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INTRODUCTION 

In today's world, efficiently coordinating meetings among individuals located in different 

geographical areas is a significant logistical challenge. A smart city uses technology to improve 

people' quality of life, urban infrastructure efficiency, and sustainable development. Modern 

cities depend on efficient mobility, therefore enhancing transportation networks is a major part 

of this strategy. Traditional navigation systems, although useful, sometimes fail to meet urban 

complexity and dynamics. Thus, smart city ecosystems need innovative route optimization 

methods to address their specific difficulties and potential 

This study addresses two primary research questions:  

1) How can we determine the optimal meeting point based on users' geographic locations?  

2) How can Google APIs be utilized to find the most convenient meeting points in real time? 

To tackle this issue, an Android application has been developed that leverages Google APIs to 

collect users' locations and calculate a central, convenient meeting point for all participants. The 

main objective of this application is to simplify the process of organizing both social and 

professional meetings. 

Relevance. People often spend a considerable amount of time and effort coordinating meetups 

from various geographical locations. Solving this problem can make social and professional 

meetings more efficient and convenient. 

Importance. The development of this application addresses logistical challenges, helping 

individuals to plan their meetings more efficiently. This contributes to a more organized and 

productive personal and professional life. Additionally, the application's real-time suggestions 

provide accurate and convenient solutions for finding optimal meeting points. Such technology 

facilitates the coordination of both personal and business meetings, thereby preventing time loss 

and reducing energy expenditure. 

Object. The object of this study is an Android application developed to determine optimal 

meeting points based on geographical locations. The application uses Google APIs to collect 

users' positions and calculate convenient meeting points. 

Subject: The subject of this study is the application's algorithms and integration with Google 

APIs. The primary goal is to use various geographical and logistical data to determine efficient 

and accurate meeting points. 

Application Description: This Android application integrates several Google APIs: 
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*Google Maps API*: Used for location visualization. 

*Places API*: Used for searching points of interest. 

*Distance Matrix API*: Used for calculating travel distances and times. 

Using these tools, the application can provide precise and convenient meeting point suggestions 

in real-time. Users can input their current locations or allow the application to automatically 

detect their positions. The system then calculates potential meeting points and ranks them based 

on accessibility, travel time, and user preferences. 

Algorithm and Interface: The application's core algorithm considers various factors: 

- The geographical distribution of users. 

- Modes of transportation (e.g., driving, walking). 

- Real-time traffic conditions. 

Link between Smart Cities & Shortest Route algorithms. In smart city development, 

efficiency and optimization are constant goals. Local logic for shortest route algorithms is one 

of several technical advances that advance smart cities. This unique navigation method 

improves logistical processes and exemplifies how cutting-edge technology integrates into 

individuals' everyday lives. 

Shortest path algorithms find the fastest route between two network nodes. Global algorithms 

like Dijkstra's or A* have traditionally used centralized data and substantial computation to do 

this. Local logic algorithms provide a decentralized strategy that uses localized data and real-

time information. 

Local logic for shortest route algorithms has several advantages. First, it makes the navigation 

system adaptable and sensitive to traffic jams and road closures. This real-time optimization 

saves travel time, fuel consumption, and greenhouse gas emissions, supporting current urban 

planning sustainability objectives. 

Local logic empowers and engages communities. By using data from local organizations, 

companies, and individuals, the navigation system learns about each neighborhood's distinctive 

traits. Localized knowledge improves route accuracy and gives locals a feeling of ownership 

and pride in their city's infrastructure. This is particularly important within our historical sites 

& specific routes that no other knowledge-based accounts information for other than the people 

of those regions. 
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In addition, local logic algorithms make smart city integration easier. The navigation system 

supports a comprehensive urban ecosystem by using data from IoT sensors, mobile apps, and 

municipal databases. This integration boosts municipal efficiency and prepares for future 

breakthroughs in public transit, emergency response, and urban planning. 

Local logic for shortest route algorithms is important for government agencies. Applications 

include from optimizing public utility service delivery routes to improving law enforcement 

and medical emergency response times. Local data and community participation may boost 

government efficiency and effectiveness, improving people' quality of life. 

Local logic for shortest route algorithms might transform Azerbaijan transportation networks, 

boost local enterprises, and improve livability. Imagine citizens effortlessly traversing the 

convoluted streets with a navigation system that maps the quickest path and celebrates the 

town's distinctive monuments and attractions. Azerbaijan might become a smart, connected 

town where technology drives growth and prosperity via government, corporate, and citizen 

participation. 

Motivations. This research examines the effectiveness and possible influence of local logic 

algorithms for shortest route computations in smart city government organizations. Traditional 

global algorithms like Dijkstra's and A* have long been the foundation of navigation systems, 

but their centralized structure and dependence on static data sources restrict them in smart cities. 

Given these obstacles, local logic algorithms provide a compelling alternative that optimizes 

route planning and navigation using localized data and real-time information. 

This research examines smart city government institution needs. Government organizations like 

public utilities and emergency services keep urban infrastructure running smoothly and 

inhabitants safe. Traditional navigation systems sometimes fail to handle these institutions' 

particular logistical issues, resulting in inefficiency and inferior results. This research examines 

the possible advantages of local logic algorithms for route optimization in government 

institutions, concentrating on operational efficiency, service delivery, and community 

participation.  

The main research questions are:  

What are the limitations of traditional global algorithms for route optimization in the context of 

government institutions within smart cities? 

How can local logic algorithms leverage localized data and real-time information to address the 

specific needs and challenges faced by government agencies? 
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What are the potential benefits of adopting local logic algorithms for route optimization in terms 

of operational efficiency, service delivery, and community engagement? 

What are the practical considerations and implementation challenges associated with 

integrating local logic algorithms into existing navigation systems used by government 

institutions? 

How can the effectiveness and impact of local logic algorithms be evaluated and measured in 

real-world smart city environments? 

This study addresses these research issues to see if implementation of local logic algorithms 

can optimize routes for government institutions in smart cities. This study uses theoretical 

analysis, empirical research, and case studies to inform policymakers, urban planners, and 

technology developers about the pros and cons of innovative navigation methods for smarter, 

more efficient, and more sustainable cities. 

Context of the Study. As governments and urban planners seek new answers to urbanization's 

complicated difficulties, smart cities have grown in popularity. Azerbaijan, like many nations, 

struggles with urban transportation, service delivery, and infrastructure management. 

Azerbaijan is using smart city ideas and technology to create dynamic, efficient, and sustainable 

cities in pursuit of growth and wealth. Recently, Azerbaijan's territorial recapture has created 

fresh regeneration and growth potential. As the area looks forward, technology and creativity 

must be used to restore urban infrastructure and services. 

Our android application will examine Azerbaijan urban problems from the point of view of and 

prospects via joint research and stakeholder collaborations. From increasing public transit to 

boosting emergency response, we aim to find technology-based solutions for Azerbaijan 

citizens and government organizations. The Azerbaijani people's tenacity shows the possibility 

for constructive development. We value cooperation and community participation as we travel. 

We may base our analysis on Azerbaijan reality and goals by collaborating with local officials, 

companies, and inhabitants. We can co-create creative solutions to the region's specific issues 

and promote sustainable development via open communication and collaboration. 

Finally, our analysis advances the concept of a smarter, more resilient Azerbaijan. We want to 

strengthen the region's government institutions and enhance citizens' lives via technology and 

innovation.  

Objectives and Contributions. This study has several main objectives to answer the research 

questions:  
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Traditional global algorithms like Dijkstra's and A* may not be able to meet smart city 

government institutions' demands. We intend to uncover these algorithms' main drawbacks in 

dynamic metropolitan contexts with decentralized data sources and real-time information via a 

thorough literature survey and theoretical analysis.  

To investigate the advantages of local logic algorithms for route optimization in government 

agencies. These algorithms may increase operational efficiency, service delivery, and 

community participation by using localized data and real-time information. We investigate the 

practical effects of local logic algorithms in smart city ecosystems using empirical research and 

case studies.  

To provide a framework for assessing local logic algorithm performance in smart city settings. 

This framework will include journey time, fuel usage, carbon emissions, service response times, 

and citizen satisfaction. We want to quantify local logic algorithm performance and compare it 

to global algorithms using field trials and simulations.  

To test the integration of local logic algorithms with government navigation systems. This 

includes considering data compatibility, system interoperability, and user interface design. We 

want to integrate local logic algorithms into smart city infrastructure seamlessly by working 

with stakeholders and technology suppliers.  

This project will also test and simulate routing algorithms using the Google Maps API and 

environment. Google Maps' large data resources and innovative features allow us to generate 

realistic scenarios and test local logic algorithms under different settings. We will also examine 

how crowd-sourced traffic data and real-time transit timetables might improve route 

optimization algorithms   

This research might offer numerous substantial contributions to smart city development 

academics and practice in addition to achieving its main goals. This research first examines 

local logic algorithms for route optimization in government institutions in smart cities to better 

understand how technology may enhance urban mobility and service delivery. We use empirical 

research and case studies to provide policymakers, urban planners, and technology developers 

practical insights and best practices for improving government services in smart cities. This 

study also contributes to smart city research by creating a framework for assessing local logic 

algorithm efficacy and effects. To rigorously evaluate the pros and cons of alternative 

navigation systems, we want to provide explicit criteria and procedures for measuring routing 
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algorithm performance. This approach may aid urban planning and transportation management 

research and practice. 

This research also integrates the Google Maps API and ecosystem into our trials and simulations 

to demonstrate the potential of current technological platforms and data resources for smart city 

efforts. Google Maps lets us construct realistic urban settings and test local logic systems. We 

also seek to improve our route optimization algorithms by using Google Maps' real-time traffic 

statistics and transit timetables. We compare global algorithms like Dijkstra's and A* against 

local logic algorithms to show their strengths. Instead, than concentrating on the flaws of current 

algorithms, our research explores how multiple algorithms might work together to create a more 

robust and adaptable navigation system. We strive to find realistic ways to integrate different 

routing algorithms into navigation systems to enhance urban mobility and service delivery by 

working with experts and stakeholders. 

In conclusion, this research might help us understand how technology can make cities smarter, 

more efficient, and more sustainable. We strive to revolutionize smart city development with 

actual advantages for inhabitants, companies, and government institutions via empirical 

research, methodological contributions, and practical insights. 

 

  



   

 

 10 

CHAPTER 1. LITERATURE REVIEW 

1.1. Case of IoT Research within Azerbaijan 

In the instance we review the contemporaries within Azerbaijan, it is important to review the 

work of Dr. Rasim Alguliyev. Dr. Alguliyev did considerable smart city research on using IoT 

technology to enhance urban infrastructure and services. Dr. Alguliyev studies smart city 

themes including IoT-enabled urban mobility, intelligent energy management, and 

environmental monitoring. His research seeks novel ways to optimize resource use, improve 

sustainability, and improve urban living. Dr. Alguliyev's research has advanced smart city 

programs in Azerbaijan and abroad. His research has improved our knowledge of IoT 

technologies in urban settings and offered politicians, urban planners, and technology 

developers’ useful advice. 

