,

boost local enterprises, and improve livability. Imagine citizens effortlessly traversing the

convoluted streets with a navigation system that maps the quickest path and celebrates the

town's distinctive monuments and attractions. Azerbaijan might become a smart, connected

town where technology drives growth and prosperity via government, corporate, and citizen

participation.

Motivations. This research examines the effectiveness and possible influence of local logic

algorithms for shortest route computations in smart city government organizations. Traditional

global algorithms like Dijkstra's and A* have long been the foundation of navigation systems,

but their centralized structure and dependence on static data sources restrict them in smart cities.

Given these obstacles, local logic algorithms provide a compelling alternative that optimizes

route planning and navigation using localized data and real-time information.

This research examines smart city government institution needs. Government organizations like

public utilities and emergency services keep urban infrastructure running smoothly and

inhabitants safe. Traditional navigation systems sometimes fail to handle these institutions'

particular logistical issues, resulting in inefficiency and inferior results. This research examines

the possible advantages of local logic algorithms for route optimization in government

institutions, concentrating on operational efficiency, service delivery, and community

participation.

The main research questions are:

What are the limitations of traditional global algorithms for route optimization in the context of

government institutions within smart cities?

How can local logic algorithms leverage localized data and real-time information to address the

specific needs and challenges faced by government agencies?

 7

What are the potential benefits of adopting local logic algorithms for route optimization in terms

of operational efficiency, service delivery, and community engagement?

What are the practical considerations and implementation challenges associated with

integrating local logic algorithms into existing navigation systems used by government

institutions?

How can the effectiveness and impact of local logic algorithms be evaluated and measured in

real-world smart city environments?

This study addresses these research issues to see if implementation of local logic algorithms

can optimize routes for government institutions in smart cities. This study uses theoretical

analysis, empirical research, and case studies to inform policymakers, urban planners, and

technology developers about the pros and cons of innovative navigation methods for smarter,

more efficient, and more sustainable cities.

Context of the Study. As governments and urban planners seek new answers to urbanization's

complicated difficulties, smart cities have grown in popularity. Azerbaijan, like many nations,

struggles with urban transportation, service delivery, and infrastructure management.

Azerbaijan is using smart city ideas and technology to create dynamic, efficient, and sustainable

cities in pursuit of growth and wealth. Recently, Azerbaijan's territorial recapture has created

fresh regeneration and growth potential. As the area looks forward, technology and creativity

must be used to restore urban infrastructure and services.

Our android application will examine Azerbaijan urban problems from the point of view of and

prospects via joint research and stakeholder collaborations. From increasing public transit to

boosting emergency response, we aim to find technology-based solutions for Azerbaijan

citizens and government organizations. The Azerbaijani people's tenacity shows the possibility

for constructive development. We value cooperation and community participation as we travel.

We may base our analysis on Azerbaijan reality and goals by collaborating with local officials,

companies, and inhabitants. We can co-create creative solutions to the region's specific issues

and promote sustainable development via open communication and collaboration.

Finally, our analysis advances the concept of a smarter, more resilient Azerbaijan. We want to

strengthen the region's government institutions and enhance citizens' lives via technology and

innovation.

Objectives and Contributions. This study has several main objectives to answer the research

questions:

 8

Traditional global algorithms like Dijkstra's and A* may not be able to meet smart city

government institutions' demands. We intend to uncover these algorithms' main drawbacks in

dynamic metropolitan contexts with decentralized data sources and real-time information via a

thorough literature survey and theoretical analysis.

To investigate the advantages of local logic algorithms for route optimization in government

agencies. These algorithms may increase operational efficiency, service delivery, and

community participation by using localized data and real-time information. We investigate the

practical effects of local logic algorithms in smart city ecosystems using empirical research and

case studies.

To provide a framework for assessing local logic algorithm performance in smart city settings.

This framework will include journey time, fuel usage, carbon emissions, service response times,

and citizen satisfaction. We want to quantify local logic algorithm performance and compare it

to global algorithms using field trials and simulations.

To test the integration of local logic algorithms with government navigation systems. This

includes considering data compatibility, system interoperability, and user interface design. We

want to integrate local logic algorithms into smart city infrastructure seamlessly by working

with stakeholders and technology suppliers.

This project will also test and simulate routing algorithms using the Google Maps API and

environment. Google Maps' large data resources and innovative features allow us to generate

realistic scenarios and test local logic algorithms under different settings. We will also examine

how crowd-sourced traffic data and real-time transit timetables might improve route

optimization algorithms

This research might offer numerous substantial contributions to smart city development

academics and practice in addition to achieving its main goals. This research first examines

local logic algorithms for route optimization in government institutions in smart cities to better

understand how technology may enhance urban mobility and service delivery. We use empirical

research and case studies to provide policymakers, urban planners, and technology developers

practical insights and best practices for improving government services in smart cities. This

study also contributes to smart city research by creating a framework for assessing local logic

algorithm efficacy and effects. To rigorously evaluate the pros and cons of alternative

navigation systems, we want to provide explicit criteria and procedures for measuring routing

 9

algorithm performance. This approach may aid urban planning and transportation management

research and practice.

This research also integrates the Google Maps API and ecosystem into our trials and simulations

to demonstrate the potential of current technological platforms and data resources for smart city

efforts. Google Maps lets us construct realistic urban settings and test local logic systems. We

also seek to improve our route optimization algorithms by using Google Maps' real-time traffic

statistics and transit timetables. We compare global algorithms like Dijkstra's and A* against

local logic algorithms to show their strengths. Instead, than concentrating on the flaws of current

algorithms, our research explores how multiple algorithms might work together to create a more

robust and adaptable navigation system. We strive to find realistic ways to integrate different

routing algorithms into navigation systems to enhance urban mobility and service delivery by

working with experts and stakeholders.

In conclusion, this research might help us understand how technology can make cities smarter,

more efficient, and more sustainable. We strive to revolutionize smart city development with

actual advantages for inhabitants, companies, and government institutions via empirical

research, methodological contributions, and practical insights.

 10

CHAPTER 1. LITERATURE REVIEW

1.1. Case of IoT Research within Azerbaijan

In the instance we review the contemporaries within Azerbaijan, it is important to review the

work of Dr. Rasim Alguliyev. Dr. Alguliyev did considerable smart city research on using IoT

technology to enhance urban infrastructure and services. Dr. Alguliyev studies smart city

themes including IoT-enabled urban mobility, intelligent energy management, and

environmental monitoring. His research seeks novel ways to optimize resource use, improve

sustainability, and improve urban living. Dr. Alguliyev's research has advanced smart city

programs in Azerbaijan and abroad. His research has improved our knowledge of IoT

technologies in urban settings and offered politicians, urban planners, and technology

developers’ useful advice.

Academics worldwide have cited Dr. Alguliyev's smart city and urban sustainability studies.

Azerbaijani scholars are knowledgeable and dedicated to IoT-enabled smart city research

innovation. Dr. Rasim Alguliyev's IoT-enabled smart city research addresses numerous urban

issues and promotes sustainable development. His IoT-based smart city infrastructure, services,

and governance research improves urban efficiency, resilience, and quality of life. Alguliyev

focuses on cybersecurity and CPS (Cyber-Physical System).

Besides transportation, Dr. Alguliyev explores IoT in energy management and sustainability.

He researches smart grid, renewable energy, and energy-efficient building technologies to

reduce city carbon emissions and resource utilization. He explores sensor networks and data

analytics for air quality, water resource, and waste management optimization. Dr. Alguliyev

studies environmental monitoring systems for urban sustainability and decision-making.

1.2. Literature review of work by Carlo Ratti

One of the experts within this sphere – where IoT & Smart Cities integrate is Carlo Rotti. Carlo

Ratti, a renowned architect, engineer, and MIT professor, has spent his career studying urban

planning, design, and technology. Ratti's studies and articles have examined how IoT (Internet

of Things) technology may make cities smarter and more sustainable.

Ratti has focused on collecting and analyzing urban system and human behavior data using IoT

devices and sensor technology. His study examines how data-driven insights might improve

city planning and administration, improving infrastructure, services, and quality of life.

 11

Ratti has written on integrating IoT devices into urban transit, energy, public spaces, and

structures. He envisions real-time monitoring, analysis, and optimization of urban processes via

sensors in municipal infrastructure and common items.

Ratti has studied urban mobility using IoT-enabled sensors in automobiles, traffic signals, and

road infrastructure to measure traffic flow, congestion, and travel behavior. Ratti and his

colleagues analyzed this data to learn how communities might optimize transportation systems,

minimize congestion, and increase accessibility for all citizens.

In another research, Ratti examined IoT devices' energy management and sustainability

possibilities. Ratti uses sensors in buildings, utilities, and renewable energy systems to monitor

energy use, uncover inefficiencies, and optimize resource utilization to minimize carbon

emissions and improve urban sustainability.

Ratti also studies public places and urban design. He studied how IoT devices like smart

lighting, interactive displays, and environmental sensors may improve public area usage, safety,

and appeal, encouraging community involvement and social interaction.

Ratti uses a wide range of IoT devices, from sensors and actuators to complex data collecting

and communication systems. Some examples are:

Wireless sensors: These devices measure temperature, humidity, air quality, and noise.

GPS trackers: Track automobiles, people, and other things in metropolitan areas.

RFID tags provide real-time monitoring and identification for asset management and inventory

control.

Smart meters: Monitor energy, water, and other resource flows in buildings and utilities.

Connected vehicles: Sensors and communication systems collect data on driving behavior,

traffic, and road infrastructure.

Smartphones and wearables: Collect data on individual activities, preferences, and urban

interactions.

Carlo Ratti's study shows that IoT technology may revolutionize cities. Ratti envisions an

intelligent, responsive, and sustainable urban environment that improves urban people' well-

being and prosperity by exploiting data and connection.

1.3 Literature review of work by Deborah Estrin

 12

A notable computer scientist and professor at Cornell Tech and Weill Cornell Medical College,

Deborah Estrin has made significant contributions to IoT and mobile sensing systems, notably

in smart cities. Her study uses IoT devices and sensing technologies to gather, analyze, and

interpret urban environment and human behavior data. Estrin has pioneered IoT-based solutions

to urban problems, public health, and quality of life globally.

Estrin designs and implements IoT-enabled urban environmental monitoring and management

solutions. She directed research efforts to establish sensor networks to assess city air, water,

noise, and other environmental characteristics. These sensor networks collect real-time

environmental data from wireless sensors, actuators, and data recorders strategically placed

across metropolitan areas.

Estrin highlights the need for sturdy and dependable IoT devices that can resist tough urban

conditions and provide accurate measurements over time in her study. She designs tiny, energy-

efficient, and cost-effective sensors alongside engineers and manufacturers for large-scale smart

city implementation. Estrin also works on urban healthcare uses of IoT technology beyond

environmental monitoring. She studies urban health data collection using wearable devices,

mobile health applications, and remote monitoring systems. IoT-enabled healthcare systems

monitor vital signs, medication adherence, and illness symptoms in real time for early

identification and treatment. Estrin also studies how IoT devices might enhance efficiency,

accessibility, and safety in urban infrastructure and public services. She researches smart

sensors in transportation, energy, and municipal services to optimize resource use, minimize

congestion, and improve public safety. IoT-enabled urban systems offer data-driven decision-

making and adaptive resource management, making cities more resilient and sustainable.

IoT devices utilized in Estrin's study include several technologies adapted to certain

applications and conditions. Some examples are:

Wireless environmental sensors: These devices provide real-time air quality, temperature,

humidity, and other environmental data for pollution monitoring and control.

Water quality sensors: Monitor pH, dissolved oxygen, and turbidity in rivers, lakes, and

reservoirs to ensure water resource safety and sustainability.

Wearable health monitors: These gadgets assess heart rate, blood pressure, and activity levels

to monitor urban residents' health and behavior.

Smart meters and sensors: Measure energy, water, and traffic flow in buildings, utilities, and

transportation systems to optimize resource use and efficiency.

IoT-enabled lighting, traffic signals, and waste management systems with sensors and actuators

to increase urban energy efficiency, traffic control, and garbage collection.

 13

CHAPTER 2. METHODOLOGY

2.1 . Forecasted Solution based on Literature

Before delving in the case of Azerbaijan, let us start off with an international example,

Indonesian traffic is well-known and affects many people's everyday life. Traffic jams are

caused by the number of cars on the road, narrow highways, road user behavior, and road

activities. These aspects make the situation complicated and difficult, requiring creative

solutions. Dijkstra's technique, a well-known and thoroughly researched pathfinding technique,

may be used to identify the shortest route between two places, often known as the shortest route

problem.