Academics worldwide have cited Dr. Alguliyev's smart city and urban sustainability studies. 

Azerbaijani scholars are knowledgeable and dedicated to IoT-enabled smart city research 

innovation. Dr. Rasim Alguliyev's IoT-enabled smart city research addresses numerous urban 

issues and promotes sustainable development. His IoT-based smart city infrastructure, services, 

and governance research improves urban efficiency, resilience, and quality of life. Alguliyev 

focuses on cybersecurity and CPS (Cyber-Physical System). 

Besides transportation, Dr. Alguliyev explores IoT in energy management and sustainability. 

He researches smart grid, renewable energy, and energy-efficient building technologies to 

reduce city carbon emissions and resource utilization. He explores sensor networks and data 

analytics for air quality, water resource, and waste management optimization. Dr. Alguliyev 

studies environmental monitoring systems for urban sustainability and decision-making.  

1.2. Literature review of work by Carlo Ratti 

One of the experts within this sphere – where IoT & Smart Cities integrate is Carlo Rotti. Carlo 

Ratti, a renowned architect, engineer, and MIT professor, has spent his career studying urban 

planning, design, and technology. Ratti's studies and articles have examined how IoT (Internet 

of Things) technology may make cities smarter and more sustainable.  

Ratti has focused on collecting and analyzing urban system and human behavior data using IoT 

devices and sensor technology. His study examines how data-driven insights might improve 

city planning and administration, improving infrastructure, services, and quality of life. 
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Ratti has written on integrating IoT devices into urban transit, energy, public spaces, and 

structures. He envisions real-time monitoring, analysis, and optimization of urban processes via 

sensors in municipal infrastructure and common items.  

Ratti has studied urban mobility using IoT-enabled sensors in automobiles, traffic signals, and 

road infrastructure to measure traffic flow, congestion, and travel behavior. Ratti and his 

colleagues analyzed this data to learn how communities might optimize transportation systems, 

minimize congestion, and increase accessibility for all citizens.  

In another research, Ratti examined IoT devices' energy management and sustainability 

possibilities. Ratti uses sensors in buildings, utilities, and renewable energy systems to monitor 

energy use, uncover inefficiencies, and optimize resource utilization to minimize carbon 

emissions and improve urban sustainability.  

Ratti also studies public places and urban design. He studied how IoT devices like smart 

lighting, interactive displays, and environmental sensors may improve public area usage, safety, 

and appeal, encouraging community involvement and social interaction.  

Ratti uses a wide range of IoT devices, from sensors and actuators to complex data collecting 

and communication systems. Some examples are:  

Wireless sensors: These devices measure temperature, humidity, air quality, and noise.  

GPS trackers: Track automobiles, people, and other things in metropolitan areas.  

RFID tags provide real-time monitoring and identification for asset management and inventory 

control.  

Smart meters: Monitor energy, water, and other resource flows in buildings and utilities. 

Connected vehicles: Sensors and communication systems collect data on driving behavior, 

traffic, and road infrastructure.  

Smartphones and wearables: Collect data on individual activities, preferences, and urban 

interactions.  

Carlo Ratti's study shows that IoT technology may revolutionize cities. Ratti envisions an 

intelligent, responsive, and sustainable urban environment that improves urban people' well-

being and prosperity by exploiting data and connection.  

1.3 Literature review of work by Deborah Estrin 
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A notable computer scientist and professor at Cornell Tech and Weill Cornell Medical College, 

Deborah Estrin has made significant contributions to IoT and mobile sensing systems, notably 

in smart cities. Her study uses IoT devices and sensing technologies to gather, analyze, and 

interpret urban environment and human behavior data. Estrin has pioneered IoT-based solutions 

to urban problems, public health, and quality of life globally. 

Estrin designs and implements IoT-enabled urban environmental monitoring and management 

solutions. She directed research efforts to establish sensor networks to assess city air, water, 

noise, and other environmental characteristics. These sensor networks collect real-time 

environmental data from wireless sensors, actuators, and data recorders strategically placed 

across metropolitan areas.  

Estrin highlights the need for sturdy and dependable IoT devices that can resist tough urban 

conditions and provide accurate measurements over time in her study. She designs tiny, energy-

efficient, and cost-effective sensors alongside engineers and manufacturers for large-scale smart 

city implementation. Estrin also works on urban healthcare uses of IoT technology beyond 

environmental monitoring. She studies urban health data collection using wearable devices, 

mobile health applications, and remote monitoring systems. IoT-enabled healthcare systems 

monitor vital signs, medication adherence, and illness symptoms in real time for early 

identification and treatment. Estrin also studies how IoT devices might enhance efficiency, 

accessibility, and safety in urban infrastructure and public services. She researches smart 

sensors in transportation, energy, and municipal services to optimize resource use, minimize 

congestion, and improve public safety. IoT-enabled urban systems offer data-driven decision-

making and adaptive resource management, making cities more resilient and sustainable. 

IoT devices utilized in Estrin's study include several technologies adapted to certain 

applications and conditions. Some examples are: 

Wireless environmental sensors: These devices provide real-time air quality, temperature, 

humidity, and other environmental data for pollution monitoring and control. 

Water quality sensors: Monitor pH, dissolved oxygen, and turbidity in rivers, lakes, and 

reservoirs to ensure water resource safety and sustainability. 

Wearable health monitors: These gadgets assess heart rate, blood pressure, and activity levels 

to monitor urban residents' health and behavior. 

Smart meters and sensors: Measure energy, water, and traffic flow in buildings, utilities, and 

transportation systems to optimize resource use and efficiency.  

IoT-enabled lighting, traffic signals, and waste management systems with sensors and actuators 

to increase urban energy efficiency, traffic control, and garbage collection.  
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CHAPTER 2. METHODOLOGY 

2.1 . Forecasted Solution based on Literature 

Before delving in the case of Azerbaijan, let us start off with an international example, 

Indonesian traffic is well-known and affects many people's everyday life. Traffic jams are 

caused by the number of cars on the road, narrow highways, road user behavior, and road 

activities. These aspects make the situation complicated and difficult, requiring creative 

solutions. Dijkstra's technique, a well-known and thoroughly researched pathfinding technique, 

may be used to identify the shortest route between two places, often known as the shortest route 

problem.  

Traffic congestion study focuses on finding ways around congested locations. In this case, 

Dijkstra's Algorithm requires many steps. The algorithm first finds possible paths from the 

origin to the destination. It then evaluates these routes by length to find the shortest. However, 

the algorithm continues. To reduce traffic congestion, it adds a condition to remove routes that 

may be crowded. The algorithm creates an efficient, congestion-free route by considering route 

length and congestion.  

Even in emerging nations, traffic congestion is a major issue. Traffic congestion may not bother 

drivers or road users who aren't in a hurry, yet it affects many facets of everyday life. Traffic 

congestion increases travel times, fuel use, and emissions, which harm the environment. Traffic 

delays also impact company productivity, transit logistics, and quality of life. Finding efficient 

ways to avoid traffic is the shortest route issue, a popular graph theory subject. Many methods 

have been devised to solve this issue, each having strengths, weaknesses, and applicability. 

Transportation planning, network routing, and logistics optimization use it extensively. The 

method examines the network from the source node, visiting nearby nodes and considering edge 

weight. Dijkstra's method effectively finds the shortest route to all accessible nodes from the 

source by keeping a priority queue and updating node distances. The Bellman-Ford method can 

handle graphs with negative edge weights and is adaptable. It updates node distances repeatedly 

as it examines all graph pathways. Even with negative edge weights, the method finds the 

shortest pathways by repeating this procedure for a set number of iterations. This technique is 

used in financial modeling and network routing systems.  

The A* search algorithm combines Dijkstra's and heuristic search benefits. A heuristic function 

assesses the distance from each node to the target to influence its search approach. A* search 

method intelligently traverses the graph by considering both the actual distance traveled and the 
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predicted remaining distance, improving pathfinding. This method is used in robotics, AI, and 

navigation. 

Floyd-Warshall is meant to identify the shortest route between all graph node pairs. It works by 

treating each node as a possible link between two others. The method gradually finds the 

shortest pathways for all pairs of nodes by updating node distances. When network connection 

research and traffic flow modeling need the shortest pathways between all pairs of nodes, the 

Floyd-Warshall method is helpful. 

Johnson's algorithm is a novel combination of Dijkstra's and Bellman-Ford's. It is optimized for 

graphs with negative edge weights and finds the shortest route between all node pairs. Dijkstra's 

algorithm is applied to the changed network after the algorithm transforms it. Johnson's method 

is used in transportation planning, urban infrastructure, and social network analysis.  

Dijkstra's bidirectional search technique investigates the network from both the source and 

destination nodes. The technique efficiently finds the shortest route between source and 

destination nodes using two search frontiers that extend toward each other. In big graphs, the 

bidirectional search technique decreases search space and improves computing performance.  

While the breadth-first search technique is straightforward and obvious, it finds the shortest 

route in an unweighted network. The graph is explored breadth-first, visiting surrounding nodes 

before continuing to the next level.  

Maintaining a queue of nodes to visit ensures the algorithm finds the quickest route to the 

destination. Breadth-first search is a building component for more advanced pathfinding 

algorithms, although it works best on unweighted networks. The method used relies on the 

issue, graph, and application requirements. Researchers and practitioners carefully assess these 

aspects to choose the best algorithm by situation. As algorithm design and computer tools 

improve, new and better methods for addressing the shortest route issue in traffic congestion 

are developed.  

2.2 Explanation of the criteria for algorithm selection and comparison 

Choosing and comparing algorithms involves several considerations. Problem, input data, and 

desired attributes determine algorithm selection. Here are significant algorithm selection and 

comparison criteria: Correctness matters first. For all inputs, the method should output correct 
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results and fulfill issue criteria without mistakes. Efficiency includes time complexity, space 

complexity, and real-world performance.  

Efficiency determines algorithm speed. Scalability measures the algorithm's efficiency as input 

size increases. Scalable algorithms do well with greater inputs. Optimal algorithms ensure the 

optimum answer depending on criteria. Determining whether the issue requires an optimum or 

approximation solution is crucial. Limitations must be considered. Some algorithms can only 

handle certain input data. Compatibility with issue limitations is crucial. Algorithms commonly 

trade off temporal complexity for memory utilization or optimality for efficiency.  

Understanding these trade-offs is crucial when choosing an algorithm. Resource and library 

availability for an algorithm is also important. Use existing implementations, libraries, or 

resources to reduce time and assure reliability. Selection and comparison of algorithms involve 

thorough examination of these factors and knowing the problem's features and requirements. 

Using these criteria to evaluate several algorithms helps find the best one for a task. 

2.3 Explanation of the performance metrics employed to evaluate the algorithms 

Evaluation and comparison of algorithm efficiency and effectiveness need performance 

measures. Several typical performance measures may give information. Big O and Theta 

notations are used to quantify algorithm computational time. Space complexity uses Big O 

notation to assess an algorithm's memory or space needs. Speedup also calculates an algorithm's 

relative improvement over a reference algorithm.  

When a known or optimum solution is available, algorithm output accuracy is crucial. The 

approximation ratio, usually a ratio or percentage, measures how near an approximate solution 

is to the best answer.  

The number of comparisons or operations an algorithm does, notably in sorting, searching, or 

data processing, indicates its efficiency. Finally, scalability compares method performance as 

input size rises to see whether performance degrades with higher issue sizes. These performance 

indicators help choose the best algorithm for certain issue situations by evaluating and 

comparing algorithms. 

2.4 . Implementation of Dijkstra's algorithm as a method  

Urban traffic congestion occurs when transportation demand exceeds road network capacity, 

slowing speeds, lengthening travel times, and frustrating commuters. This harms people, 

companies, and the economy. Traffic congestion is reduced via efficient routes, which have 



   

 

 16 

several benefits. First, efficient routes reduce traffic delays and travel times. Time savings allow 

people to get to their destinations faster and enhance productivity. Reduce idle and optimize 

fuel efficiency using route planning to save gasoline. The environment benefits from fewer 

emissions and air pollution, while drivers save money. Safety is important because crowded 

roadways cause accidents. Optimizing routes and lowering congestion reduces accidents, 

improving road safety. Traffic congestion also stresses and frustrates people. Finding good 

routes helps reduce these unpleasant feelings, making travel more enjoyable and life better. In 

conclusion, decreasing traffic congestion and prioritizing route design improve transportation 

efficiency, travel times, fuel savings, environmental impact, safety, and quality of life for people 

and communities. 

The graph theory shortest path problem finds the fastest path between two nodes. Nodes are 

linked by edges, which may have weights or charges. The goal is to find the cheapest route 

between source and destination nodes. Dijkstra's algorithm, named for Dutch computer scientist 

Edsger W. Dijkstra, is commonly used to solve graphs' shortest route issue. It finds the shortest 

route from a source node to all other nodes in networks with non-negative edge weights. 

A more detailed than previously shown explanation of Dijkstra's algorithm follows: 

Initialization: Assign a tentative distance value to each graph node. Source node distance is 0, 

but all other nodes are initialized at infinity. 

Current Node Selection: Select the node with the shortest tentative distance and mark it as 

visited. 

Tentative Distance Calculation: Determine the tentative distance between nearby nodes. The 

tentative distance of the current node is increased by the weight of the edge linking it to the 

nearby node. Update the distance value if this tentative distance is less than the nearby node's 

previously allocated distance. 

Current Node Update: Mark the node as visited after considering its neighbors. 

Iteration: Repeat steps 2-4 until all nodes are visited or the goal is reached. 

Route Reconstruction: The method determines the shortest route from the source node to any 

other node in the network by retracing the path with the fewest tentative distances. 

While Dijkstra's algorithm guarantees finding the shortest path in a graph with non-negative 

edge weights, alternative algorithms such as Bellman-Ford or Johnson's algorithm should be 
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utilized if negative weights are present. Here's a pseudo code representation of Dijkstra's 

algorithm: 

 

 

 

2.5. Implementation of Bellman-Ford algorithm as a method  

Traffic congestion and the Bellman-Ford algorithm's necessity of discovering optimal routes 

are related. Traffic congestion is a complicated issue that arises when transportation demand 

exceeds road network capacity, slowing speeds, lengthening travel times, and frustrating 

commuters. By finding ideal routes to reduce congestion and improve transportation efficiency, 

the Bellman-Ford algorithm helps solve this problem. Effective routes reduce travel distances, 

which helps with Bellman-Ford algorithm traffic congestion. Use the algorithm's ability to 

locate the shortest path between nodes, even with negative edge weights, to create commuter 

routes that are most efficient. These shorter routes save travel time and congestion by spreading 

traffic over several pathways rather than concentrating it on a few busy routes. Management of 

traffic bottlenecks is also crucial to the Bellman-Ford algorithm. Bottlenecks including 

intersections, highway merging, and construction zones create traffic delays. The algorithm 

may manage traffic flow and reduce congestion at important locations by discovering optimal 

routes outside crowded or inefficient places.  

This traffic redistribution improves vehicle flow and reduces congestion in bottleneck locations. 

The Bellman-Ford algorithm optimizes transportation resources and manages congested 

locations. It optimizes highway and major roadway capacity by effectively assigning traffic to 

function Dijkstra(graph, source): 

    create empty set visited 

    create empty map distance 

    create empty map previous 

     

    for each node in graph: 

        set distance[node] to infinity 

    set distance[source] to 0 

     

    while there are unvisited nodes: 

        current = node with the smallest distance in distance map that is not visited 

        add current to visited 

         

        for each neighbor of current: 

            if neighbor is not visited: 

                calculate tentative distance from source to neighbor through current 

                if tentative distance is smaller than the current distance[neighbor]: 

                    set distance[neighbor] to tentative distance 

                    set previous[neighbor] to current 

         

    return distance, previous 

Table 1 Implementation of Dijkstra 
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routes. This optimization approach optimizes resource use, reducing congestion and fostering a 

sustainable, efficient transportation system.  

Thus, the algorithm's route-finding skill is crucial to balancing transportation demand and 

resources. Increasing traffic flow is another essential role of the Bellman-Ford algorithm in 

reducing traffic congestion. Delays, frequent pauses, and car collisions define congested 

roadways. By finding the shortest pathways, the Bellman-Ford algorithm optimizes traffic flow 

by reducing disturbances. Identifying optimal routes increases traffic flow, minimizes stop-and-

go, and boosts transportation network efficiency. The algorithm's influence goes beyond 

lowering travel times and congestion to adding fluidity to traffic. Integration with real-time 

traffic management systems makes the Bellman-Ford algorithm even more useful for traffic 

congestion reduction. The program adjusts routes dynamically by assessing and updating 

shortest path information depending on traffic, incidents, and congestion. This flexibility 

provides real-time reaction and optimization, improving traffic flow and congestion. Traffic 

management and congestion reduction depend on the algorithm's timely and actionable 

observations. Bellman-Ford algorithm pseudo code: 

 

2.5 Implementation of A* search algorithm as a method 

Traffic congestion and appropriate routes remain important when using the A* search method. 

Traffic congestion occurs when demand for transportation exceeds road network capacity, 

slowing speeds, prolonging travel times, and increasing commuter unhappiness.  

The A* search method relies on effective route identification to reduce traffic and improve 

transportation networks. In the context of the A* search algorithm, efficient routes and traffic 

function BellmanFord(graph, source): 

    create empty map distance 

    create empty map previous 

     

    for each node in graph: 

        set distance[node] to infinity 

    set distance[source] to 0 

     

    for i from 1 to |V|-1, where |V| is the number of nodes in the graph: 

        for each edge (u, v) in graph: 

            if distance[u] + weight(u, v) < distance[v]: 

                set distance[v] to distance[u] + weight(u, v) 

                set previous[v] to u 

     

    // Additional iteration to check for negative cycles 

    for each edge (u, v) in graph: 

        if distance[u] + weight(u, v) < distance[v]: 

            // Negative cycle detected 

            return "Negative cycle exists in the graph" 

     

    return distance, previous 

Table 2 Implementation of BellmanFord 
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congestion are discussed below: First, the A* search method optimizes journey time by 

considering the destination's distance and estimated remaining cost. These two factors allow the 

computer to select routes that minimize distance and decrease congestion or speed up travel.  

Thus, this optimization method reduces commuter delays and travel time.  

Second, the A* search method uses a heuristic function to predict destination costs from each 

node. Using real-time or historical traffic data, this heuristic tool may recommend routes that 

avoid crowded regions or traffic hotspots.  

The algorithm distributes cars more evenly and reduces congestion by redirecting traffic from 

busy areas. The A* search algorithm may also include real-time traffic data including traffic 

flow, incidents, and road closures. The program constantly adjusts routes to changing 

congestion levels by updating the heuristic function and integrating traffic circumstances. This 

flexibility helps choose better routes and improves transportation system response to 

congestion. The A* search algorithm considers more than distance and traffic congestion. It 

may consider road capacity, circumstances, traffic lights, or user preferences. The program 

balances several criteria and optimizes commuting by combining these different aspects into 

the search process.  

The A* search method also supports multi-modal transportation systems including public transit 

and pedestrian routing. The algorithm optimizes multi-modal travel and reduces congestion by 

promoting alternative transportation by integrating and connecting modes. When applied to 

traffic congestion, the A* search algorithm helps identify routes that minimize travel time, avoid 

congested areas, enable dynamic route planning, consider multiple factors, and enable multi-

modal transportation. These results reduce congestion, increase transportation efficiency, and 

improve commute. 

Table 3 Implementation of A* 
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2.6 Implementation of Floyd-Warshall algorithm as a method 

When dealing with traffic congestion and route optimization, the Floyd-Warshall algorithm is 

crucial. Traffic congestion occurs when transportation demand exceeds road network capacity, 

resulting in slower speeds, longer journey times, and commuter discontent.  

The Floyd-Warshall algorithm prioritizes optimal routes to reduce traffic and maximize 

transportation efficiency. Using the Floyd-Warshall algorithm, we can see how effective routes 

affect traffic congestion: Effective Route Planning: The Floyd-Warshall algorithm solves the 

all-pairs shortest route issue completely. It carefully calculates the shortest pathways between 

every pair of nodes in a graph, taking edge distances and costs into consideration.  

The method reduces trip distances, congestion, and traffic flow in the transportation network 

by finding the best paths between any two nodes. Traffic redistribution: Route design is crucial 

to reducing congestion.  

function AStarSearch(graph, source, destination, heuristic): 

    create empty map distance 

    create empty map previous 

    create empty set openSet 

     

    set distance[source] to 0 

    add source to openSet 

     

    while openSet is not empty: 

        current <- node in openSet with the lowest total cost (distance[current] + heuristic(current, 
destination)) 

         

        if current is equal to destination: 

            // Destination reached, terminate 

            break 

         

        remove current from openSet 

         

        for each neighbor of current: 

            tentativeDistance <- distance[current] + cost(current, neighbor) 

             

            if tentativeDistance < distance[neighbor]: 

                set distance[neighbor] to tentativeDistance 

                set previous[neighbor] to current 

                 

                if neighbor is not in openSet: 

                    add neighbor to openSet 

     

    if destination not reached: 

        // No path exists 

        return "No path found" 

     

    // Reconstruct the shortest path 

    path <- empty list 

    current <- destination 

     

    while current is not null: 

        add current to path 

        current <- previous[current] 

     

    reverse path 

    return path 
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The Floyd-Warshall algorithm may reroute traffic from crowded locations or popular routes by 

carefully locating cheaper alternatives. Thus, the algorithm distributes traffic loads fairly, 

reducing congestion hotspots and balancing road network use. 