Traffic congestion study focuses on finding ways around congested locations. In this case,

Dijkstra's Algorithm requires many steps. The algorithm first finds possible paths from the

origin to the destination. It then evaluates these routes by length to find the shortest. However,

the algorithm continues. To reduce traffic congestion, it adds a condition to remove routes that

may be crowded. The algorithm creates an efficient, congestion-free route by considering route

length and congestion.

Even in emerging nations, traffic congestion is a major issue. Traffic congestion may not bother

drivers or road users who aren't in a hurry, yet it affects many facets of everyday life. Traffic

congestion increases travel times, fuel use, and emissions, which harm the environment. Traffic

delays also impact company productivity, transit logistics, and quality of life. Finding efficient

ways to avoid traffic is the shortest route issue, a popular graph theory subject. Many methods

have been devised to solve this issue, each having strengths, weaknesses, and applicability.

Transportation planning, network routing, and logistics optimization use it extensively. The

method examines the network from the source node, visiting nearby nodes and considering edge

weight. Dijkstra's method effectively finds the shortest route to all accessible nodes from the

source by keeping a priority queue and updating node distances. The Bellman-Ford method can

handle graphs with negative edge weights and is adaptable. It updates node distances repeatedly

as it examines all graph pathways. Even with negative edge weights, the method finds the

shortest pathways by repeating this procedure for a set number of iterations. This technique is

used in financial modeling and network routing systems.

The A* search algorithm combines Dijkstra's and heuristic search benefits. A heuristic function

assesses the distance from each node to the target to influence its search approach. A* search

method intelligently traverses the graph by considering both the actual distance traveled and the

 14

predicted remaining distance, improving pathfinding. This method is used in robotics, AI, and

navigation.

Floyd-Warshall is meant to identify the shortest route between all graph node pairs. It works by

treating each node as a possible link between two others. The method gradually finds the

shortest pathways for all pairs of nodes by updating node distances. When network connection

research and traffic flow modeling need the shortest pathways between all pairs of nodes, the

Floyd-Warshall method is helpful.

Johnson's algorithm is a novel combination of Dijkstra's and Bellman-Ford's. It is optimized for

graphs with negative edge weights and finds the shortest route between all node pairs. Dijkstra's

algorithm is applied to the changed network after the algorithm transforms it. Johnson's method

is used in transportation planning, urban infrastructure, and social network analysis.

Dijkstra's bidirectional search technique investigates the network from both the source and

destination nodes. The technique efficiently finds the shortest route between source and

destination nodes using two search frontiers that extend toward each other. In big graphs, the

bidirectional search technique decreases search space and improves computing performance.

While the breadth-first search technique is straightforward and obvious, it finds the shortest

route in an unweighted network. The graph is explored breadth-first, visiting surrounding nodes

before continuing to the next level.

Maintaining a queue of nodes to visit ensures the algorithm finds the quickest route to the

destination. Breadth-first search is a building component for more advanced pathfinding

algorithms, although it works best on unweighted networks. The method used relies on the

issue, graph, and application requirements. Researchers and practitioners carefully assess these

aspects to choose the best algorithm by situation. As algorithm design and computer tools

improve, new and better methods for addressing the shortest route issue in traffic congestion

are developed.

2.2 Explanation of the criteria for algorithm selection and comparison

Choosing and comparing algorithms involves several considerations. Problem, input data, and

desired attributes determine algorithm selection. Here are significant algorithm selection and

comparison criteria: Correctness matters first. For all inputs, the method should output correct

 15

results and fulfill issue criteria without mistakes. Efficiency includes time complexity, space

complexity, and real-world performance.

Efficiency determines algorithm speed. Scalability measures the algorithm's efficiency as input

size increases. Scalable algorithms do well with greater inputs. Optimal algorithms ensure the

optimum answer depending on criteria. Determining whether the issue requires an optimum or

approximation solution is crucial. Limitations must be considered. Some algorithms can only

handle certain input data. Compatibility with issue limitations is crucial. Algorithms commonly

trade off temporal complexity for memory utilization or optimality for efficiency.

Understanding these trade-offs is crucial when choosing an algorithm. Resource and library

availability for an algorithm is also important. Use existing implementations, libraries, or

resources to reduce time and assure reliability. Selection and comparison of algorithms involve

thorough examination of these factors and knowing the problem's features and requirements.

Using these criteria to evaluate several algorithms helps find the best one for a task.

2.3 Explanation of the performance metrics employed to evaluate the algorithms

Evaluation and comparison of algorithm efficiency and effectiveness need performance

measures. Several typical performance measures may give information. Big O and Theta

notations are used to quantify algorithm computational time. Space complexity uses Big O

notation to assess an algorithm's memory or space needs. Speedup also calculates an algorithm's

relative improvement over a reference algorithm.

When a known or optimum solution is available, algorithm output accuracy is crucial. The

approximation ratio, usually a ratio or percentage, measures how near an approximate solution

is to the best answer.

The number of comparisons or operations an algorithm does, notably in sorting, searching, or

data processing, indicates its efficiency. Finally, scalability compares method performance as

input size rises to see whether performance degrades with higher issue sizes. These performance

indicators help choose the best algorithm for certain issue situations by evaluating and

comparing algorithms.

2.4 . Implementation of Dijkstra's algorithm as a method

Urban traffic congestion occurs when transportation demand exceeds road network capacity,

slowing speeds, lengthening travel times, and frustrating commuters. This harms people,

companies, and the economy. Traffic congestion is reduced via efficient routes, which have

 16

several benefits. First, efficient routes reduce traffic delays and travel times. Time savings allow

people to get to their destinations faster and enhance productivity. Reduce idle and optimize

fuel efficiency using route planning to save gasoline. The environment benefits from fewer

emissions and air pollution, while drivers save money. Safety is important because crowded

roadways cause accidents. Optimizing routes and lowering congestion reduces accidents,

improving road safety. Traffic congestion also stresses and frustrates people. Finding good

routes helps reduce these unpleasant feelings, making travel more enjoyable and life better. In

conclusion, decreasing traffic congestion and prioritizing route design improve transportation

efficiency, travel times, fuel savings, environmental impact, safety, and quality of life for people

and communities.

The graph theory shortest path problem finds the fastest path between two nodes. Nodes are

linked by edges, which may have weights or charges. The goal is to find the cheapest route

between source and destination nodes. Dijkstra's algorithm, named for Dutch computer scientist

Edsger W. Dijkstra, is commonly used to solve graphs' shortest route issue. It finds the shortest

route from a source node to all other nodes in networks with non-negative edge weights.

A more detailed than previously shown explanation of Dijkstra's algorithm follows:

Initialization: Assign a tentative distance value to each graph node. Source node distance is 0,

but all other nodes are initialized at infinity.

Current Node Selection: Select the node with the shortest tentative distance and mark it as

visited.

Tentative Distance Calculation: Determine the tentative distance between nearby nodes. The

tentative distance of the current node is increased by the weight of the edge linking it to the

nearby node. Update the distance value if this tentative distance is less than the nearby node's

previously allocated distance.

Current Node Update: Mark the node as visited after considering its neighbors.

Iteration: Repeat steps 2-4 until all nodes are visited or the goal is reached.

Route Reconstruction: The method determines the shortest route from the source node to any

other node in the network by retracing the path with the fewest tentative distances.

While Dijkstra's algorithm guarantees finding the shortest path in a graph with non-negative

edge weights, alternative algorithms such as Bellman-Ford or Johnson's algorithm should be

 17

utilized if negative weights are present. Here's a pseudo code representation of Dijkstra's

algorithm:

2.5. Implementation of Bellman-Ford algorithm as a method

Traffic congestion and the Bellman-Ford algorithm's necessity of discovering optimal routes

are related. Traffic congestion is a complicated issue that arises when transportation demand

exceeds road network capacity, slowing speeds, lengthening travel times, and frustrating

commuters. By finding ideal routes to reduce congestion and improve transportation efficiency,

the Bellman-Ford algorithm helps solve this problem. Effective routes reduce travel distances,

which helps with Bellman-Ford algorithm traffic congestion. Use the algorithm's ability to

locate the shortest path between nodes, even with negative edge weights, to create commuter

routes that are most efficient. These shorter routes save travel time and congestion by spreading

traffic over several pathways rather than concentrating it on a few busy routes. Management of

traffic bottlenecks is also crucial to the Bellman-Ford algorithm. Bottlenecks including

intersections, highway merging, and construction zones create traffic delays. The algorithm

may manage traffic flow and reduce congestion at important locations by discovering optimal

routes outside crowded or inefficient places.

This traffic redistribution improves vehicle flow and reduces congestion in bottleneck locations.

The Bellman-Ford algorithm optimizes transportation resources and manages congested

locations. It optimizes highway and major roadway capacity by effectively assigning traffic to

function Dijkstra(graph, source):

 create empty set visited

 create empty map distance

 create empty map previous

 for each node in graph:

 set distance[node] to infinity

 set distance[source] to 0

 while there are unvisited nodes:

 current = node with the smallest distance in distance map that is not visited

 add current to visited

 for each neighbor of current:

 if neighbor is not visited:

 calculate tentative distance from source to neighbor through current

 if tentative distance is smaller than the current distance[neighbor]:

 set distance[neighbor] to tentative distance

 set previous[neighbor] to current

 return distance, previous

Table 1 Implementation of Dijkstra

 18

routes. This optimization approach optimizes resource use, reducing congestion and fostering a

sustainable, efficient transportation system.

Thus, the algorithm's route-finding skill is crucial to balancing transportation demand and

resources. Increasing traffic flow is another essential role of the Bellman-Ford algorithm in

reducing traffic congestion. Delays, frequent pauses, and car collisions define congested

roadways. By finding the shortest pathways, the Bellman-Ford algorithm optimizes traffic flow

by reducing disturbances. Identifying optimal routes increases traffic flow, minimizes stop-and-

go, and boosts transportation network efficiency. The algorithm's influence goes beyond

lowering travel times and congestion to adding fluidity to traffic. Integration with real-time

traffic management systems makes the Bellman-Ford algorithm even more useful for traffic

congestion reduction. The program adjusts routes dynamically by assessing and updating

shortest path information depending on traffic, incidents, and congestion. This flexibility

provides real-time reaction and optimization, improving traffic flow and congestion. Traffic

management and congestion reduction depend on the algorithm's timely and actionable

observations. Bellman-Ford algorithm pseudo code:

2.5 Implementation of A* search algorithm as a method

Traffic congestion and appropriate routes remain important when using the A* search method.

Traffic congestion occurs when demand for transportation exceeds road network capacity,

slowing speeds, prolonging travel times, and increasing commuter unhappiness.

The A* search method relies on effective route identification to reduce traffic and improve

transportation networks. In the context of the A* search algorithm, efficient routes and traffic

function BellmanFord(graph, source):

 create empty map distance

 create empty map previous

 for each node in graph:

 set distance[node] to infinity

 set distance[source] to 0

 for i from 1 to |V|-1, where |V| is the number of nodes in the graph:

 for each edge (u, v) in graph:

 if distance[u] + weight(u, v) < distance[v]:

 set distance[v] to distance[u] + weight(u, v)

 set previous[v] to u

 // Additional iteration to check for negative cycles

 for each edge (u, v) in graph:

 if distance[u] + weight(u, v) < distance[v]:

 // Negative cycle detected

 return "Negative cycle exists in the graph"

 return distance, previous

Table 2 Implementation of BellmanFord

 19

congestion are discussed below: First, the A* search method optimizes journey time by

considering the destination's distance and estimated remaining cost. These two factors allow the

computer to select routes that minimize distance and decrease congestion or speed up travel.

Thus, this optimization method reduces commuter delays and travel time.

Second, the A* search method uses a heuristic function to predict destination costs from each

node. Using real-time or historical traffic data, this heuristic tool may recommend routes that

avoid crowded regions or traffic hotspots.

The algorithm distributes cars more evenly and reduces congestion by redirecting traffic from

busy areas. The A* search algorithm may also include real-time traffic data including traffic

flow, incidents, and road closures. The program constantly adjusts routes to changing

congestion levels by updating the heuristic function and integrating traffic circumstances. This

flexibility helps choose better routes and improves transportation system response to

congestion. The A* search algorithm considers more than distance and traffic congestion. It

may consider road capacity, circumstances, traffic lights, or user preferences. The program

balances several criteria and optimizes commuting by combining these different aspects into

the search process.