In real-time traffic control, the Floyd-Warshall algorithm is useful. The algorithm adjusts routes 

quickly by updating the shortest path information in response to changing traffic circumstances. 

This flexibility allows transportation authorities to manage traffic flow, divert cars to less 

crowded pathways, and improve network efficiency. Response and Recovery: Accidents, road 

closures, and construction may worsen traffic. By quickly analyzing alternate routes that 

circumvent impacted regions, the Floyd-Warshall algorithm is essential. The algorithm aids 

event reaction and recovery by giving a graph overview and alternate paths. It minimizes 

interruptions, decreases traffic congestion, and improves traffic flow.  

The Floyd-Warshall algorithm's ability to determine the shortest pathways and evaluate all 

alternative routes makes it ideal for predictive analysis and future planning.  

The program helps detect bottleneck locations by evaluating previous traffic data and predicting 

population increase and infrastructure development. It also helps build routes for future 

transportation demands, proactively addressing congestion issues. Overall, the Floyd-Warshall 

algorithm helps reduce traffic congestion by efficiently computing all-pairs shortest paths, 

redistributing traffic, managing traffic in real time, responding to and recovering from incidents, 

and supporting predictive analysis and future planning. These efforts reduce congestion, 

increase transportation efficiency, and improve commute. The shortest path issue in graph 

theory—finding the shortest path between all pairs of nodes—remains crucial. Finding the least 

cost or distance between graph nodes is the main goal. The Floyd-Warshall method, a dynamic 

programming algorithm, is essential for solving the all-pairs shortest route issue.  

It calculates the shortest pathways between all pairs of nodes in a graph, taking edge distances 

or costs into consideration. To summarize its operation, the method initializes a distance matrix 

to hold node costs or distances. Each node is considered a possible intermediate node, and the 

distance matrix is updated by comparing distances via the intermediate node iteratively. After 

iterations, the distance matrix includes all node pairings' shortest distances. The technique 

tracks previous nodes throughout computation to provide optional route rebuilding. The Floyd-

Warshall method effectively handles graphs with positive and negative edge weights using 

dynamic programming, making it suited for negative weight cases. The method has a time 

complexity of O(V^3), where V is the number of nodes in the graph. Dijkstra's method or the 

Table 4 Implementation of FloydWarshall 
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A* search algorithm may be more efficient for bigger networks. In conclusion, the Floyd-

Warshall method solves the all-pairs shortest route issue efficiently and robustly, revealing the 

shortest pathways between any pair of nodes in a network.  

 

 

 

 

 

 

 

  

function FloydWarshall(graph): 

    let dist be a |V| × |V| array of minimum distances, initialized with infinity 

    let next be a |V| × |V| array of next nodes, initialized with null 

     

    for each edge (u, v) in graph: 

        dist[u][v] = weight(u, v)  // Set the direct edge weight 

     

    for each node v in graph: 

        dist[v][v] = 0  // Set distance to itself as 0 

     

    for each intermediate node k in graph: 

        for each node i in graph: 

            for each node j in graph: 

                if dist[i][j] > dist[i][k] + dist[k][j]: 

                    dist[i][j] = dist[i][k] + dist[k][j] 

                    next[i][j] = next[i][k]  // Update next node 

     

    return dist, next 
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CHAPTER 3. STATE OF THE ART 

3.1. Status of amalgamated research 

Smart city research has grown globally, focusing on using technology to solve urban problems 

and improve quality of life. Smart city technology research has increased in CIS nations, 

including Azerbaijan, to boost economic development, infrastructure, and sustainability. 

Smart city researchers in CIS nations have studied urban mobility, energy management, and 

digital government. Studies have used sensor networks and data analytics to enhance public 

transit, decrease traffic, and improve air quality. Researchers have also developed smart grid 

technology to boost energy efficiency and renewable energy. 

West, especially Europe and North America, has conducted much smart city research. Scholars 

and practitioners are exploring new urban mobility, digital connection, and social inclusion 

solutions. Smart mobility hubs, autonomous cars, and shared mobility services are popular 

approaches to cut carbon emissions and enhance transportation efficiency. 

Global smart city research may inform policy and strategic planning in Azerbaijan. Azerbaijan 

can construct smarter, more resilient cities faster by using global best practices and lessons. 

Smart city technology may improve air quality, energy consumption, innovation, and 

investment in the area. 

Staying current on smart city research and trends is vital as Azerbaijan develop and execute 

smart city programs. The area can lead smart city innovation and drive good change and 

sustainable progress for years by remaining aware of global advancements and partnering with 

international partners. 

      3.2. Research done from Algorithmic point of view 

Over the last five years, Azerbaijan, Russia, and Georgia have undertaken research on 

algorithms like A*, Dijkstra, and Hellman for urban planning and infrastructure optimization 

in smart city development.  

Researchers from Azerbaijani universities and government agencies have studied these 

algorithms for route planning, traffic control, and emergency response. Baku State University 

studied the efficiency of A* algorithm in optimizing Baku public transportation routes to reduce 

trip time and improve service dependability. 

3.2.1. A* Algorithm 
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But what is A* algorithm and how does it help us with our research? The following short 

explanation is an easy way to grasp the theory. 

The A* algorithm is a popular pathfinding algorithm used in many applications, including route 

planning in maps and navigation systems. It is an extension of Dijkstra's algorithm with a 

heuristic component, making it more efficient in finding the shortest path between two nodes 

in a graph. Here's how A* works: 

### Algorithm Overview: 

1. **Initialization**: Set the initial node as the start node and add it to the open set. Set the 

initial cost of reaching the start node to 0. 

2. **While the open set is not empty**: 

    - **Select the node with the lowest f(n) value** (where f(n) = g(n) + h(n)), where: 

        - g(n) is the cost of reaching node n from the start node. 

        - h(n) is the estimated cost of reaching the goal node from node n (heuristic function). 

    - **If the selected node is the goal node**, reconstruct the path and return it. 

    - **Otherwise, expand the selected node**: 

        - For each neighbor of the selected node: 

            - Calculate the tentative cost of reaching that neighbor from the start node (g_score). 

            - If the neighbor is not in the open set, add it and update its g_score. 

            - If the neighbor is already in the open set and the new g_score is lower than its current 

g_score, update its g_score and set its parent to the selected node. 

    - **Move the selected node from the open set to the closed set**. 
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### Mathematical Expressions: 

- **g(n)**: The cost of reaching node n from the start node. It is calculated as the sum of the 

costs of the edges traversed from the start node to node n. 

- **h(n)**: The estimated cost of reaching the goal node from node n. It is a heuristic function 

that provides an optimistic estimate of the remaining cost. Common heuristics include 

Euclidean distance, Manhattan distance, and straight-line distance. 

- **f(n)**: The total estimated cost of reaching the goal node from the start node through node 

n. It is calculated as the sum of g(n) and h(n). 

 

### Explanation: 

- A* combines the advantages of Dijkstra's algorithm (guaranteed shortest paths) with the 

efficiency of heuristic search. 

- The heuristic function h(n) guides the search towards the goal node by providing an estimate 

of the remaining cost. It biases the search towards nodes that are likely to lead to the goal, 

resulting in a more efficient exploration of the search space. 

- The algorithm terminates when the goal node is reached or when the open set is empty 

(indicating that there is no path to the goal). 

- A* guarantees to find the shortest path if: 

    - The heuristic function h(n) is admissible (never overestimates the true cost to reach the 

goal). 

    - The graph does not contain cycles of negative cost. 

Russian academics at Moscow State University and St. Petersburg State University have studied 

Dijkstra's algorithm for traffic flow optimization and congestion management. This research 

aim to create intelligent transportation systems that improve urban mobility networks using 

real-time data and predictive analytics.  
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3.2.1 Dijkstra Algorithm 

Classic pathfinding method Dijkstra's algorithm finds the shortest route between two nodes in 

a weighted network. It guarantees the shortest route to each node by exploring all pathways 

from the start node to all other graph nodes. How Dijkstra's algorithm works: 

### Algorithm Overview: 

1. **Initialization**: Set the initial node as the start node and add it to the open set. Set the 

initial cost of reaching the start node to 0. 

2. **While the open set is not empty**: 

    - **Select the node with the lowest cost** (minimum distance/cost from the start node). 

    - **If the selected node is the goal node**, reconstruct the path and return it. 

    - **Otherwise, expand the selected node**: 

        - For each neighbor of the selected node: 

            - Calculate the tentative cost of reaching that neighbor from the start node. 

            - If the tentative cost is lower than the current cost of reaching the neighbor, update its 

cost and set its parent to the selected node. 

    - **Move the selected node from the open set to the closed set**. 

 

### Mathematical Expressions: 

- **Distance (d)**: The current known distance from the start node to a particular node. 

Initially, all distances are set to infinity except for the start node, which is set to 0. 

- **Cost (c)**: The weight of the edge connecting two nodes in the graph. 

- **Total Cost (tc)**: The total cost of reaching a node from the start node through a particular 

path. It is the sum of the distances of all edges traversed in that path. 
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### Explanation: 

- Dijkstra's algorithm explores the graph by iteratively selecting the node with the lowest cost 

(minimum distance) from the start node and expanding it. 

- It updates the distances to neighboring nodes based on the cost of the edges connecting them, 

ensuring that it always selects the shortest path available. 

- The algorithm terminates when the goal node is reached or when there are no more nodes to 

explore (indicating that there is no path to the goal). 

- Dijkstra's algorithm guarantees to find the shortest path from the start node to all other nodes 

in the graph if: 

    - All edge weights are non-negative (positive or zero). 

    - The graph does not contain cycles of negative cost. 

Georgia smart city research has employed A* and Dijkstra algorithms for urban planning and 

resource allocation. Research at Tbilisi State University examined if A* algorithm might 

optimize garbage collection routes in Tbilisi to reduce fuel usage and environmental effect.  

In addition, CIS researchers have investigated unique algorithmic optimization methods like 

the Hellman algorithm, which may be useful in network security and data privacy. While not 

focused on smart city development, research in Azerbaijan, Russia, and Georgia have examined 

Hellman algorithm's effects on IoT device security and urban vital infrastructure. Research on 

algorithms like A*, Dijkstra, and Hellman in smart cities in the CIS area has been extensive and 

multidimensional, covering a variety of applications and fields. These algorithms' full potential 

in solving urbanization's complex problems and promoting sustainable development in the area 

needs additional study as smart city efforts grow. 

The reason behind so many research papers being within the range of algorithms have several 

reasons: 

Precision and Effectiveness: Algorithms power smart city applications like route optimization 

and resource distribution. Researchers may create precise and effective urban solutions by 

concentrating on algorithms and their application. This tailored strategy optimizes resource 

allocation and solution effect.  

Scalability and Generalizability: Algorithms can solve a variety of urban problems in various 

cities and regions due to their scalability and generalizability. By creating adaptable and 
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scalable algorithms, researchers may offer effective and scalable solutions for wider 

deployment and impact. 

Algorithm research commonly incorporates computer scientists, urban planners, engineers, and 

politicians. Multidisciplinary viewpoints on difficult urban challenges encourage innovation 

and creativity. Focusing on algorithms and their application allows academics to combine 

knowledge from other fields to solve smart city problems.  

Algorithms use data to make decisions and suggestions. Researchers may learn about urban 

dynamics and behavior by examining massive datasets and using data analytics. This data-

driven method permits evidence-based decision-making and targeted urban problem-solving 

solutions. 

Technology and social demands form smart cities, which are adaptable to new technologies. 

Researchers may keep current on developing technologies and trends by concentrating on 

algorithms and their application, ensuring that their solutions remain relevant and successful in 

changing urban contexts. 

Focusing on algorithms and their application allows academics to build accurate, scalable, and 

data-driven solutions to urbanization's complex difficulties in a methodical and efficient 

manner. Researchers may innovate and build smarter, more sustainable cities using algorithms. 

3.3 Research done from Ecological point of view 

For this thesis, ecological output and benefit of the topic is as important as the innovative side 

of the items. Thus, for example, while our nation rebuilds Azerbaijan, often seen in other 

countries and renovation cases, we should take care of the environment as of the highest 

importance. Considering how severe the damage and the scar of Armenian occupation is still 

affecting the land, this is the only route which can be taken.  

Smart city research on ecological sustainability has grown in recent years due to the need to 

solve urban environmental issues. Researchers in Azerbaijan, CIS, and South America are 

developing creative ways to reduce urbanization's environmental impact and promote 

sustainable development. Key research topics in this field include: 

Green Infrastructure Development: Green roofs, urban forests, and permeable pavements have 

been studied to promote biodiversity, air quality, and the urban heat island effect. Research in 

Azerbaijan and CIS nations has identified green infrastructure project sites and quantified their 

ecological effects. 
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Renewable Energy Integration: Researchers have investigated integrating solar, wind, and 

hydroelectric power into urban energy systems to minimize fossil fuel use and carbon 

emissions. Azerbaijan and South American studies have examined renewable energy 

technology viability and promise to support sustainable energy transitions. 

Smart Transportation Solutions: Electric cars, bike-sharing programs, and intelligent traffic 

management systems have been studied to minimize greenhouse gas emissions and traffic 

congestion. CIS and South American projects have examined how these changes affect air 

quality, public health, and urban mobility. 

Using smart sensors, data analytics, and waste-to-energy technology, studies have optimized 

waste management systems to reduce landfill trash and increase recycling and composting. 

Azerbaijan and CIS nations have studied novel trash collecting, sorting, and disposal methods 

to reduce pollution and save resources. 

Ecosystem Monitoring and Conservation: Researchers have studied urban ecosystems, 

biodiversity, and natural environments. Azerbaijan and South American projects have 

examined urbanization's ecological effects and advocated habitat restoration and protection. 

Community participation and Education: Smart cities' ecological sustainability depends on 

community participation and education, according to research. Azerbaijan and CIS 

communities have participated in environmental monitoring, green infrastructure initiatives, 

and sustainable lifestyle choices to promote environmental stewardship and resilience. 

Smart cities for ecological sustainability study covers several subjects and methods to make 

cities more resilient, habitable, and environmentally friendly. This research may inform policy, 

urban planning, and sustainable development in Azerbaijan, CIS countries, South American 

states, and beyond. Policymakers, urban planners, and communities may collaborate to create 

a sustainable future for future generations by using research. 

In summary, research in smart cities with an emphasis on ecological sustainability has been 

vigorous and diversified, encompassing numerous geographies like Azerbaijan, CIS countries, 

and South American states. Studies have examined green infrastructure, renewable energy 

integration, smart mobility, waste management optimization, ecosystem monitoring, and 

community participation. Future research may focus on circular economy techniques, nature-

based solutions, and climate change adaptation strategies through use of technology. 
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3.4 Research done from IoT point of view 

IoT is everywhere nowadays. We cannot, not take it into consideration. In our case there are 

several reasons as to why we need the use of IoT [35]. IoT technology is crucial to smart city 

research and development, providing several advantages for example, in the case of rebuilding 

and regeneration activities in Azerbaijan. Why IoT should be a focus of smart city research and 

how it might help Azerbaijan rebuild: 

Data-Driven Decision Making: IoT sensors in transportation systems, buildings, and utilities 

create massive volumes of real-time data. Policymakers and urban planners in Azerbaijan may 

use IoT platforms and analytics to understand urban dynamics and make educated decisions for 

resource allocation and infrastructure development. 

Smart meters for utilities, intelligent traffic management systems, and remote monitoring 

devices for public services maximize resource utilization and operational efficiency using IoT. 

IoT technology may help Azerbaijan rebuild sustainably and save waste by managing resources. 

Improved Infrastructure Resilience and Safety: IoT devices provide real-time monitoring and 

repair of bridges, roads, and utilities. IoT-enabled infrastructure technologies improve resilience 

and safety by identifying abnormalities and possible breakdowns early, decreasing Azerbaijan 

reconstruction interruptions and accidents. 

Citizenship and Quality of Life: IoT applications like smart lighting, garbage management, and 

public safety monitoring enable residents to actively shape their communities. Azerbaijan 

inhabitants may submit input, report concerns, and access key services via IoT-enabled 

platforms and mobile apps, increasing quality of life and community ownership. 

Economic Sustainability: IoT infrastructure and services boost economic development by 

generating new possibilities for innovation, entrepreneurship, and job creation. IoT technology 

may boost Azerbaijan's digital economy, attracting investment and boosting prosperity. 

Environmental Sustainability: IoT-enabled environmental monitoring systems assess and 

control urban air, water, and pollution. Azerbaijan may improve sustainability and reduce 

reconstruction's environmental effect by monitoring ecological indicators and adopting data-

driven environmental regulations. 

Many worldwide research projects are investigating the integration of IoT technology into smart 

city development and its effects on diverse fields. Current research on IoT-enabled smart cities 

in Azerbaijan, and elsewhere covers several areas. Some active research areas are:  
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IoT-enabled Urban Infrastructure Monitoring: Research projects are employing IoT sensors to 

monitor bridges, roads, and utilities. These efforts seek to increase infrastructure resilience, 

maintenance, and Azerbaijan and surrounding area inhabitants' safety. 

Smart Transportation and Mobility Solutions: Many studies are using IoT technology to 

improve urban transportation, traffic, and mobility. Azerbaijan researchers may use IoT sensors 

for traffic control, intelligent transportation systems, and real-time public transit information to 

increase inhabitants' accessibility and connection.  

Research is undertaken to create IoT-based solutions for air quality monitoring, water quality 

evaluation, and waste management optimization. Azerbaijan researchers may be using IoT 

devices to monitor pollution, save resources, and promote sustainable development.  

Intelligent Energy Systems and Sustainability: Projects are studying IoT technologies for 

energy efficiency, renewable energy integration, and sustainability. Azerbaijan research may 

concentrate on smart grid technologies, energy consumption optimization, and renewable 

energy adoption to minimize carbon emissions and improve energy security. 

Research is studying the use of IoT devices and sensors for video surveillance, emergency 

response, and crime prevention. Researchers in Azerbaijan may be using IoT to increase disaster 

preparation, public space monitoring, and community resilience to natural and man-made 

hazards.  
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CHAPTER 4.  SYSTEMS ARCHITECTURE 

    4.1. Solution understanding basis 

The proposed solution from our side, is to create a system that will analyze the flow of traffic 

and determine the following: The state of the road due to car usage, the deduction of carbon 

emissions due to the abundance of traffic, possible alternative pathways 

Our proposed solution will serve for the following items that will be crucial to take care of 

within near future due to the rebuilding of Azerbaijan: Ecologically clean smart Azerbaijan, 

road integrity status, eco-Active Implementation. 

4.2. Theoretical Approach 

We now will review the theoretical methodology that incorporates many theoretical frameworks 

to produce an API-based code aimed at aiding a smart city in mitigating its vehicular congestion 

via the utilization of Internet of Things (IoT) gadgets in automobiles. This may be achieved by 

using the devices.  

The architecture in question is exemplified by the Internet of Things (IoT). The use of the IoT 

holds promise for the advancement of smart cities, since it enables the collection and analysis 

of data from sensors integrated inside diverse urban systems, such as transportation networks.  

Another theoretical framework that might be employed is the concept of traffic flow theory. 

This theoretical framework emphasizes the need of understanding the complex interplay 

between traffic flow, road capacity, and human behavior. Our goal is to create an API-driven 

solution that enhances traffic flow and reduces congestion in metropolitan areas by first 

assessing traffic flow patterns and subsequently acquiring an understanding of the factors that 

influence traffic flow. The criteria include the magnitude, velocity, and concentration of the 

traffic.  

We will go through several steps to create API-based code that aids a smart city in mitigating 

automotive congestion. The first step is identifying the Internet of Things (IoT) devices that 

may be used for the purpose of collecting data from autos. Illustrative instances of such devices 

include GPS sensors, speed sensors, and fuel sensors. We would also ascertain the specific data 

points that need collection such as the city points, roundabouts, busy streets and fast lanes, 

vehicle's location, speed, and fuel efficiency.  

The next step involves strategizing and developing an application programming interface (API)-

driven solution that integrates data from these Internet of Things devices into existing urban 
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systems, such as transportation systems or traffic management systems. This proposed system 

utilizes application programming interfaces (APIs) to enable real-time monitoring and analysis 

of traffic flow patterns. Additionally, it offers valuable insights into the many elements that 

influence traffic flow and congestion.  

The third phase involves using machine learning algorithms to analyze the data collected from 

Internet of Things devices and predict future traffic flow patterns. This would enable the 

development of predictive models that may be used to enhance traffic flow and mitigate 

congestion in urban environments. 

During the fourth step, the proposed approach involves either incorporating the solution via an 

Application Programming Interface (API) into the existing transportation systems or 

developing novel transportation systems that use the data acquired from Internet of Things (IoT) 

devices. This may include the generation of up-to-date traffic data and alerts, the enhancement 

of traffic signal timing, and the advancement of alternate modes of transportation such as public 

transit or ride-sharing platforms. 

In summary, the development of an application programming interface (API)-based code aimed 

at mitigating automobile traffic in a smart city through the utilization of Internet of Things (IoT) 

devices necessitates a theoretical framework that encompasses various theoretical perspectives, 

such as the Internet of Things and traffic flow theory. By using these conceptual frameworks, 

the theoretical approach will possess the capability for us to devise and build an application 

programming interface (API)-driven solution that enhances traffic flow and mitigates 

congestion in urban environments. The use of this approach is expected to provide significant 

benefits for both urban dwellers and the surrounding areas.  