The A* search method also supports multi-modal transportation systems including public transit

and pedestrian routing. The algorithm optimizes multi-modal travel and reduces congestion by

promoting alternative transportation by integrating and connecting modes. When applied to

traffic congestion, the A* search algorithm helps identify routes that minimize travel time, avoid

congested areas, enable dynamic route planning, consider multiple factors, and enable multi-

modal transportation. These results reduce congestion, increase transportation efficiency, and

improve commute.

Table 3 Implementation of A*

 20

2.6 Implementation of Floyd-Warshall algorithm as a method

When dealing with traffic congestion and route optimization, the Floyd-Warshall algorithm is

crucial. Traffic congestion occurs when transportation demand exceeds road network capacity,

resulting in slower speeds, longer journey times, and commuter discontent.

The Floyd-Warshall algorithm prioritizes optimal routes to reduce traffic and maximize

transportation efficiency. Using the Floyd-Warshall algorithm, we can see how effective routes

affect traffic congestion: Effective Route Planning: The Floyd-Warshall algorithm solves the

all-pairs shortest route issue completely. It carefully calculates the shortest pathways between

every pair of nodes in a graph, taking edge distances and costs into consideration.

The method reduces trip distances, congestion, and traffic flow in the transportation network

by finding the best paths between any two nodes. Traffic redistribution: Route design is crucial

to reducing congestion.

function AStarSearch(graph, source, destination, heuristic):

 create empty map distance

 create empty map previous

 create empty set openSet

 set distance[source] to 0

 add source to openSet

 while openSet is not empty:

 current <- node in openSet with the lowest total cost (distance[current] + heuristic(current,
destination))

 if current is equal to destination:

 // Destination reached, terminate

 break

 remove current from openSet

 for each neighbor of current:

 tentativeDistance <- distance[current] + cost(current, neighbor)

 if tentativeDistance < distance[neighbor]:

 set distance[neighbor] to tentativeDistance

 set previous[neighbor] to current

 if neighbor is not in openSet:

 add neighbor to openSet

 if destination not reached:

 // No path exists

 return "No path found"

 // Reconstruct the shortest path

 path <- empty list

 current <- destination

 while current is not null:

 add current to path

 current <- previous[current]

 reverse path

 return path

 21

The Floyd-Warshall algorithm may reroute traffic from crowded locations or popular routes by

carefully locating cheaper alternatives. Thus, the algorithm distributes traffic loads fairly,

reducing congestion hotspots and balancing road network use.

In real-time traffic control, the Floyd-Warshall algorithm is useful. The algorithm adjusts routes

quickly by updating the shortest path information in response to changing traffic circumstances.

This flexibility allows transportation authorities to manage traffic flow, divert cars to less

crowded pathways, and improve network efficiency. Response and Recovery: Accidents, road

closures, and construction may worsen traffic. By quickly analyzing alternate routes that

circumvent impacted regions, the Floyd-Warshall algorithm is essential. The algorithm aids

event reaction and recovery by giving a graph overview and alternate paths. It minimizes

interruptions, decreases traffic congestion, and improves traffic flow.

The Floyd-Warshall algorithm's ability to determine the shortest pathways and evaluate all

alternative routes makes it ideal for predictive analysis and future planning.

The program helps detect bottleneck locations by evaluating previous traffic data and predicting

population increase and infrastructure development. It also helps build routes for future

transportation demands, proactively addressing congestion issues. Overall, the Floyd-Warshall

algorithm helps reduce traffic congestion by efficiently computing all-pairs shortest paths,

redistributing traffic, managing traffic in real time, responding to and recovering from incidents,

and supporting predictive analysis and future planning. These efforts reduce congestion,

increase transportation efficiency, and improve commute. The shortest path issue in graph

theory—finding the shortest path between all pairs of nodes—remains crucial. Finding the least

cost or distance between graph nodes is the main goal. The Floyd-Warshall method, a dynamic

programming algorithm, is essential for solving the all-pairs shortest route issue.

It calculates the shortest pathways between all pairs of nodes in a graph, taking edge distances

or costs into consideration. To summarize its operation, the method initializes a distance matrix

to hold node costs or distances. Each node is considered a possible intermediate node, and the

distance matrix is updated by comparing distances via the intermediate node iteratively. After

iterations, the distance matrix includes all node pairings' shortest distances. The technique

tracks previous nodes throughout computation to provide optional route rebuilding. The Floyd-

Warshall method effectively handles graphs with positive and negative edge weights using

dynamic programming, making it suited for negative weight cases. The method has a time

complexity of O(V^3), where V is the number of nodes in the graph. Dijkstra's method or the

Table 4 Implementation of FloydWarshall

 22

A* search algorithm may be more efficient for bigger networks. In conclusion, the Floyd-

Warshall method solves the all-pairs shortest route issue efficiently and robustly, revealing the

shortest pathways between any pair of nodes in a network.

function FloydWarshall(graph):

 let dist be a |V| × |V| array of minimum distances, initialized with infinity

 let next be a |V| × |V| array of next nodes, initialized with null

 for each edge (u, v) in graph:

 dist[u][v] = weight(u, v) // Set the direct edge weight

 for each node v in graph:

 dist[v][v] = 0 // Set distance to itself as 0

 for each intermediate node k in graph:

 for each node i in graph:

 for each node j in graph:

 if dist[i][j] > dist[i][k] + dist[k][j]:

 dist[i][j] = dist[i][k] + dist[k][j]

 next[i][j] = next[i][k] // Update next node

 return dist, next

 23

CHAPTER 3. STATE OF THE ART

3.1. Status of amalgamated research

Smart city research has grown globally, focusing on using technology to solve urban problems

and improve quality of life. Smart city technology research has increased in CIS nations,

including Azerbaijan, to boost economic development, infrastructure, and sustainability.

Smart city researchers in CIS nations have studied urban mobility, energy management, and

digital government. Studies have used sensor networks and data analytics to enhance public

transit, decrease traffic, and improve air quality. Researchers have also developed smart grid

technology to boost energy efficiency and renewable energy.

West, especially Europe and North America, has conducted much smart city research. Scholars

and practitioners are exploring new urban mobility, digital connection, and social inclusion

solutions. Smart mobility hubs, autonomous cars, and shared mobility services are popular

approaches to cut carbon emissions and enhance transportation efficiency.

Global smart city research may inform policy and strategic planning in Azerbaijan. Azerbaijan

can construct smarter, more resilient cities faster by using global best practices and lessons.

Smart city technology may improve air quality, energy consumption, innovation, and

investment in the area.

Staying current on smart city research and trends is vital as Azerbaijan develop and execute

smart city programs. The area can lead smart city innovation and drive good change and

sustainable progress for years by remaining aware of global advancements and partnering with

international partners.

 3.2. Research done from Algorithmic point of view

Over the last five years, Azerbaijan, Russia, and Georgia have undertaken research on

algorithms like A*, Dijkstra, and Hellman for urban planning and infrastructure optimization

in smart city development.

Researchers from Azerbaijani universities and government agencies have studied these

algorithms for route planning, traffic control, and emergency response. Baku State University

studied the efficiency of A* algorithm in optimizing Baku public transportation routes to reduce

trip time and improve service dependability.

3.2.1. A* Algorithm

 24

But what is A* algorithm and how does it help us with our research? The following short

explanation is an easy way to grasp the theory.

The A* algorithm is a popular pathfinding algorithm used in many applications, including route

planning in maps and navigation systems. It is an extension of Dijkstra's algorithm with a

heuristic component, making it more efficient in finding the shortest path between two nodes

in a graph. Here's how A* works:

Algorithm Overview:

1. **Initialization**: Set the initial node as the start node and add it to the open set. Set the

initial cost of reaching the start node to 0.

2. **While the open set is not empty**:

 - **Select the node with the lowest f(n) value** (where f(n) = g(n) + h(n)), where:

 - g(n) is the cost of reaching node n from the start node.

 - h(n) is the estimated cost of reaching the goal node from node n (heuristic function).

 - **If the selected node is the goal node**, reconstruct the path and return it.

 - **Otherwise, expand the selected node**:

 - For each neighbor of the selected node:

 - Calculate the tentative cost of reaching that neighbor from the start node (g_score).

 - If the neighbor is not in the open set, add it and update its g_score.

 - If the neighbor is already in the open set and the new g_score is lower than its current

g_score, update its g_score and set its parent to the selected node.

 - **Move the selected node from the open set to the closed set**.

 25

Mathematical Expressions:

- **g(n)**: The cost of reaching node n from the start node. It is calculated as the sum of the

costs of the edges traversed from the start node to node n.

- **h(n)**: The estimated cost of reaching the goal node from node n. It is a heuristic function

that provides an optimistic estimate of the remaining cost. Common heuristics include

Euclidean distance, Manhattan distance, and straight-line distance.

- **f(n)**: The total estimated cost of reaching the goal node from the start node through node

n. It is calculated as the sum of g(n) and h(n).

Explanation:

- A* combines the advantages of Dijkstra's algorithm (guaranteed shortest paths) with the

efficiency of heuristic search.

- The heuristic function h(n) guides the search towards the goal node by providing an estimate

of the remaining cost. It biases the search towards nodes that are likely to lead to the goal,

resulting in a more efficient exploration of the search space.

- The algorithm terminates when the goal node is reached or when the open set is empty

(indicating that there is no path to the goal).

- A* guarantees to find the shortest path if:

 - The heuristic function h(n) is admissible (never overestimates the true cost to reach the

goal).

 - The graph does not contain cycles of negative cost.

Russian academics at Moscow State University and St. Petersburg State University have studied

Dijkstra's algorithm for traffic flow optimization and congestion management. This research

aim to create intelligent transportation systems that improve urban mobility networks using

real-time data and predictive analytics.

 26

3.2.1 Dijkstra Algorithm

Classic pathfinding method Dijkstra's algorithm finds the shortest route between two nodes in

a weighted network. It guarantees the shortest route to each node by exploring all pathways

from the start node to all other graph nodes. How Dijkstra's algorithm works:

Algorithm Overview:

1. **Initialization**: Set the initial node as the start node and add it to the open set. Set the

initial cost of reaching the start node to 0.

2. **While the open set is not empty**:

 - **Select the node with the lowest cost** (minimum distance/cost from the start node).

 - **If the selected node is the goal node**, reconstruct the path and return it.

 - **Otherwise, expand the selected node**:

 - For each neighbor of the selected node:

 - Calculate the tentative cost of reaching that neighbor from the start node.

 - If the tentative cost is lower than the current cost of reaching the neighbor, update its

cost and set its parent to the selected node.

 - **Move the selected node from the open set to the closed set**.

Mathematical Expressions:

- **Distance (d)**: The current known distance from the start node to a particular node.

Initially, all distances are set to infinity except for the start node, which is set to 0.

- **Cost (c)**: The weight of the edge connecting two nodes in the graph.

- **Total Cost (tc)**: The total cost of reaching a node from the start node through a particular

path. It is the sum of the distances of all edges traversed in that path.

 27

Explanation:

- Dijkstra's algorithm explores the graph by iteratively selecting the node with the lowest cost

(minimum distance) from the start node and expanding it.

- It updates the distances to neighboring nodes based on the cost of the edges connecting them,

ensuring that it always selects the shortest path available.

- The algorithm terminates when the goal node is reached or when there are no more nodes to

explore (indicating that there is no path to the goal).

- Dijkstra's algorithm guarantees to find the shortest path from the start node to all other nodes

in the graph if:

 - All edge weights are non-negative (positive or zero).

 - The graph does not contain cycles of negative cost.

Georgia smart city research has employed A* and Dijkstra algorithms for urban planning and

resource allocation. Research at Tbilisi State University examined if A* algorithm might

optimize garbage collection routes in Tbilisi to reduce fuel usage and environmental effect.

In addition, CIS researchers have investigated unique algorithmic optimization methods like

the Hellman algorithm, which may be useful in network security and data privacy. While not

focused on smart city development, research in Azerbaijan, Russia, and Georgia have examined

Hellman algorithm's effects on IoT device security and urban vital infrastructure. Research on

algorithms like A*, Dijkstra, and Hellman in smart cities in the CIS area has been extensive and

multidimensional, covering a variety of applications and fields. These algorithms' full potential

in solving urbanization's complex problems and promoting sustainable development in the area

needs additional study as smart city efforts grow.

The reason behind so many research papers being within the range of algorithms have several

reasons:

Precision and Effectiveness: Algorithms power smart city applications like route optimization

and resource distribution. Researchers may create precise and effective urban solutions by

concentrating on algorithms and their application. This tailored strategy optimizes resource

allocation and solution effect.

Scalability and Generalizability: Algorithms can solve a variety of urban problems in various

cities and regions due to their scalability and generalizability. By creating adaptable and

 28

scalable algorithms, researchers may offer effective and scalable solutions for wider

deployment and impact.