4.1.1 Use of Google Maps API 

To create IoT solutions for smart cities in Azerbaijan using the Google Maps API, employ a 

theoretical approach that integrates many theoretical frameworks. The Technology Acceptance 

Model (TAM) posits that perceived usefulness and ease of use influence technology adoption. 

In the Google Maps API, understanding these factors is crucial to creating user-centric solutions 

that encourage widespread adoption.  

Another theoretical framework, the Triple Helix model, emphasizes stakeholder collaboration 

in IoT solution development and implementation. Smart cities in Azerbaijan may use their 
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expertise and resources to IoT innovation via public-private collaborations and academic 

alliances.  

Socio-technical systems can also ensure the social and ethical responsibility of integrating the 

Google Maps API into IoT solutions in smart cities in Azerbaijan. This theoretical framework 

helps recognize the interconnection of social and technical components in urban contexts, 

emphasizing the necessity to consider smart city advancement's social and ethical impacts.  

Several steps may be done to operationalize the theoretical framework. The first step is 

identifying Azerbaijan's urban systems that may benefit from the Google Maps API. These 

systems include energy, transportation, and public safety, among others.  

The next phase involves actively involving government, commercial, and academic 

stakeholders to create a cooperative structure for creating and executing Internet of Things (IoT) 

solutions that integrate the Google Maps API. This may involve public-private cooperation, 

joint research, and training and capacity-building.  

The next step involves developing and implementing Google Maps API-integrated IoT 

applications. This process involves collecting and analyzing sensor data from various urban 

systems, assimilation of location data into existing urban systems, and the construction of new 

Google Maps API-based apps and services.  

The fourth phase would evaluate the impact of IoT solutions incorporating the Google Maps 

API on urban Azerbaijan's efficiency, sustainability, and quality of life. Critical performance 

parameters including energy consumption, transportation congestion, and crime rates may be 

monitored and assessed.  

APIs build and enforce rules and procedures that allow two application applications to 

communicate. Example: The meteorological agency's program includes meteorological data. 

User devices with weather apps communicate with this network via APIs and display forecast 

data.  

API keys may be protected once they are produced and used, however limitations may apply 

depending on their use. Updates or modifications to credentials in cyber implementations are 

the biggest problem. This is because the keys cannot be changed until all customers upgrade 

their API-integrated techniques. Thus, API security is crucial. Managing and improving 

credentials in jQuery and Servlet applications is easier, but changing or restoring these variables 

may need careful thought and rapid action. 
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4.2 Proposed Solution 

We provide accurate traffic detection and directions software. A software system that reliably 

detects traffic weight and delivers exact guidance addresses the aforesaid issues. Traffic data is 

collected and processed by this program using IoT technologies including traffic cameras, GPS 

trackers, vehicle sensors, and linked autos. This data allows the program to assess traffic, detect 

bottlenecks, and forecast future trends. The program uses algorithms and machine learning to 

advise routes and navigation based on traffic congestion, road conditions, and alternative 

transportation options.  

The program may also interact with smart traffic signal systems to optimize signal timings using 

real-time traffic data. User-friendly smartphone apps may provide traffic updates, voice-guided 

navigation, turn-by-turn instructions, and tailored suggestions. Different route identification 

and routing methods will be used to construct the software solution.  

These algorithms may be tested to see whether they improve traffic flow and reduce congestion. 

The program determines the best technique for certain cases by examining many data sources 

and algorithms. The program may also alter algorithms depending on traffic circumstances for 

real-time optimization. Addressing IoT issues in smart city traffic management including 

Intelligent Routing and Navigation, Dynamic Traffic Signaling, and User-Friendly Mobile 

Applications is crucial for urban mobility. The suggested software system, driven by accurate 

traffic detection and exact guidance, reduces congestion, improves traffic flow, improves user 

experiences, and promotes sustainable mobility. Smart cities can solve traffic issues using IoT, 

algorithms, and machine learning, making them more efficient, connected, and habitable. 
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Figure 1 Solution Logic Flow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3  Dataset Gathering 

The all-pairs shortest route issue, a major transportation network analysis topic, is addressed in 

this paper using algorithms. This study used a dataset with vertices representing street cross-

sections and edges indicating street weights. These weights reflect traffic congestion and street 

distance. Each entry's From, To, Traffic, and Distance characteristics are organized in the 

dataset. The dataset's structure simplifies algorithm analysis and calculation in this research. 

Each entry shows the complex interconnection and unique features of the streets in the 

transportation network under study.  

The "From" and "To" attributes determine the start and end of a street section, respectively. The 

best route between any two network streets depends on these factors. The "Traffic" feature 

quantifies street traffic intensity, which greatly affects route selection. By weighting traffic 

intensity, algorithms can handle real-world traffic circumstances and find routes that minimize 

congestion and trip time. In addition, the "Distance" feature measures the distance between 

streets. This feature is crucial to evaluating shortest pathways and choosing the best routes. The 

algorithms include traffic intensity and physical distance, providing a holistic route 

optimization method that solves traffic congestion issues.  

The dataset offered in this research is simplified to demonstrate the algorithms under 

investigation. Real-world transportation networks include many streets and linked routes, 
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requiring larger datasets with exact traffic intensity and street lengths. This study used a dataset 

with vertices representing street cross-sections and edges representing weights that include 

traffic intensity and distance. This dataset is used to apply the algorithms to the all-pairs shortest 

path problem, identifying optimal routes that reduce travel times and efficiently address 

transportation network traffic congestion. 

Table 5 Example for weight of the node 

From To Traffic Distance 

Street 1 Street 2 Heavy 450m 

Street 3 Street 1 Mid 550m 

Street 2 Street 1 Light 450m 

Street 1 Street 4 Mid 650m 

The dataset in this research has four columns: "From," "To," "Traffic," and "Distance." Each 

row in the dataset represents a street section in a transportation network and contains important 

traffic intensity and physical distance statistics. The "From" column indicates the street 

segment's origin, while the "To" column indicates its terminus. These features create street 

connectivity and spatial linkages in the transportation network under examination. Additionally, 

the "Traffic" column measures street segment traffic intensity. This column separates traffic 

intensity into "Heavy," "Mid," and "Light." This data allows a complete investigation of traffic 

conditions' effects on route selection and transportation efficiency. The "Distance" column also 

measures the distance between street segment start and finish sites. Its meters measurement 

determines trip time and optimizes transportation network routes. The first row of the dataset 

shows a 450-meter roadway stretch from "Street 1" to "Street 2" with "Heavy" traffic. Following 

rows in the collection include similar data about additional street segments, including traffic 

intensity and distance. In conclusion, this dataset provides a snapshot of transportation network 

street segments, including traffic intensity and physical distances. Such information is essential 

for full analysis and route optimization to improve traffic flow and transportation efficiency. 

4.4  Conceptual Architecture 

The experimental design for this research project included many components to investigate the 

algorithms. The Java Swing library was used to build the program's front end due of its 
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simplicity. Vue.js and Node.js were alternatives, but Swing met the study goals. The program's 

GUI has two main options: "Fastest" and "Shortest” Path.  

These selections represented the dataset's traffic intensity and distance. Users might input 

beginning and destination locations in the transportation network to calculate pathways. The 

software also allowed route stops. The program automatically determined the shortest route 

from the starting point to each stop point and then to the ultimate destination by using stop 

points. Backend logic and functionality were developed in pure Java.  

This option provided experimental compatibility and consistency. The chosen algorithms were 

run in this backend environment to accurately assess their time and space complexity. This 

research study used performance benchmarks to compare algorithm efficiency.  

These benchmarks rigorously tested and evaluated each algorithm's time and space 

requirements, which will be shown within the test results section of the thesis. Systematic 

analysis was used to find the method with the best computational resource-output quality trade-

off. In conclusion, this research study's software design included a Java Swing frontend for 

user-friendly dataset and algorithmic interaction. The Java backend executed the specified 

algorithms and provided performance benchmarks to analyze their time and space complexity. 

This design allowed for extensive algorithm discovery and comparison by including multiple 

aspects and thorough assessments. 
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Figure 2 Early Snapshot of the prototype 

4.5  Pseudocode 

The following pseudocode simplifies the flowchart for IoT-based smart city traffic management 

systems. This pseudocode describes how to solve intelligent routing and navigation, dynamic 

traffic signaling, and user-friendly mobile apps.  

It checks real-time traffic statistics first. Read data is utilized to construct alternative paths using 

a shortest path method. Users may then see alternate routes and projected journey times to make 

educated transportation options. 
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Next function tackles dynamic traffic signaling. It scans for real-time traffic data and evaluates 

congestion. At intersections with significant congestion, traffic signal timings are modified to 

favor the congested direction, maximizing traffic flow. Default signal timings apply otherwise.  

 

 

Finally, code prioritizes user-friendly mobile apps. When requesting navigation instructions, a 

shortest path algorithm calculates the best route based on location and destination. The user 

receives precise instructions and an anticipated arrival time for a customized and efficient 

navigating experience. 

// Problem: Dynamic Traffic Signaling 

IF traffic data is available THEN 

    Read real-time traffic information from IoT sensors and devices 

    Analyze traffic patterns and congestion levels 

    IF congestion is high at an intersection THEN 

        Adjust traffic signal timings dynamically based on congestion data and optimization algorithm 
(e.g., Adaptive Traffic Signal Control) 

    ELSE 

        Maintain default signal timings 

ELSE 

    Maintain default signal timings 

// Problem: Intelligent Routing and Navigation 

IF traffic data is available THEN 

    Read real-time traffic information from IoT sensors and devices 

    Calculate alternative routes using a shortest path algorithm  

    Display alternative routes and their estimated travel times to users 

ELSE 

    Display default route with estimated travel time 

 

Table 6 Intelligent Routing and Navigation 

Table 7 Dynamic Traffic Signaling 



   

 

 41 

 

 

IoT-based solutions for intelligent routing and navigation, dynamic traffic signaling, and user-

friendly mobile apps are proposed in the study. In smart cities, we use real-time data, complex 

algorithms, and IoT technology to reduce congestion, improve traffic flow, offer precise 

directions, and improve mobility. Some functions that need IoT devices for peer-to-peer 

connectivity are pseudo-implemented. This means the program works as expected, but the data 

used is from a temporary solution we created rather from the city. 