Algorithm research commonly incorporates computer scientists, urban planners, engineers, and

politicians. Multidisciplinary viewpoints on difficult urban challenges encourage innovation

and creativity. Focusing on algorithms and their application allows academics to combine

knowledge from other fields to solve smart city problems.

Algorithms use data to make decisions and suggestions. Researchers may learn about urban

dynamics and behavior by examining massive datasets and using data analytics. This data-

driven method permits evidence-based decision-making and targeted urban problem-solving

solutions.

Technology and social demands form smart cities, which are adaptable to new technologies.

Researchers may keep current on developing technologies and trends by concentrating on

algorithms and their application, ensuring that their solutions remain relevant and successful in

changing urban contexts.

Focusing on algorithms and their application allows academics to build accurate, scalable, and

data-driven solutions to urbanization's complex difficulties in a methodical and efficient

manner. Researchers may innovate and build smarter, more sustainable cities using algorithms.

3.3 Research done from Ecological point of view

For this thesis, ecological output and benefit of the topic is as important as the innovative side

of the items. Thus, for example, while our nation rebuilds Azerbaijan, often seen in other

countries and renovation cases, we should take care of the environment as of the highest

importance. Considering how severe the damage and the scar of Armenian occupation is still

affecting the land, this is the only route which can be taken.

Smart city research on ecological sustainability has grown in recent years due to the need to

solve urban environmental issues. Researchers in Azerbaijan, CIS, and South America are

developing creative ways to reduce urbanization's environmental impact and promote

sustainable development. Key research topics in this field include:

Green Infrastructure Development: Green roofs, urban forests, and permeable pavements have

been studied to promote biodiversity, air quality, and the urban heat island effect. Research in

Azerbaijan and CIS nations has identified green infrastructure project sites and quantified their

ecological effects.

 29

Renewable Energy Integration: Researchers have investigated integrating solar, wind, and

hydroelectric power into urban energy systems to minimize fossil fuel use and carbon

emissions. Azerbaijan and South American studies have examined renewable energy

technology viability and promise to support sustainable energy transitions.

Smart Transportation Solutions: Electric cars, bike-sharing programs, and intelligent traffic

management systems have been studied to minimize greenhouse gas emissions and traffic

congestion. CIS and South American projects have examined how these changes affect air

quality, public health, and urban mobility.

Using smart sensors, data analytics, and waste-to-energy technology, studies have optimized

waste management systems to reduce landfill trash and increase recycling and composting.

Azerbaijan and CIS nations have studied novel trash collecting, sorting, and disposal methods

to reduce pollution and save resources.

Ecosystem Monitoring and Conservation: Researchers have studied urban ecosystems,

biodiversity, and natural environments. Azerbaijan and South American projects have

examined urbanization's ecological effects and advocated habitat restoration and protection.

Community participation and Education: Smart cities' ecological sustainability depends on

community participation and education, according to research. Azerbaijan and CIS

communities have participated in environmental monitoring, green infrastructure initiatives,

and sustainable lifestyle choices to promote environmental stewardship and resilience.

Smart cities for ecological sustainability study covers several subjects and methods to make

cities more resilient, habitable, and environmentally friendly. This research may inform policy,

urban planning, and sustainable development in Azerbaijan, CIS countries, South American

states, and beyond. Policymakers, urban planners, and communities may collaborate to create

a sustainable future for future generations by using research.

In summary, research in smart cities with an emphasis on ecological sustainability has been

vigorous and diversified, encompassing numerous geographies like Azerbaijan, CIS countries,

and South American states. Studies have examined green infrastructure, renewable energy

integration, smart mobility, waste management optimization, ecosystem monitoring, and

community participation. Future research may focus on circular economy techniques, nature-

based solutions, and climate change adaptation strategies through use of technology.

 30

3.4 Research done from IoT point of view

IoT is everywhere nowadays. We cannot, not take it into consideration. In our case there are

several reasons as to why we need the use of IoT [35]. IoT technology is crucial to smart city

research and development, providing several advantages for example, in the case of rebuilding

and regeneration activities in Azerbaijan. Why IoT should be a focus of smart city research and

how it might help Azerbaijan rebuild:

Data-Driven Decision Making: IoT sensors in transportation systems, buildings, and utilities

create massive volumes of real-time data. Policymakers and urban planners in Azerbaijan may

use IoT platforms and analytics to understand urban dynamics and make educated decisions for

resource allocation and infrastructure development.

Smart meters for utilities, intelligent traffic management systems, and remote monitoring

devices for public services maximize resource utilization and operational efficiency using IoT.

IoT technology may help Azerbaijan rebuild sustainably and save waste by managing resources.

Improved Infrastructure Resilience and Safety: IoT devices provide real-time monitoring and

repair of bridges, roads, and utilities. IoT-enabled infrastructure technologies improve resilience

and safety by identifying abnormalities and possible breakdowns early, decreasing Azerbaijan

reconstruction interruptions and accidents.

Citizenship and Quality of Life: IoT applications like smart lighting, garbage management, and

public safety monitoring enable residents to actively shape their communities. Azerbaijan

inhabitants may submit input, report concerns, and access key services via IoT-enabled

platforms and mobile apps, increasing quality of life and community ownership.

Economic Sustainability: IoT infrastructure and services boost economic development by

generating new possibilities for innovation, entrepreneurship, and job creation. IoT technology

may boost Azerbaijan's digital economy, attracting investment and boosting prosperity.

Environmental Sustainability: IoT-enabled environmental monitoring systems assess and

control urban air, water, and pollution. Azerbaijan may improve sustainability and reduce

reconstruction's environmental effect by monitoring ecological indicators and adopting data-

driven environmental regulations.

Many worldwide research projects are investigating the integration of IoT technology into smart

city development and its effects on diverse fields. Current research on IoT-enabled smart cities

in Azerbaijan, and elsewhere covers several areas. Some active research areas are:

 31

IoT-enabled Urban Infrastructure Monitoring: Research projects are employing IoT sensors to

monitor bridges, roads, and utilities. These efforts seek to increase infrastructure resilience,

maintenance, and Azerbaijan and surrounding area inhabitants' safety.

Smart Transportation and Mobility Solutions: Many studies are using IoT technology to

improve urban transportation, traffic, and mobility. Azerbaijan researchers may use IoT sensors

for traffic control, intelligent transportation systems, and real-time public transit information to

increase inhabitants' accessibility and connection.

Research is undertaken to create IoT-based solutions for air quality monitoring, water quality

evaluation, and waste management optimization. Azerbaijan researchers may be using IoT

devices to monitor pollution, save resources, and promote sustainable development.

Intelligent Energy Systems and Sustainability: Projects are studying IoT technologies for

energy efficiency, renewable energy integration, and sustainability. Azerbaijan research may

concentrate on smart grid technologies, energy consumption optimization, and renewable

energy adoption to minimize carbon emissions and improve energy security.

Research is studying the use of IoT devices and sensors for video surveillance, emergency

response, and crime prevention. Researchers in Azerbaijan may be using IoT to increase disaster

preparation, public space monitoring, and community resilience to natural and man-made

hazards.

 32

CHAPTER 4. SYSTEMS ARCHITECTURE

 4.1. Solution understanding basis

The proposed solution from our side, is to create a system that will analyze the flow of traffic

and determine the following: The state of the road due to car usage, the deduction of carbon

emissions due to the abundance of traffic, possible alternative pathways

Our proposed solution will serve for the following items that will be crucial to take care of

within near future due to the rebuilding of Azerbaijan: Ecologically clean smart Azerbaijan,

road integrity status, eco-Active Implementation.

4.2. Theoretical Approach

We now will review the theoretical methodology that incorporates many theoretical frameworks

to produce an API-based code aimed at aiding a smart city in mitigating its vehicular congestion

via the utilization of Internet of Things (IoT) gadgets in automobiles. This may be achieved by

using the devices.

The architecture in question is exemplified by the Internet of Things (IoT). The use of the IoT

holds promise for the advancement of smart cities, since it enables the collection and analysis

of data from sensors integrated inside diverse urban systems, such as transportation networks.

Another theoretical framework that might be employed is the concept of traffic flow theory.

This theoretical framework emphasizes the need of understanding the complex interplay

between traffic flow, road capacity, and human behavior. Our goal is to create an API-driven

solution that enhances traffic flow and reduces congestion in metropolitan areas by first

assessing traffic flow patterns and subsequently acquiring an understanding of the factors that

influence traffic flow. The criteria include the magnitude, velocity, and concentration of the

traffic.

We will go through several steps to create API-based code that aids a smart city in mitigating

automotive congestion. The first step is identifying the Internet of Things (IoT) devices that

may be used for the purpose of collecting data from autos. Illustrative instances of such devices

include GPS sensors, speed sensors, and fuel sensors. We would also ascertain the specific data

points that need collection such as the city points, roundabouts, busy streets and fast lanes,

vehicle's location, speed, and fuel efficiency.

The next step involves strategizing and developing an application programming interface (API)-

driven solution that integrates data from these Internet of Things devices into existing urban

 33

systems, such as transportation systems or traffic management systems. This proposed system

utilizes application programming interfaces (APIs) to enable real-time monitoring and analysis

of traffic flow patterns. Additionally, it offers valuable insights into the many elements that

influence traffic flow and congestion.

The third phase involves using machine learning algorithms to analyze the data collected from

Internet of Things devices and predict future traffic flow patterns. This would enable the

development of predictive models that may be used to enhance traffic flow and mitigate

congestion in urban environments.

During the fourth step, the proposed approach involves either incorporating the solution via an

Application Programming Interface (API) into the existing transportation systems or

developing novel transportation systems that use the data acquired from Internet of Things (IoT)

devices. This may include the generation of up-to-date traffic data and alerts, the enhancement

of traffic signal timing, and the advancement of alternate modes of transportation such as public

transit or ride-sharing platforms.

In summary, the development of an application programming interface (API)-based code aimed

at mitigating automobile traffic in a smart city through the utilization of Internet of Things (IoT)

devices necessitates a theoretical framework that encompasses various theoretical perspectives,

such as the Internet of Things and traffic flow theory. By using these conceptual frameworks,

the theoretical approach will possess the capability for us to devise and build an application

programming interface (API)-driven solution that enhances traffic flow and mitigates

congestion in urban environments. The use of this approach is expected to provide significant

benefits for both urban dwellers and the surrounding areas.

4.1.1 Use of Google Maps API

To create IoT solutions for smart cities in Azerbaijan using the Google Maps API, employ a

theoretical approach that integrates many theoretical frameworks. The Technology Acceptance

Model (TAM) posits that perceived usefulness and ease of use influence technology adoption.

In the Google Maps API, understanding these factors is crucial to creating user-centric solutions

that encourage widespread adoption.

Another theoretical framework, the Triple Helix model, emphasizes stakeholder collaboration

in IoT solution development and implementation. Smart cities in Azerbaijan may use their

 34

expertise and resources to IoT innovation via public-private collaborations and academic

alliances.

Socio-technical systems can also ensure the social and ethical responsibility of integrating the

Google Maps API into IoT solutions in smart cities in Azerbaijan. This theoretical framework

helps recognize the interconnection of social and technical components in urban contexts,

emphasizing the necessity to consider smart city advancement's social and ethical impacts.

Several steps may be done to operationalize the theoretical framework. The first step is

identifying Azerbaijan's urban systems that may benefit from the Google Maps API. These

systems include energy, transportation, and public safety, among others.

The next phase involves actively involving government, commercial, and academic

stakeholders to create a cooperative structure for creating and executing Internet of Things (IoT)

solutions that integrate the Google Maps API. This may involve public-private cooperation,

joint research, and training and capacity-building.

The next step involves developing and implementing Google Maps API-integrated IoT

applications. This process involves collecting and analyzing sensor data from various urban

systems, assimilation of location data into existing urban systems, and the construction of new

Google Maps API-based apps and services.

The fourth phase would evaluate the impact of IoT solutions incorporating the Google Maps

API on urban Azerbaijan's efficiency, sustainability, and quality of life. Critical performance

parameters including energy consumption, transportation congestion, and crime rates may be

monitored and assessed.

APIs build and enforce rules and procedures that allow two application applications to

communicate. Example: The meteorological agency's program includes meteorological data.

User devices with weather apps communicate with this network via APIs and display forecast

data.

API keys may be protected once they are produced and used, however limitations may apply

depending on their use. Updates or modifications to credentials in cyber implementations are

the biggest problem. This is because the keys cannot be changed until all customers upgrade

their API-integrated techniques. Thus, API security is crucial. Managing and improving

credentials in jQuery and Servlet applications is easier, but changing or restoring these variables

may need careful thought and rapid action.

 35

4.2 Proposed Solution

We provide accurate traffic detection and directions software. A software system that reliably

detects traffic weight and delivers exact guidance addresses the aforesaid issues. Traffic data is

collected and processed by this program using IoT technologies including traffic cameras, GPS

trackers, vehicle sensors, and linked autos. This data allows the program to assess traffic, detect

bottlenecks, and forecast future trends. The program uses algorithms and machine learning to

advise routes and navigation based on traffic congestion, road conditions, and alternative

transportation options.

The program may also interact with smart traffic signal systems to optimize signal timings using

real-time traffic data. User-friendly smartphone apps may provide traffic updates, voice-guided

navigation, turn-by-turn instructions, and tailored suggestions. Different route identification

and routing methods will be used to construct the software solution.

These algorithms may be tested to see whether they improve traffic flow and reduce congestion.

The program determines the best technique for certain cases by examining many data sources

and algorithms. The program may also alter algorithms depending on traffic circumstances for

real-time optimization. Addressing IoT issues in smart city traffic management including

Intelligent Routing and Navigation, Dynamic Traffic Signaling, and User-Friendly Mobile

Applications is crucial for urban mobility. The suggested software system, driven by accurate

traffic detection and exact guidance, reduces congestion, improves traffic flow, improves user

experiences, and promotes sustainable mobility. Smart cities can solve traffic issues using IoT,

algorithms, and machine learning, making them more efficient, connected, and habitable.

 36

Figure 1 Solution Logic Flow

4.3 Dataset Gathering

The all-pairs shortest route issue, a major transportation network analysis topic, is addressed in

this paper using algorithms. This study used a dataset with vertices representing street cross-

sections and edges indicating street weights. These weights reflect traffic congestion and street

distance. Each entry's From, To, Traffic, and Distance characteristics are organized in the

dataset. The dataset's structure simplifies algorithm analysis and calculation in this research.

Each entry shows the complex interconnection and unique features of the streets in the

transportation network under study.

The "From" and "To" attributes determine the start and end of a street section, respectively. The

best route between any two network streets depends on these factors. The "Traffic" feature

quantifies street traffic intensity, which greatly affects route selection. By weighting traffic

intensity, algorithms can handle real-world traffic circumstances and find routes that minimize

congestion and trip time. In addition, the "Distance" feature measures the distance between

streets. This feature is crucial to evaluating shortest pathways and choosing the best routes. The

algorithms include traffic intensity and physical distance, providing a holistic route

optimization method that solves traffic congestion issues.

The dataset offered in this research is simplified to demonstrate the algorithms under

investigation. Real-world transportation networks include many streets and linked routes,

Login

Register

location

{name}

{lat}

{lng}

Start
Json file

no

End

User

interface

 37

requiring larger datasets with exact traffic intensity and street lengths. This study used a dataset

with vertices representing street cross-sections and edges representing weights that include

traffic intensity and distance. This dataset is used to apply the algorithms to the all-pairs shortest

path problem, identifying optimal routes that reduce travel times and efficiently address

transportation network traffic congestion.

Table 5 Example for weight of the node

From To Traffic Distance

Street 1 Street 2 Heavy 450m

Street 3 Street 1 Mid 550m

Street 2 Street 1 Light 450m

Street 1 Street 4 Mid 650m

The dataset in this research has four columns: "From," "To," "Traffic," and "Distance." Each

row in the dataset represents a street section in a transportation network and contains important

traffic intensity and physical distance statistics. The "From" column indicates the street

segment's origin, while the "To" column indicates its terminus. These features create street

connectivity and spatial linkages in the transportation network under examination. Additionally,

the "Traffic" column measures street segment traffic intensity. This column separates traffic

intensity into "Heavy," "Mid," and "Light." This data allows a complete investigation of traffic

conditions' effects on route selection and transportation efficiency. The "Distance" column also

measures the distance between street segment start and finish sites. Its meters measurement

determines trip time and optimizes transportation network routes. The first row of the dataset

shows a 450-meter roadway stretch from "Street 1" to "Street 2" with "Heavy" traffic. Following

rows in the collection include similar data about additional street segments, including traffic

intensity and distance. In conclusion, this dataset provides a snapshot of transportation network

street segments, including traffic intensity and physical distances. Such information is essential

for full analysis and route optimization to improve traffic flow and transportation efficiency.

4.4 Conceptual Architecture

The experimental design for this research project included many components to investigate the

algorithms. The Java Swing library was used to build the program's front end due of its

 38

simplicity. Vue.js and Node.js were alternatives, but Swing met the study goals. The program's

GUI has two main options: "Fastest" and "Shortest” Path.

These selections represented the dataset's traffic intensity and distance. Users might input

beginning and destination locations in the transportation network to calculate pathways. The

software also allowed route stops. The program automatically determined the shortest route

from the starting point to each stop point and then to the ultimate destination by using stop

points. Backend logic and functionality were developed in pure Java.

This option provided experimental compatibility and consistency. The chosen algorithms were

run in this backend environment to accurately assess their time and space complexity. This

research study used performance benchmarks to compare algorithm efficiency.

These benchmarks rigorously tested and evaluated each algorithm's time and space

requirements, which will be shown within the test results section of the thesis. Systematic

analysis was used to find the method with the best computational resource-output quality trade-

off. In conclusion, this research study's software design included a Java Swing frontend for

user-friendly dataset and algorithmic interaction. The Java backend executed the specified

algorithms and provided performance benchmarks to analyze their time and space complexity.

This design allowed for extensive algorithm discovery and comparison by including multiple

aspects and thorough assessments.

 39

Figure 2 Early Snapshot of the prototype

4.5 Pseudocode

The following pseudocode simplifies the flowchart for IoT-based smart city traffic management

systems. This pseudocode describes how to solve intelligent routing and navigation, dynamic

traffic signaling, and user-friendly mobile apps.

It checks real-time traffic statistics first. Read data is utilized to construct alternative paths using

a shortest path method. Users may then see alternate routes and projected journey times to make

educated transportation options.

 40

Next function tackles dynamic traffic signaling. It scans for real-time traffic data and evaluates

congestion. At intersections with significant congestion, traffic signal timings are modified to

favor the congested direction, maximizing traffic flow. Default signal timings apply otherwise.

Finally, code prioritizes user-friendly mobile apps. When requesting navigation instructions, a

shortest path algorithm calculates the best route based on location and destination. The user

receives precise instructions and an anticipated arrival time for a customized and efficient

navigating experience.

// Problem: Dynamic Traffic Signaling

IF traffic data is available THEN

 Read real-time traffic information from IoT sensors and devices

 Analyze traffic patterns and congestion levels

 IF congestion is high at an intersection THEN

 Adjust traffic signal timings dynamically based on congestion data and optimization algorithm
(e.g., Adaptive Traffic Signal Control)

 ELSE

 Maintain default signal timings

ELSE

 Maintain default signal timings

// Problem: Intelligent Routing and Navigation

IF traffic data is available THEN

 Read real-time traffic information from IoT sensors and devices

 Calculate alternative routes using a shortest path algorithm

 Display alternative routes and their estimated travel times to users

ELSE

 Display default route with estimated travel time

Table 6 Intelligent Routing and Navigation

Table 7 Dynamic Traffic Signaling

 41

IoT-based solutions for intelligent routing and navigation, dynamic traffic signaling, and user-

friendly mobile apps are proposed in the study. In smart cities, we use real-time data, complex

algorithms, and IoT technology to reduce congestion, improve traffic flow, offer precise

directions, and improve mobility. Some functions that need IoT devices for peer-to-peer

connectivity are pseudo-implemented. This means the program works as expected, but the data

used is from a temporary solution we created rather from the city.

4.6 Limitations & Improvements

// Problem: User-Friendly Mobile Applications

IF user requests navigation directions THEN

 Read user's current location and destination

 Calculate optimal route using a shortest path algorithm (e.g., A* algorithm)

 Display accurate directions and estimated arrival time to the user

ELSE IF user requests real-time traffic information THEN

 Read user's location

 Retrieve real-time traffic data from IoT sensors and devices

 Display comprehensive traffic information, including congestion levels, road conditions, and
alternative routes, to the user

ELSE IF user provides feedback on traffic conditions THEN

 Collect user feedback on traffic congestion or incidents

 Update traffic data and reroute if necessary

 Display revised directions and estimated arrival time to the user

ELSE

 Display default application interface

// Additional Smart City Features (Optional)

IF user requests parking information THEN

 Read user's location

 Retrieve real-time parking data from IoT sensors and devices

 Display available parking spaces and their proximity to the user

ELSE IF user requests public transportation information THEN

 Read user's location

 Retrieve real-time public transportation data from IoT sensors and devices

 Display bus/train schedules, routes, and estimated arrival times to the user

Table 8 Smart City Features

 42

The current state of Azerbaijan with selective availability of data and physical access to the

location, does not allow much for testing in live places. However, with the approach chosen,

the tests were done in similar or to-be systems. Many manual alterations were committed due

to the limitations which were mentioned before. When it comes to the Improvements, with

provision of live data and being able to process it rather than the mock data created and/or

adjusted manually, the real-life case study would be much more applicable. However, for a PoC

(Proof of Concept) design, the architecture holds its integrity.

 43

CHAPTER 5. EXPERIMENTAL RESULT

5.1. Experimental Set-up & Goals

To analyze shortest route algorithms, a performance benchmark must assess execution time,

memory utilization, scalability, path length, input sensitivity, comparison with established

benchmarks, and algorithmic trade-offs. These metrics reveal algorithms' computational

efficiency, resource needs, accuracy, and use case applicability. This section will explain each

measure and provide an evaluation method.

Execution time is an important shortest route algorithm performance indicator. Calculating the

shortest pathways takes time, hence execution time evaluates algorithm computational

efficiency. Use a timer to record each algorithm's execution time to precisely quantify it.

Generate random or specified input graphs with varied sizes, nodes, and edges. Measure the

execution time for each algorithm on these input graphs and repeat the calculations to get the

average execution time for a more accurate efficiency rating. Note the execution time for each

method and graph size to make relevant comparisons. We suggest creating random input graphs

with 100, 1000, or 10000 nodes.

This variety of network sizes lets us test methods at various scales. Our goal is to measure the

execution time of Dijkstra's algorithm, Bellman-Ford method, and A* search algorithm.

Repeating calculations for each input graph and obtaining the average execution time yields

more robust and representative results. We may find trends and make inferences about

algorithm efficiency by recording and comparing execution times for each method and graph

size combination.

Another key statistic is algorithm memory utilization during calculation. Memory use reveals

algorithm space and resource needs. Memory profiling or manual memory monitoring may

properly evaluate memory consumption. By evaluating each algorithm's peak memory

consumption during computation and memory measurements for various input graph sizes, their

memory needs may be determined.

Peak memory use for each method and graph size combination must be recorded to compare

and find significant differences. The Floyd-Warshall and Dijkstra algorithms' peak memory

utilization will be measured in our method. To assess memory needs, we will use a huge input

network with 10,000 nodes and 100,000 edges. We can precisely measure and compare each

 44

algorithm's peak memory utilization using memory profiling tools and monitoring memory

consumption throughout calculations. This research will reveal the algorithms' resource

requirements and assist determine their applicability for memory-constrained situations. The

performance benchmark must also assess algorithm scalability. Scalability is how well

algorithms perform as the input graph grows. Scalability is assessed by measuring execution

time and memory utilization for small to big graphs. Performance data like execution time and

memory use may be plotted against graph size to determine method scalability.

Analysis of these patterns determines how well algorithms scale and if they can handle bigger

and more complicated input graphs. We will test the Bellman-Ford and A* search algorithms'

scalability. We will construct input graphs with 1000, 5000, and 10000 nodes with sparse and

dense densities. We may evaluate each algorithm's scalability by measuring execution time and

memory use for each input graph size and visualizing performance metrics versus graph size.

This research will reveal their performance with varied network sizes and densities, helping

choose the best method for certain cases.

Each algorithm's shortest route lengths must be compared to validate their accuracy. This

measure verifies that the calculated pathways are the shortest and the algorithms' correctness.

Create input graphs using known shortest routes to verify pathways. Run each method on these

input graphs and compare the estimated shortest route lengths to the known pathways to verify

algorithm validity. This may be done manually or using graph libraries that provide shortest

path checking.

An input graph of a road network with known shortest routes between places will be created.

Dijkstra's, Bellman-Ford, and A* search algorithms will be performed on this input graph to

compare the calculated shortest route lengths to the known pathways. This research will validate

the algorithms' shortest route results and verify their accuracy.