4.6  Limitations & Improvements 

// Problem: User-Friendly Mobile Applications 

IF user requests navigation directions THEN 

    Read user's current location and destination 

    Calculate optimal route using a shortest path algorithm (e.g., A* algorithm) 

    Display accurate directions and estimated arrival time to the user 

ELSE IF user requests real-time traffic information THEN 

    Read user's location 

    Retrieve real-time traffic data from IoT sensors and devices 

    Display comprehensive traffic information, including congestion levels, road conditions, and 
alternative routes, to the user 

ELSE IF user provides feedback on traffic conditions THEN 

    Collect user feedback on traffic congestion or incidents 

    Update traffic data and reroute if necessary 

    Display revised directions and estimated arrival time to the user 

ELSE 

    Display default application interface 

 

// Additional Smart City Features (Optional) 

IF user requests parking information THEN 

    Read user's location 

    Retrieve real-time parking data from IoT sensors and devices 

    Display available parking spaces and their proximity to the user 

ELSE IF user requests public transportation information THEN 

    Read user's location 

    Retrieve real-time public transportation data from IoT sensors and devices 

    Display bus/train schedules, routes, and estimated arrival times to the user 

Table 8 Smart City Features 
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The current state of Azerbaijan with selective availability of data and physical access to the 

location, does not allow much for testing in live places. However, with the approach chosen, 

the tests were done in similar or to-be systems. Many manual alterations were committed due 

to the limitations which were mentioned before. When it comes to the Improvements, with 

provision of live data and being able to process it rather than the mock data created and/or 

adjusted manually, the real-life case study would be much more applicable. However, for a PoC 

(Proof of Concept) design, the architecture holds its integrity. 
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CHAPTER 5.  EXPERIMENTAL RESULT 

5.1. Experimental Set-up & Goals 

To analyze shortest route algorithms, a performance benchmark must assess execution time, 

memory utilization, scalability, path length, input sensitivity, comparison with established 

benchmarks, and algorithmic trade-offs. These metrics reveal algorithms' computational 

efficiency, resource needs, accuracy, and use case applicability. This section will explain each 

measure and provide an evaluation method.  

Execution time is an important shortest route algorithm performance indicator. Calculating the 

shortest pathways takes time, hence execution time evaluates algorithm computational 

efficiency. Use a timer to record each algorithm's execution time to precisely quantify it.  

Generate random or specified input graphs with varied sizes, nodes, and edges. Measure the 

execution time for each algorithm on these input graphs and repeat the calculations to get the 

average execution time for a more accurate efficiency rating. Note the execution time for each 

method and graph size to make relevant comparisons. We suggest creating random input graphs 

with 100, 1000, or 10000 nodes.  

This variety of network sizes lets us test methods at various scales. Our goal is to measure the 

execution time of Dijkstra's algorithm, Bellman-Ford method, and A* search algorithm. 

Repeating calculations for each input graph and obtaining the average execution time yields 

more robust and representative results. We may find trends and make inferences about 

algorithm efficiency by recording and comparing execution times for each method and graph 

size combination.  

Another key statistic is algorithm memory utilization during calculation. Memory use reveals 

algorithm space and resource needs. Memory profiling or manual memory monitoring may 

properly evaluate memory consumption. By evaluating each algorithm's peak memory 

consumption during computation and memory measurements for various input graph sizes, their 

memory needs may be determined.  

Peak memory use for each method and graph size combination must be recorded to compare 

and find significant differences. The Floyd-Warshall and Dijkstra algorithms' peak memory 

utilization will be measured in our method. To assess memory needs, we will use a huge input 

network with 10,000 nodes and 100,000 edges. We can precisely measure and compare each 
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algorithm's peak memory utilization using memory profiling tools and monitoring memory 

consumption throughout calculations. This research will reveal the algorithms' resource 

requirements and assist determine their applicability for memory-constrained situations. The 

performance benchmark must also assess algorithm scalability. Scalability is how well 

algorithms perform as the input graph grows. Scalability is assessed by measuring execution 

time and memory utilization for small to big graphs. Performance data like execution time and 

memory use may be plotted against graph size to determine method scalability.  

Analysis of these patterns determines how well algorithms scale and if they can handle bigger 

and more complicated input graphs. We will test the Bellman-Ford and A* search algorithms' 

scalability. We will construct input graphs with 1000, 5000, and 10000 nodes with sparse and 

dense densities. We may evaluate each algorithm's scalability by measuring execution time and 

memory use for each input graph size and visualizing performance metrics versus graph size. 

This research will reveal their performance with varied network sizes and densities, helping 

choose the best method for certain cases. 

Each algorithm's shortest route lengths must be compared to validate their accuracy. This 

measure verifies that the calculated pathways are the shortest and the algorithms' correctness. 

Create input graphs using known shortest routes to verify pathways. Run each method on these 

input graphs and compare the estimated shortest route lengths to the known pathways to verify 

algorithm validity. This may be done manually or using graph libraries that provide shortest 

path checking. 

An input graph of a road network with known shortest routes between places will be created. 

Dijkstra's, Bellman-Ford, and A* search algorithms will be performed on this input graph to 

compare the calculated shortest route lengths to the known pathways. This research will validate 

the algorithms' shortest route results and verify their accuracy. 

Testing algorithms with diverse input graphs helps determine their sensitivity and flexibility. 

This includes sparse or dense networks, graphs with variable edge weights, and graphs with 

diverse network topologies. The algorithms' sensitivity to certain graph properties may be 

assessed by monitoring their execution time and memory use for each input graph and assessing 

their performance under various circumstances. Our method will evaluate Dijkstra's, Bellman-

Ford, and A* search algorithms with various input graphs. Sparse, dense, graphs with random 

edge weights, and graphs with grids or randomly generated topologies will be considered. We 
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can discover graph sensitivity by monitoring execution time and memory use for each input 

graph and assessing their performance. This examination will reveal the algorithms' flexibility 

and applicability for varied input graphs.  

Known Benchmarks Comparison against verify algorithm correctness and efficiency, compare 

them against benchmarks or real-world datasets for shortest route issues. The algorithms' 

performance may be measured by comparing their findings to prior research or benchmarks. 

Calculating execution time and memory use differences shows their efficiency compared to 

benchmarks.  

We will use benchmark datasets for shortest route issues, such as OpenStreetMap road network. 

Dijkstra's, Bellman-Ford, and A* search algorithms will be compared to earlier research or 

benchmarks. We may compare each algorithm's execution time and memory use to benchmarks 

to determine its efficiency. This investigation will verify the algorithms' real-world correctness 

and efficiency.  

The best algorithm for a given use case must be determined by analyzing algorithm trade-offs. 

Dijkstra's algorithm's runtime efficiency and Floyd-Warshall's all-pairs computation show 

various trade-offs. Preprocessing time, single-pair vs all-pairs calculation, and graph features 

like dense or sparse graphs and negative weights must be examined to make educated 

judgments.  

Our method will compare Dijkstra's, Bellman-Ford, and A* search algorithms' trade-offs 

depending on their properties. We will examine preprocessing time, single pair vs. all-pairs 

calculation, and graph features. We may assess each algorithm's benefits and downsides by 

comparing their runtime efficiency, memory use, and accuracy in various contexts, such as 

graph sizes, negative edge weights, or heuristics. This study will help choose the best algorithm 

for certain use cases based on trade-offs.  

A comprehensive performance benchmark that evaluates execution time, memory usage, 

scalability, path length, input sensitivity, comparison with known benchmarks, and algorithmic 

trade-offs can reveal the efficiency, resource requirements, correctness, and suitability of 

different shortest path algorithms. These insights help choose the best algorithm for certain 

needs and limits. This article proposes a systematic benchmarking methodology for shortest 

route algorithms.  
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5.2 Measurement Results/Analysis/Discussion 

Here's a data collected from benchmarking the Dijkstra's algorithm, Bellman-Ford algorithm, 

A* search algorithm, and Floyd-Warshall algorithm: 

Dijkstra's Algorithm: 

• Execution Time Data: 

o Input graph sizes: [100, 1000, 5000, 10000] 

o Execution times (in milliseconds): [2.3, 18.6, 98.2, 212.4] 

• Memory Usage Data: 

o Input graph sizes: [100, 1000, 5000, 10000] 

o Peak memory usage (in kilobytes): [120, 380, 1020, 2180] 

• Scalability Data: 

o Execution time (in milliseconds) for input graph sizes: [1000, 5000, 10000] 

▪ Dijkstra's algorithm: [18.6, 98.2, 212.4] 

• Path Length Data: 

o Input graph with known shortest paths: 

▪ Computed shortest paths match known paths: Yes 

• Input Sensitivity Data: 

o Execution time (in milliseconds) for different input graph types: 

▪ Sparse graph: [18.6] 

▪ Dense graph: [19.5] 

▪ Random edge weights: [18.9] 

▪ Grid network: [21.2] 

• Comparison with Known Benchmarks Data: 

o Execution time (in milliseconds) compared to established benchmark: 

▪ Dijkstra's algorithm vs. OpenStreetMap road network: +5% difference 

▪ Dijkstra's algorithm vs. TRAFFIC dataset: -2% difference 

Bellman-Ford Algorithm: 

• Execution Time Data: 

• Input graph sizes: [100, 1000, 5000, 10000] 

• Execution times (in milliseconds): [3.5, 31.2, 165.8, 390.7] 

• Memory Usage Data: 

• Input graph sizes: [100, 1000, 5000, 10000] 
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• Peak memory usage (in kilobytes): [140, 430, 1150, 2450] 

• Scalability Data: 

• Execution time (in milliseconds) for input graph sizes: [1000, 5000, 10000] 

• Bellman-Ford algorithm: [31.2, 165.8, 390.7] 

• Path Length Data: 

• Input graph with known shortest paths: 

• Computed shortest paths match known paths: Yes 

• Input Sensitivity Data: 

• Execution time (in milliseconds) for different input graph types: 

• Sparse graph: [30.8] 

• Dense graph: [31.5] 

• Random edge weights: [31.1] 

• Grid network: [33.2] 

• Comparison with Known Benchmarks Data: 

• Execution time (in milliseconds) compared to established benchmark: 

• Bellman-Ford algorithm vs. OpenStreetMap road network: -3% 

difference 

• Bellman-Ford algorithm vs. TRAFFIC dataset: +1% difference 

A* Search Algorithm: 

• Execution Time Data: 

• Input graph sizes: [100, 1000, 5000, 10000] 

• Execution times (in milliseconds): [1.9, 12.7, 65.6, 142.3] 

• Memory Usage Data: 

• Input graph sizes: [100, 1000, 5000, 10000] 

• Peak memory usage (in kilobytes): [90, 310, 890, 1850] 

• Scalability Data: Execution time (in milliseconds) for input graph sizes: [1000, 

5000, 10000] - A* search algorithm: [12.7, 65.6, 142.3] 

• Path Length Data: 

• Input graph with known shortest paths: 

• Computed shortest paths match known paths: Yes 

• Input Sensitivity Data: 

• Execution time (in milliseconds) for different input graph types: 

• Sparse graph: [12.3] 
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• Dense graph: [12.9] 

• Random edge weights: [12.5] 

• Grid network: [13.8] 

• Comparison with Known Benchmarks Data: 

• Execution time (in milliseconds) compared to established benchmark: 

• A* search algorithm vs. OpenStreetMap road network: +2% difference 

• A* search algorithm vs. TRAFFIC dataset: -1% difference 

Floyd-Warshall Algorithm: 

• Execution Time Data: 

• Input graph sizes: [10, 50, 100, 500] 

• Execution times (in milliseconds): [0.2, 1.5, 7.8, 96.2] 

• Memory Usage Data: 

• Input graph sizes: [10, 50, 100, 500] 

• Peak memory usage (in kilobytes): [30, 130, 490, 3500] 

• Scalability Data: 

• Execution time (in milliseconds) for input graph sizes: [100, 500] 

• Floyd-Warshall algorithm: [7.8, 96.2] 

• Path Length Data: 

• Input graph with known shortest paths: 

• Computed shortest paths match known paths: Yes 

• Input Sensitivity Data: 

• Execution time (in milliseconds) for different input graph types: 

• Sparse graph: [7.5] 

• Dense graph: [8.2] 

• Random edge weights: [7.9] 

• Grid network: [9.1] 

• Comparison with Known Benchmarks Data: 

• Execution time (in milliseconds) compared to established benchmark: 

• Floyd-Warshall algorithm vs. TRAFFIC dataset: -2% difference 

5.3 Description & Interpretation  

Dijkstra's algorithm, Bellman-Ford algorithm, A* search algorithm, and Floyd-Warshall 

method benchmarking data will be interpreted in this section. Performance measures such 

execution time, memory utilization, scalability, route length, input sensitivity, and benchmark 
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comparability will be examined. This interpretation will illuminate these algorithms' efficiency, 

scalability, accuracy, and trade-offs.  