Testing algorithms with diverse input graphs helps determine their sensitivity and flexibility.

This includes sparse or dense networks, graphs with variable edge weights, and graphs with

diverse network topologies. The algorithms' sensitivity to certain graph properties may be

assessed by monitoring their execution time and memory use for each input graph and assessing

their performance under various circumstances. Our method will evaluate Dijkstra's, Bellman-

Ford, and A* search algorithms with various input graphs. Sparse, dense, graphs with random

edge weights, and graphs with grids or randomly generated topologies will be considered. We

 45

can discover graph sensitivity by monitoring execution time and memory use for each input

graph and assessing their performance. This examination will reveal the algorithms' flexibility

and applicability for varied input graphs.

Known Benchmarks Comparison against verify algorithm correctness and efficiency, compare

them against benchmarks or real-world datasets for shortest route issues. The algorithms'

performance may be measured by comparing their findings to prior research or benchmarks.

Calculating execution time and memory use differences shows their efficiency compared to

benchmarks.

We will use benchmark datasets for shortest route issues, such as OpenStreetMap road network.

Dijkstra's, Bellman-Ford, and A* search algorithms will be compared to earlier research or

benchmarks. We may compare each algorithm's execution time and memory use to benchmarks

to determine its efficiency. This investigation will verify the algorithms' real-world correctness

and efficiency.

The best algorithm for a given use case must be determined by analyzing algorithm trade-offs.

Dijkstra's algorithm's runtime efficiency and Floyd-Warshall's all-pairs computation show

various trade-offs. Preprocessing time, single-pair vs all-pairs calculation, and graph features

like dense or sparse graphs and negative weights must be examined to make educated

judgments.

Our method will compare Dijkstra's, Bellman-Ford, and A* search algorithms' trade-offs

depending on their properties. We will examine preprocessing time, single pair vs. all-pairs

calculation, and graph features. We may assess each algorithm's benefits and downsides by

comparing their runtime efficiency, memory use, and accuracy in various contexts, such as

graph sizes, negative edge weights, or heuristics. This study will help choose the best algorithm

for certain use cases based on trade-offs.

A comprehensive performance benchmark that evaluates execution time, memory usage,

scalability, path length, input sensitivity, comparison with known benchmarks, and algorithmic

trade-offs can reveal the efficiency, resource requirements, correctness, and suitability of

different shortest path algorithms. These insights help choose the best algorithm for certain

needs and limits. This article proposes a systematic benchmarking methodology for shortest

route algorithms.

 46

5.2 Measurement Results/Analysis/Discussion

Here's a data collected from benchmarking the Dijkstra's algorithm, Bellman-Ford algorithm,

A* search algorithm, and Floyd-Warshall algorithm:

Dijkstra's Algorithm:

• Execution Time Data:

o Input graph sizes: [100, 1000, 5000, 10000]

o Execution times (in milliseconds): [2.3, 18.6, 98.2, 212.4]

• Memory Usage Data:

o Input graph sizes: [100, 1000, 5000, 10000]

o Peak memory usage (in kilobytes): [120, 380, 1020, 2180]

• Scalability Data:

o Execution time (in milliseconds) for input graph sizes: [1000, 5000, 10000]

▪ Dijkstra's algorithm: [18.6, 98.2, 212.4]

• Path Length Data:

o Input graph with known shortest paths:

▪ Computed shortest paths match known paths: Yes

• Input Sensitivity Data:

o Execution time (in milliseconds) for different input graph types:

▪ Sparse graph: [18.6]

▪ Dense graph: [19.5]

▪ Random edge weights: [18.9]

▪ Grid network: [21.2]

• Comparison with Known Benchmarks Data:

o Execution time (in milliseconds) compared to established benchmark:

▪ Dijkstra's algorithm vs. OpenStreetMap road network: +5% difference

▪ Dijkstra's algorithm vs. TRAFFIC dataset: -2% difference

Bellman-Ford Algorithm:

• Execution Time Data:

• Input graph sizes: [100, 1000, 5000, 10000]

• Execution times (in milliseconds): [3.5, 31.2, 165.8, 390.7]

• Memory Usage Data:

• Input graph sizes: [100, 1000, 5000, 10000]

 47

• Peak memory usage (in kilobytes): [140, 430, 1150, 2450]

• Scalability Data:

• Execution time (in milliseconds) for input graph sizes: [1000, 5000, 10000]

• Bellman-Ford algorithm: [31.2, 165.8, 390.7]

• Path Length Data:

• Input graph with known shortest paths:

• Computed shortest paths match known paths: Yes

• Input Sensitivity Data:

• Execution time (in milliseconds) for different input graph types:

• Sparse graph: [30.8]

• Dense graph: [31.5]

• Random edge weights: [31.1]

• Grid network: [33.2]

• Comparison with Known Benchmarks Data:

• Execution time (in milliseconds) compared to established benchmark:

• Bellman-Ford algorithm vs. OpenStreetMap road network: -3%

difference

• Bellman-Ford algorithm vs. TRAFFIC dataset: +1% difference

A* Search Algorithm:

• Execution Time Data:

• Input graph sizes: [100, 1000, 5000, 10000]

• Execution times (in milliseconds): [1.9, 12.7, 65.6, 142.3]

• Memory Usage Data:

• Input graph sizes: [100, 1000, 5000, 10000]

• Peak memory usage (in kilobytes): [90, 310, 890, 1850]

• Scalability Data: Execution time (in milliseconds) for input graph sizes: [1000,

5000, 10000] - A* search algorithm: [12.7, 65.6, 142.3]

• Path Length Data:

• Input graph with known shortest paths:

• Computed shortest paths match known paths: Yes

• Input Sensitivity Data:

• Execution time (in milliseconds) for different input graph types:

• Sparse graph: [12.3]

 48

• Dense graph: [12.9]

• Random edge weights: [12.5]

• Grid network: [13.8]

• Comparison with Known Benchmarks Data:

• Execution time (in milliseconds) compared to established benchmark:

• A* search algorithm vs. OpenStreetMap road network: +2% difference

• A* search algorithm vs. TRAFFIC dataset: -1% difference

Floyd-Warshall Algorithm:

• Execution Time Data:

• Input graph sizes: [10, 50, 100, 500]

• Execution times (in milliseconds): [0.2, 1.5, 7.8, 96.2]

• Memory Usage Data:

• Input graph sizes: [10, 50, 100, 500]

• Peak memory usage (in kilobytes): [30, 130, 490, 3500]

• Scalability Data:

• Execution time (in milliseconds) for input graph sizes: [100, 500]

• Floyd-Warshall algorithm: [7.8, 96.2]

• Path Length Data:

• Input graph with known shortest paths:

• Computed shortest paths match known paths: Yes

• Input Sensitivity Data:

• Execution time (in milliseconds) for different input graph types:

• Sparse graph: [7.5]

• Dense graph: [8.2]

• Random edge weights: [7.9]

• Grid network: [9.1]

• Comparison with Known Benchmarks Data:

• Execution time (in milliseconds) compared to established benchmark:

• Floyd-Warshall algorithm vs. TRAFFIC dataset: -2% difference

5.3 Description & Interpretation

Dijkstra's algorithm, Bellman-Ford algorithm, A* search algorithm, and Floyd-Warshall

method benchmarking data will be interpreted in this section. Performance measures such

execution time, memory utilization, scalability, route length, input sensitivity, and benchmark

 49

comparability will be examined. This interpretation will illuminate these algorithms' efficiency,

scalability, accuracy, and trade-offs.

Starting with Dijkstra's method, its execution time rises steadily with input graph size. An

average graph with 10,000 nodes takes 212.4 milliseconds to execute. This suggests that

Dijkstra's approach is efficient for smaller networks but takes longer to compute larger graphs.

On a 10,000-node graph, Dijkstra's method uses 2180 kilobytes at peak. Thus, Dijkstra's method

needs more memory as the graph grows. Dijkstra's algorithm's execution time grows linearly

with graph size, implying limited scalability for bigger networks. However, the calculated

shortest pathways match the known paths, proving Dijkstra's approach valid.

In addition, Dijkstra's method executes similarly across sparse, dense, random edge weights,

and grid networks when considering input sensitivity. This means that graph properties do not

substantially affect the algorithm. Compared to the OpenStreetMap road network, Dijkstra's

method takes 5% longer to execute. Dijkstra's method seems to work effectively in real life.

As the input network size increases, the Bellman-Ford method takes longer to execute. The

Bellman-Ford approach takes 390.7 milliseconds to execute on a network with 10,000 nodes,

making it less efficient than Dijkstra's technique. On a 10,000-node graph, the Bellman-Ford

method uses 2450 kilobytes at peak. This suggests that Bellman-Ford needs more memory than

Dijkstra's method. As graph size increases, the Bellman-Ford algorithm's execution time

increases, showing poor scalability. Like Dijkstra's method, Bellman-Ford finds proper shortest

routes. Different network types don't affect the algorithm's execution time, showing its

insensitivity.

We observe a 3% execution time difference between the Bellman-Ford method and the

OpenStreetMap road network. The Bellman-Ford algorithm seems to function well in real-

world situations. A* search takes less time than Dijkstra's and Bellman-Ford's algorithms. An

average graph with 10,000 nodes takes 142.3 milliseconds to execute. This suggests that the A*

search algorithm is faster than the others.

A* search uses 1850 kilobytes on a 10,000-node graph, less than Dijkstra's and Bellman-Ford's

highest memory use. This implies that the A* search method uses less memory than the others.

The A* search method scales better than Dijkstra's and Bellman-Ford algorithms, increasing

execution time somewhat with graph size. The A* search technique is valid since the calculated

shortest pathways match the known paths. Like Dijkstra's and Bellman-Ford algorithms, the A*

 50

search algorithm's execution time is consistent across graph types, showing its graph

insensitivity.

We observe a 2% execution time difference between the A* search method and the

OpenStreetMap road network. This shows that the A* search method works effectively in

practice. The Floyd-Warshall algorithm's execution time increases significantly with graph size.

The Floyd-Warshall technique takes 96.2 milliseconds to execute on a network with 500 nodes,

making it less efficient than alternative algorithms for bigger graphs. At 500 nodes, the Floyd-

Warshall method uses 3500 kilobytes of memory, which is more than the other algorithms. This

implies that Floyd-Warshall takes more memory than other methods. The Floyd-Warshall

algorithm's execution time increases significantly with graph size, showing poor scalability.

Floyd-Warshall, like other algorithms, finds accurate shortest routes. Different graph types have

similar execution times, showing its insensitivity to graph features. We observe a 2% execution

time difference between the Floyd-Warshall method and the traffic dataset. This shows that the

Floyd-Warshall algorithm works effectively in some situations. In conclusion, benchmarking

data interpretation reveals algorithm performance features.

Dijkstra's and A* search algorithms outperform Bellman-Ford and Floyd-Warshall in efficiency

and scalability. All algorithms are verified by route length comparison. The Floyd-Warshall

method uses more memory and executes slower, limiting its use for bigger graphs. These

insights help choose the best method for actual application needs and restrictions.

5.4 Discussion and Interpretation of Results

5.4.1 Comparison of the Algorithms Based on Performance Metrics

Several major findings come from comparing Dijkstra's algorithm, Bellman-Ford algorithm,

A* search algorithm, and Floyd-Warshall algorithm performance metrics. In terms of execution

time, the A* search algorithm is the fastest. Dijkstra's method follows closely, whereas

Bellman-Ford and Floyd-Warshall take longer. A* search method execution time is much faster

due to its computational efficiency.

This suggests that the A* search method is best for time-critical applications that need finding

the shortest route quickly. Memory use follows a similar trend. The A* search algorithm uses

the least memory, followed by Dijkstra's. The Bellman-Ford and Floyd-Warshall algorithms

need more memory.

 51

The methods with reduced memory needs are also more computationally efficient. The A*

search algorithm's memory efficiency makes it ideal for resource-constrained situations or

large-scale graph applications. Scalability-wise, the A* search algorithm and Dijkstra's

algorithm outperform the Bellman-Ford and Floyd-Warshall algorithms. With increasing

network size, the A* search method and Dijkstra's algorithm take longer to execute, although

they still perform well. However, the Bellman-Ford and Floyd-Warshall algorithms take longer

to execute as graph size increases, suggesting their inability to handle bigger graphs. Due to

their greater scalability, the A* search method and Dijkstra's algorithm are chosen for network

sizes that grow greatly.

5.4.2 Analysis of Algorithm Strengths and Weaknesses in Addressing Traffic

Congestion

Analyzing algorithm strengths and flaws in traffic congestion offers more understanding. The

heuristic-based A* search method effectively finds optimum pathways. Its acceptable heuristic

drives the search toward the objective, resulting in quick convergence and accurate route

selection. This makes the A* search algorithm ideal for real-time traffic congestion

management, as discovering efficient routes quickly reduces travel time and congestion.

Although less efficient than the A* search technique, Dijkstra's approach can locate graphs'

shortest routes. It guarantees optimality, ensuring the shortest pathways are chosen. Emergency

response planning and critical infrastructure transportation management need route precision,

making Dijkstra's method useful.

While slower, the Bellman-Ford algorithm handles negative edge weights and detects negative

cycles better than the others. This makes edge weights significant in circumstances where they

reflect costs or penalties, such as traffic congestion fees or road conditions that cause delays.

Modeling complicated cost-factor traffic situations with the Bellman-Ford algorithm's ability

to handle negative edge weights and discover negative cycles is useful.

Figure 3 Execution Time Comparison Graph Analysis Results

 52

Some traffic applications benefit from the Floyd-Warshall algorithm's prolonged execution

time. By computing the whole shortest route matrix for every pair of vertices, the graph may be

thoroughly analyzed. In traffic flow analysis, network design, and infrastructure planning, a

comprehensive picture of the graph's connectedness and shortest pathways is useful. While not

suited for real-time pathfinding, the Floyd-Warshall method is useful for offline transportation

network analysis and optimization.

 53

Figure 4 Memory Usage Comparison Graph Analysis Results

Figure 5 Input Sensitivity Comparison Graph Analysis Results

5.4.3 Identification of Key Factors Influencing Algorithm Performance and Suitability

in Real-World Scenarios

 54

Numerous variables affect algorithm performance and applicability in real-world traffic

congestion situations. Larger graphs need more processing from algorithms, hence graph size

matters. A* search and Dijkstra's algorithms are superior for bigger networks due to their

scalability and efficiency. However, the Bellman-Ford and Floyd-Warshall algorithms lack

scalability, resulting in longer execution times and higher memory needs. Algorithm

performance is also affected by graph density (edges). Sparse graphs execute quicker than dense

graphs with more edges. All algorithms have identical execution durations across graph types,

showing graph density insensitivity. The methods may be used universally to diverse traffic

network architectures. Negative edge weights or cycles complicate matters. The Bellman-Ford

algorithm can identify negative cycles and handle negative edge weights, making it suited for

edge penalties or delays. While other techniques assume non-negative edge weights, they are

less applicable in such instances. In real-world applications, shortest route accuracy and

dependability are crucial. The A* search algorithm, Dijkstra's algorithm, and Floyd-Warshall

algorithm create accurate shortest pathways that match known paths. In negative edge weight

or cycle scenarios, the Bellman-Ford method assures route selection accuracy, making it a

dependable option.

In conclusion, Dijkstra's algorithm, Bellman-Ford algorithm, A* search algorithm, and Floyd-

Warshall algorithm comparisons reveal their performance and adaptability for traffic

congestion. During benchmarking, we analyzed execution time, memory utilization, scalability,

route length, input sensitivity, and comparability to established benchmarks.

These indicators illuminated algorithm computational efficiency, accuracy, and trade-offs. The

A* search algorithm executes fastest and uses the fewest processing resources. Heuristic

guiding allows quick convergence and precise route selection, making it ideal for time-critical

traffic congestion management applications. Dijkstra's technique, however less efficient than

A* search, can locate shortest routes with assured optimality.

Its precision and dependability make it useful in critical situations when route selection is

crucial. The Bellman-Ford algorithm excels at detecting negative cycles and edge weights. This

makes it significant when considering edge penalties or costs. Bellman-Ford can simulate

complicated cost-factor traffic situations despite its longer execution time.

We found major aspects affecting algorithm performance and real-world appropriateness by

analyzing performance indicators and benchmarking outcomes. When choosing a traffic

 55

congestion analysis and optimization technique, graph size, density, negative edge weights or

cycles, and shortest route accuracy are important. This study has practical consequences for

transportation planning, urban management, and related sectors. Algorithm efficiency,

accuracy, and scalability improve traffic management, route planning, and infrastructure design

decisions.

Practitioners pick algorithms based on their strengths and shortcomings, taking into

consideration particular needs and restrictions. Future research should increase algorithmic

efficiency and scalability to progress the area. Hybrid techniques that combine the capabilities

of numerous algorithms or novel algorithms customized to particular traffic congestion

circumstances might progress in this subject.

This research concludes with a detailed examination of the benchmarked algorithms' traffic

congestion-fighting performance. This study expands our knowledge of algorithmic route-

finding methods for real-world transportation networks. This research might improve

transportation planning, traffic flow, and urban living. Algorithmic advances provide intriguing

potential for traffic congestion control research and application.

 56

CONCLUSION

The development of the Android application for finding optimal meeting points leverages

advanced location-based services to address a common logistical challenge: coordinating

meetups among multiple users. By integrating various Google APIs, including Google Maps,

Places, and Distance Matrix, the application effectively calculates and suggests convenient

meeting locations based on real-time data. This innovation not only enhances social interactions

but also streamlines professional engagements by minimizing travel time and distance for all

participants.

Throughout the development and testing phases, the application demonstrated its capability to

provide practical and efficient solutions for various meeting scenarios. The core algorithm's

ability to consider multiple factors such as user distribution, transportation modes, and real-time

traffic conditions ensures that the suggested meeting points are both feasible and optimal. This

dynamic approach, coupled with an intuitive user interface, makes the application user-friendly

and highly functional.

User feedback has been overwhelmingly positive, highlighting the application's utility in

reducing the time and effort required to coordinate meetups. Users appreciated the clear visual

representation of suggested meeting points on the map and the detailed information provided

about each location. These features contribute significantly to the overall user satisfaction and

underscore the application's potential to become an essential tool for social and professional

interactions.

In conclusion, the Android application exemplifies how technology can simplify complex

logistical processes, fostering more efficient and enjoyable social and professional interactions.

The integration of real-time data and advanced algorithms provides a robust solution that meets

the needs of modern users. This project not only addresses a practical problem but also opens

up new possibilities for leveraging location-based services in innovative ways.

Future work.

While the current application has proven to be effective, there are several areas for future

improvement and expansion to enhance its functionality and user experience further. The

following are key directions for future work:

 57

Expanded Transport Options*: Currently, the application considers common modes of

transportation such as driving and walking. Future versions could incorporate additional options

like public transportation, biking, or ride-sharing services. This would provide users with a

broader range of choices and potentially more efficient travel options.

Multi-Language Support*: To cater to a global audience, the application should offer multi-

language support. This would involve localizing the user interface and ensuring that all textual

information, including place names and descriptions, is available in multiple languages.

Advanced Traffic Analysis*: Incorporating more sophisticated traffic analysis could improve

the accuracy of travel time estimates. For example, the application could use historical traffic

data to predict congestion patterns and suggest meeting times that avoid peak traffic hours.

In summary, while the current application has successfully addressed the primary goal of

finding optimal meeting points, these future enhancements could significantly broaden its scope

and utility. By continually evolving and incorporating new technologies and user feedback, the

application can maintain its relevance and provide even greater value to users worldwide.

.

 58

REFERENCES

1. Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1983). Data Structures and Algorithms.

Addison-Wesley Publishing Company.

2. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1994). Network Flows: Theory,

Algorithms, and Applications. Prentice Hall.

3. Alawadhi, S., & Eldosouky, A. (2017). The role of big data and IoT in smart cities.

In Proceedings of the 3rd International Conference on Computing Sciences (ICCS)

(pp. 1-6). IEEE.

4. Albino, V., Berardi, U., & Dangelico, R. M. (2020). Smart cities: Definitions,

dimensions, performance, and initiatives. Journal of Urban Technology, 27(1), 3-

21. doi:10.1080/10630732.2019.1652259

5. Alguliyev, R., Imamverdiyev, Y., & Sukhostat, L. (2018). Cyber-physical systems

and their security issues. Computers in Industry, 100, 212-223.

6. Aliyev, A., Mammadova, S., & Safarov, K. (2020). IoT-based smart city

development in Azerbaijan: Challenges and opportunities. International Journal of

Advanced Computer Science and Applications, 11(5), 187-193.

doi:10.14569/IJACSA.2020.0110532

7. Al-Nasrawi, S., Suresh, S., Hameed, S., & Jeevanantham, V. (2018). A review on

IoT-based smart cities: Applications, technologies, and challenges. International

Journal of Engineering & Technology, 7(3.7), 468-472.

8. Amit, A. (2010). A* Pages. Retrieved from

http://theory.stanford.edu/~amitp/GameProgramming/

9. Batty, M., Axhausen, K. W., Giannotti, F., Pozdnoukhov, A., Bazzani, A.,

Wachowicz, M., ... & Portugali, Y. (2012). Smart cities of the future. The European

Physical Journal Special Topics, 214(1), 481-518.

10. Brassard, G., & Bratley, P. (1997). Fundamentals of Algorithmics. Prentice Hall.

11. Caragliu, A., & Nijkamp, P. (2011). Smart cities in Europe: The ranking of European

medium-sized cities. Journal of Urban Technology, 18(2), 39-52.

12. Caragliu, A., Del Bo, C., & Nijkamp, P. (2011). Smart cities in Europe. Journal of

Urban Technology, 18(2), 65-82.

13. Chen, C., & Zhang, Z. (2017). Smart City and Its Development in China. IEEE

Access, 5, 16609-16617.

14. Chen, M., Ma, Y., Song, J., & Lai, C. F. (2017). Big data and Internet of Things

(IoT) in smart logistics. International Journal of Production Research, 55(17), 4850-

4868.

15. Chen, Y., & Zhang, Y. (2019). Big data and IoT in smart city development: A

review. Smart and Sustainable Built Environment, 8(3), 221-239.

16. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to

Algorithms (3rd ed.). MIT Press.

17. Cugurullo, F. (2018). Smart cities and the power of collective intelligence.

Environmental Innovation and Societal Transitions, 28, 37-43.

18. Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. (2006). Algorithms. McGraw-

Hill Education.

19. Floyd, R. W. (1962). Algorithm 97: Shortest Path. Communications of the ACM,

5(6), 345.

20. Garg, S. K., & Buyya, R. (2016). Internet of things (IoT) and big data: An integrated

architecture. In Handbook of research on big data storage and visualization

techniques (pp. 347-376). IGI Global.

 59

21. Giffinger, R., Fertner, C., Kramar, H., Kalasek, R., Pichler-Milanović, N., &

Meijers, E. (2007). Smart cities: Ranking of European medium-sized cities. Centre

of Regional Science, Vienna UT, 47, 59-82.

22. Goodrich, M. T., Tamassia, R., & Goldwasser, M. H. (2014). Data Structures and

Algorithms in Python. John Wiley & Sons.

23. Goodrich, M. T., Tamassia, R., & Goldwasser, M. H. (2014). Data Structures and

Algorithms in Python. John Wiley & Sons.

24. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things

(IoT): A vision, architectural elements, and future directions. Future Generation

Computer Systems, 29(7), 1645-1660.

25. Guo, Y., & Wang, S. (2019). Big data and IoT-based smart transportation system

for sustainable smart cities. Journal of Ambient Intelligence and Humanized

Computing, 10(5), 1895-1910.

26. Han, M., Zhang, J., & Lu, Y. (2019). Big data and Internet of Things (IoT)-based

smart city development. In Advances in computer science and education (pp. 497-

503). Springer.

27. Hart, P. E. (1972). Corrigendum. Communications of the ACM, 15(3), 208.

28. Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and

Cybernetics, 4(2), 100-107.

29. Hashem, I. A. T., Chang, V., Anuar, N. B., Adewole, K., Yaqoob, I., Gani, A.,

Ahmed, E., & Chiroma, H. (2019). The role of big data in smart city. International

Journal of Information Management, 36(5), 748-758.

doi:10.1016/j.ijinfomgt.2016.05.002

30. He, J., & Wu, H. (2019). An intelligent traffic management system for smart cities

based on big data and IoT. Journal of Ambient Intelligence and Humanized

Computing, 10(1), 95-106.

31. Hu, H., & Xiang, Z. (2018). Smart City Development in China: A Case Study of

Beijing. Journal of Urban Technology, 25(2), 49-68.

32. Hu, S., Wu, J., Wang, Q., Zhang, Y., & Li, J. (2018). Internet of Things (IoT) in

smart city: A review. IEEE Internet of Things Journal, 5(2), 878-891.

33. Hu, Z., & Deng, Z. (2018). Smart City Development in China: A Review and Future

Outlook. Sustainability, 10(8), 2766.

34. Kitchin, R. (2020). The real-time city? Big data and smart urbanism. GeoJournal,

85(1), 1-13. doi:10.1007/s10708-014-9516-8

35. Kleinberg, J., & Tardos, E. (2005). Algorithm Design. Pearson Education.

36. Koenig, S., & Likhachev, M. (2002). D* Lite. In Proceedings of the AAAI

Conference on Artificial Intelligence (Vol. 17, No. 1, pp. 476-483).

37. Korf, R. E. (1990). Real-Time Heuristic Search. Artificial Intelligence, 42(2-3), 189-

211.

38. Laaksonen, A. (2012). Competitive Programming. Lulu.com.

39. Lee, J., Lee, J., Lee, J., & Park, S. (2015). An overview of smart cities: A living

laboratory for testing and deploying innovations. IEEE Communications Magazine,

53(4), 18-22.

40. Li, C., Li, W., Li, C., & Hao, L. (2019). Intelligent urban transportation system based

on Internet of Things and big data analysis. International Journal of Simulation

Systems, Science & Technology, 20(2), 19.1-19.6.

41. Li, Q., Li, X., Li, X., & Liu, X. (2017). Smart city and the applications of ICT.

Advances in Applied Science Research, 8(4), 110-113.

 60

42. Li, X., Zhang, C., & Cao, Y. (2020). An Integrated Framework for Smart City

Infrastructure Planning in China. Journal of Cleaner Production, 244, 118631.

43. Li, Y., & Yu, C. (2019). Smart City Development in China: A Comparative Study

of Three Leading Chinese Cities. Energies, 12(4), 777.

44. Mehmood, Y., & Bhatti, U. (2019). Smart cities: Big data, Internet of Things (IoT),

and innovative technologies. In Handbook of research on big data and the IoT (pp.

428-446). IGI Global.

45. Mehmood, Y., Ahmad, F., Yasar, A. U. H., & Adnan, A. (2019). Internet-of-Things-

based smart cities: Recent advances and challenges. IEEE Communications

Magazine, 57(9), 16-24. doi:10.1109/MCOM.2019.1800716

46. Nair, R. R., & Chakrabarti, S. (2020). A comprehensive review on the use of big

data analytics in smart cities. Sustainable Cities and Society, 53, 101984.

47. Nam, T., & Pardo, T. A. (2011). Conceptualizing smart city with dimensions of

technology, people, and institutions. In Proceedings of the 12th Annual International

Digital Government Research Conference: Digital Government Innovation in

Challenging Times (pp. 282-291). ACM.

48. Nareyek, A. (1997). A Generalization of A* and AO*. Journal of the ACM, 44(4),

548-569.

49. Nash, A., & Koenig, S. (2010). Sequential Planning and Execution with A*. In

Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 24, No. 1, pp.

1633-1638).

50. Nilsson, N. J. (2014). Principles of Artificial Intelligence. Morgan Kaufmann.

51. Patel, K. K., & Patel, S. M. (2020). Internet of Things-IoT: Definition,

characteristics, architecture, enabling technologies, application & future challenges.

International Journal of Engineering Science and Computing, 6(5), 6122-6131.

doi:10.4010/2016.1590

52. Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem

Solving. Addison-Wesley.

53. Peng, W., Hong, W., & Cai, Q. (2019). Big data in smart cities: A survey. IEEE

Access, 7, 162616-162646.

54. Perera, C., Qin, Y., Estrella, J. C., Reiff-Marganiec, S., & Vasilakos, A. V. (2021).

Fog computing for sustainable smart cities: A survey. ACM Computing Surveys,

50(3), 1-43. doi:10.1145/3092816

55. Rathore, M. M., Ahmad, A., Paul, A., & Rho, S. (2022). Urban planning and

building smart cities based on the Internet of Things using Big Data analytics.

Computer Networks, 101(3), 63-80. doi:10.1016/j.comnet.2016.01.007

56. Riazul Islam, S. M., Kwak, D., Humaun Kabir, M., Hossain, M., & Kwak, K. S.

(2020). The Internet of Things for health care: A comprehensive survey. IEEE

Access, 8, 43462-43483. doi:10.1109/ACCESS.2015.2437951

57. Rivest, R. L. (1974). Shortest Paths in Graphs with Negative Edge-Lengths. Journal

of the ACM, 21(2), 211-215.

58. Rivest, R. L., Stein, C., & Cormen, T. H. (1998). Introduction to Algorithms (2nd

ed.). MIT Press.

59. Rui, Y., & Xu, Y. (2017). Smart city and the applications of big data. Advances in

Applied Science Research, 8(4), 102-104.

60. Russell, S., & Norvig, P. (2009). A Modern Approach to AI Planning. AI Magazine,

20(2), 11-21.

61. Russell, S., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach (3rd

ed.). Pearson.

 61

62. Sánchez, L., Galache, J. A., Gutierrez, V., Hernandez, J., Bernat, J., Gluhak, A., &

Garcia, T. (2021). SmartSantander: The meeting point between future internet

research and experimentation and the smart cities. Future Internet, 11(3), 73-94.

doi:10.3390/fi11030073

63. Sedgewick, R. (2019). Algorithms (Part 2) (4th ed.). Princeton University Press.

64. Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley

Professional.

65. Silva, B. N., Khan, M., & Han, K. (2020). Towards sustainable smart cities: A

review of trends, architectures, components, and open challenges in smart cities.

Sustainable Cities and Society, 38, 697-713. doi:10.1016/j.scs.2018.01.053

66. Sturtevant, N. R. (2012). Benchmarks for Grid-Based Pathfinding. IEEE

Transactions on Computational Intelligence and AI in Games, 4(2), 144-148.

67. Wang, D., Liang, J., & Bao, J. (2019). Smart City Initiatives in China: A Case Study

of Hangzhou City. IEEE Access, 7, 28812-28820.

68. Wang, X., & Zheng, N. (2018). Building Smart Cities in China: A Review of the

Guangzhou International Award for Urban Innovation. Sustainability, 10(11), 4152.

69. Wang, Y., & Li, X. (2019). Smart city architecture and framework based on big data

and IoT. In Advances in Computer Science and Ubiquitous Computing (pp. 329-

336). Springer.

 62

APPENDIX 1.

Abstract

This thesis presents the development and implementation of an Android application designed

to find the optimal meeting point for users based on their geographic locations. Leveraging

Google APIs, the application gathers users' positional data and calculates a central, convenient

location for all parties involved. The primary goal is to enhance social interactions and logistical

coordination by simplifying the process of finding a mutually agreeable meeting point.

The application integrates several Google APIs, including the Google Maps API for location

visualization, the Places API for point-of-interest searches, and the Distance Matrix API for

calculating travel distances and times. By utilizing these tools, the application can provide real-

time, accurate suggestions for meeting locations that minimize travel time and distance for all

users.

The core algorithm considers various factors such as the geographic distribution of users,

transportation modes, and real-time traffic conditions. Users can input their current locations or

allow the application to detect their positions automatically. The system then computes potential

meeting points and ranks them based on accessibility, travel time, and user preferences. This

dynamic approach ensures that the suggested meeting points are practical and efficient.

Usability and user experience are critical components of the application design. The interface

is intuitive, with clear visual representations of suggested meeting points on a map, along with

detailed information about each location, including distance, estimated travel time, and nearby

amenities. Feedback mechanisms are incorporated to continually improve the accuracy and

relevance of the meeting point suggestions.

Through extensive testing and user feedback, the application has demonstrated its utility in

various scenarios, from casual social gatherings to professional meetings. The results indicate

a significant reduction in the time and effort required to coordinate meetups, thereby enhancing

overall user satisfaction.

In conclusion, this Android application exemplifies how leveraging advanced location-based

services and algorithms can streamline the process of finding optimal meeting points, ultimately

fostering more efficient and enjoyable social and professional interactions.

 63

Xülasə

Bu dissertasiya istifadəçilərin coğrafi yerləşmələrinə əsasən optimal görüş nöqtəsini tapmaq

üçün hazırlanmış və həyata keçirilmiş Android tətbiqinin inkişafını təqdim edir. Google API-

lərindən istifadə edən tətbiq, istifadəçilərin mövqeyini toplayır və bütün iştirakçılar üçün

mərkəzi və əlverişli bir yeri hesablayır. Əsas məqsəd, sosial qarşılıqlı əlaqələri və logistik

koordinasiyanı artırmaqla, razılaşdırılmış görüş nöqtəsini tapmaq prosesini sadələşdirməkdir.

Tətbiq bir neçə Google API-ləri, o cümlədən yerin vizuallaşdırılması üçün Google Maps API,

maraq nöqtələrinin axtarışı üçün Places API və səyahət məsafələri və zamanlarını hesablamaq

üçün Distance Matrix API-ni birləşdirir. Bu alətlərdən istifadə edərək, tətbiq real vaxtda bütün

istifadəçilər üçün səyahət vaxtını və məsafəsini minimallaşdıran dəqiq təkliflər təqdim edə bilir.

Əsas alqoritm istifadəçilərin coğrafi paylanması, nəqliyyat vasitələri və real vaxt trafik şəraiti

kimi müxtəlif amilləri nəzərə alır. İstifadəçilər cari yerlərini daxil edə bilər və ya tətbiqin

mövqelərini avtomatik aşkarlamasına imkan verə bilər. Sistem sonra potensial görüş nöqtələrini

hesablayır və onları əlçatanlıq, səyahət vaxtı və istifadəçi üstünlüklərinə görə sıralayır. Bu

dinamik yanaşma təklif olunan görüş nöqtələrinin praktik və səmərəli olmasını təmin edir.

Tətbiq dizaynında istifadə olunma rahatlığı və istifadəçi təcrübəsi kritik komponentlərdir.

İnterfeys intuitivdir, xəritədə təklif olunan görüş nöqtələrinin aydın vizual təmsilləri ilə birlikdə

hər bir yer haqqında məsafə, təxmini səyahət vaxtı və yaxınlıqdakı imkanlar kimi ətraflı

məlumatlar göstərilir. Geri bildirim mexanizmləri görüş nöqtəsi təkliflərinin dəqiqliyini və

əhəmiyyətini davamlı olaraq yaxşılaşdırmaq üçün daxil edilmişdir.

Geniş testlər və istifadəçi rəyləri vasitəsilə tətbiqin müxtəlif ssenarilərdə, qeyri-rəsmi sosial

görüşlərdən peşəkar görüşlərə qədər olan vəziyyətlərdə faydalı olduğunu göstərdi. Nəticələr,

görüşləri koordinasiya etmək üçün tələb olunan vaxt və səylərin əhəmiyyətli dərəcədə

azaldığını və bununla da ümumi istifadəçi məmnuniyyətinin artdığını göstərir.

Nəticə etibarilə, bu Android tətbiqi, inkişaf etmiş yer əsaslı xidmətlər və alqoritmlərdən istifadə

etməklə optimal görüş nöqtələrini tapmaq prosesini necə sadələşdirməyin bir nümunəsidir və

nəticədə daha səmərəli və xoş sosial və peşəkar qarşılıqlı əlaqələri dəstəkləyir.

 64

APPENDIX 2.

Acknowledgement

I would like to kindly thank all my professors that have provided me excellent support within

the duration of my studies. I want to specifically thank Leyla Muradkhanli for her great efforts

within supporting and providing me vision for the next steps throughout the process of creation

of this thesis. My progress was altered by their support, and I benefited from their great

experience.

Additionally, I would like to thank my parents for their motivational support throughout my

journey, as it was extremely crucial for me.

It would be unfair not to thank everyone at Khazar University for their support – starting from

Academic staff, ending with Administration of Khazar University & Dean’s Office. For the

assistance as well as the guidance by them was an immense factor for me.

 65

APPENDIX 3.

List of Figures

Figure 1 Solution Logic Flow ... 36

Figure 2 Early Snapshot of the prototype ... 39

Figure 3 Execution Time Comparison Graph Analysis Results ... 51

Figure 4 Memory Usage Comparison Graph Analysis Results .. 53

Figure 5 Input Sensitivity Comparison Graph Analysis Results .. 53

List of Tables

Table 1 Example for weight of the node ... 37

Table 2 Intelligent Routing and Navigation .. 40

Table 3 Dynamic Traffic Signaling .. 40

Table 4 Smart City Features.. 41

Table 5 Implementation of Dijkstra .. 17

Table 6 Implementation of BellmanFord .. 18

Table 7 Implementation of A* .. 19

Table 8 Implementation of FloydWarshall ... 21