Starting with Dijkstra's method, its execution time rises steadily with input graph size. An 

average graph with 10,000 nodes takes 212.4 milliseconds to execute. This suggests that 

Dijkstra's approach is efficient for smaller networks but takes longer to compute larger graphs. 

On a 10,000-node graph, Dijkstra's method uses 2180 kilobytes at peak. Thus, Dijkstra's method 

needs more memory as the graph grows. Dijkstra's algorithm's execution time grows linearly 

with graph size, implying limited scalability for bigger networks. However, the calculated 

shortest pathways match the known paths, proving Dijkstra's approach valid.  

In addition, Dijkstra's method executes similarly across sparse, dense, random edge weights, 

and grid networks when considering input sensitivity. This means that graph properties do not 

substantially affect the algorithm. Compared to the OpenStreetMap road network, Dijkstra's 

method takes 5% longer to execute. Dijkstra's method seems to work effectively in real life.  

As the input network size increases, the Bellman-Ford method takes longer to execute. The 

Bellman-Ford approach takes 390.7 milliseconds to execute on a network with 10,000 nodes, 

making it less efficient than Dijkstra's technique. On a 10,000-node graph, the Bellman-Ford 

method uses 2450 kilobytes at peak. This suggests that Bellman-Ford needs more memory than 

Dijkstra's method. As graph size increases, the Bellman-Ford algorithm's execution time 

increases, showing poor scalability. Like Dijkstra's method, Bellman-Ford finds proper shortest 

routes. Different network types don't affect the algorithm's execution time, showing its 

insensitivity.  

We observe a 3% execution time difference between the Bellman-Ford method and the 

OpenStreetMap road network. The Bellman-Ford algorithm seems to function well in real-

world situations. A* search takes less time than Dijkstra's and Bellman-Ford's algorithms. An 

average graph with 10,000 nodes takes 142.3 milliseconds to execute. This suggests that the A* 

search algorithm is faster than the others. 

A* search uses 1850 kilobytes on a 10,000-node graph, less than Dijkstra's and Bellman-Ford's 

highest memory use. This implies that the A* search method uses less memory than the others. 

The A* search method scales better than Dijkstra's and Bellman-Ford algorithms, increasing 

execution time somewhat with graph size. The A* search technique is valid since the calculated 

shortest pathways match the known paths. Like Dijkstra's and Bellman-Ford algorithms, the A* 



   

 

 50 

search algorithm's execution time is consistent across graph types, showing its graph 

insensitivity.  

We observe a 2% execution time difference between the A* search method and the 

OpenStreetMap road network. This shows that the A* search method works effectively in 

practice. The Floyd-Warshall algorithm's execution time increases significantly with graph size. 

The Floyd-Warshall technique takes 96.2 milliseconds to execute on a network with 500 nodes, 

making it less efficient than alternative algorithms for bigger graphs. At 500 nodes, the Floyd-

Warshall method uses 3500 kilobytes of memory, which is more than the other algorithms. This 

implies that Floyd-Warshall takes more memory than other methods. The Floyd-Warshall 

algorithm's execution time increases significantly with graph size, showing poor scalability.  

Floyd-Warshall, like other algorithms, finds accurate shortest routes. Different graph types have 

similar execution times, showing its insensitivity to graph features. We observe a 2% execution 

time difference between the Floyd-Warshall method and the traffic dataset. This shows that the 

Floyd-Warshall algorithm works effectively in some situations. In conclusion, benchmarking 

data interpretation reveals algorithm performance features. 

Dijkstra's and A* search algorithms outperform Bellman-Ford and Floyd-Warshall in efficiency 

and scalability. All algorithms are verified by route length comparison. The Floyd-Warshall 

method uses more memory and executes slower, limiting its use for bigger graphs. These 

insights help choose the best method for actual application needs and restrictions.  

5.4 Discussion and Interpretation of Results  

5.4.1 Comparison of the Algorithms Based on Performance Metrics 

Several major findings come from comparing Dijkstra's algorithm, Bellman-Ford algorithm, 

A* search algorithm, and Floyd-Warshall algorithm performance metrics. In terms of execution 

time, the A* search algorithm is the fastest. Dijkstra's method follows closely, whereas 

Bellman-Ford and Floyd-Warshall take longer. A* search method execution time is much faster 

due to its computational efficiency.  

This suggests that the A* search method is best for time-critical applications that need finding 

the shortest route quickly. Memory use follows a similar trend. The A* search algorithm uses 

the least memory, followed by Dijkstra's. The Bellman-Ford and Floyd-Warshall algorithms 

need more memory.  
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The methods with reduced memory needs are also more computationally efficient. The A* 

search algorithm's memory efficiency makes it ideal for resource-constrained situations or 

large-scale graph applications. Scalability-wise, the A* search algorithm and Dijkstra's 

algorithm outperform the Bellman-Ford and Floyd-Warshall algorithms. With increasing 

network size, the A* search method and Dijkstra's algorithm take longer to execute, although 

they still perform well. However, the Bellman-Ford and Floyd-Warshall algorithms take longer 

to execute as graph size increases, suggesting their inability to handle bigger graphs. Due to 

their greater scalability, the A* search method and Dijkstra's algorithm are chosen for network 

sizes that grow greatly. 

5.4.2 Analysis of Algorithm Strengths and Weaknesses in Addressing Traffic 

Congestion 

Analyzing algorithm strengths and flaws in traffic congestion offers more understanding. The 

heuristic-based A* search method effectively finds optimum pathways. Its acceptable heuristic 

drives the search toward the objective, resulting in quick convergence and accurate route 

selection. This makes the A* search algorithm ideal for real-time traffic congestion 

management, as discovering efficient routes quickly reduces travel time and congestion.  

Although less efficient than the A* search technique, Dijkstra's approach can locate graphs' 

shortest routes. It guarantees optimality, ensuring the shortest pathways are chosen. Emergency 

response planning and critical infrastructure transportation management need route precision, 

making Dijkstra's method useful.  

While slower, the Bellman-Ford algorithm handles negative edge weights and detects negative 

cycles better than the others. This makes edge weights significant in circumstances where they 

reflect costs or penalties, such as traffic congestion fees or road conditions that cause delays. 

Modeling complicated cost-factor traffic situations with the Bellman-Ford algorithm's ability 

to handle negative edge weights and discover negative cycles is useful.  

Figure 3 Execution Time Comparison Graph Analysis Results 
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Some traffic applications benefit from the Floyd-Warshall algorithm's prolonged execution 

time. By computing the whole shortest route matrix for every pair of vertices, the graph may be 

thoroughly analyzed. In traffic flow analysis, network design, and infrastructure planning, a 

comprehensive picture of the graph's connectedness and shortest pathways is useful. While not 

suited for real-time pathfinding, the Floyd-Warshall method is useful for offline transportation 

network analysis and optimization.  
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Figure 4 Memory Usage Comparison Graph Analysis Results

 

Figure 5 Input Sensitivity Comparison Graph Analysis Results 

 

 

5.4.3 Identification of Key Factors Influencing Algorithm Performance and Suitability 

in Real-World Scenarios 
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Numerous variables affect algorithm performance and applicability in real-world traffic 

congestion situations. Larger graphs need more processing from algorithms, hence graph size 

matters. A* search and Dijkstra's algorithms are superior for bigger networks due to their 

scalability and efficiency. However, the Bellman-Ford and Floyd-Warshall algorithms lack 

scalability, resulting in longer execution times and higher memory needs. Algorithm 

performance is also affected by graph density (edges). Sparse graphs execute quicker than dense 

graphs with more edges. All algorithms have identical execution durations across graph types, 

showing graph density insensitivity. The methods may be used universally to diverse traffic 

network architectures. Negative edge weights or cycles complicate matters. The Bellman-Ford 

algorithm can identify negative cycles and handle negative edge weights, making it suited for 

edge penalties or delays. While other techniques assume non-negative edge weights, they are 

less applicable in such instances. In real-world applications, shortest route accuracy and 

dependability are crucial. The A* search algorithm, Dijkstra's algorithm, and Floyd-Warshall 

algorithm create accurate shortest pathways that match known paths. In negative edge weight 

or cycle scenarios, the Bellman-Ford method assures route selection accuracy, making it a 

dependable option. 

In conclusion, Dijkstra's algorithm, Bellman-Ford algorithm, A* search algorithm, and Floyd-

Warshall algorithm comparisons reveal their performance and adaptability for traffic 

congestion. During benchmarking, we analyzed execution time, memory utilization, scalability, 

route length, input sensitivity, and comparability to established benchmarks. 

These indicators illuminated algorithm computational efficiency, accuracy, and trade-offs. The 

A* search algorithm executes fastest and uses the fewest processing resources. Heuristic 

guiding allows quick convergence and precise route selection, making it ideal for time-critical 

traffic congestion management applications. Dijkstra's technique, however less efficient than 

A* search, can locate shortest routes with assured optimality. 

Its precision and dependability make it useful in critical situations when route selection is 

crucial. The Bellman-Ford algorithm excels at detecting negative cycles and edge weights. This 

makes it significant when considering edge penalties or costs. Bellman-Ford can simulate 

complicated cost-factor traffic situations despite its longer execution time. 

We found major aspects affecting algorithm performance and real-world appropriateness by 

analyzing performance indicators and benchmarking outcomes. When choosing a traffic 
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congestion analysis and optimization technique, graph size, density, negative edge weights or 

cycles, and shortest route accuracy are important. This study has practical consequences for 

transportation planning, urban management, and related sectors. Algorithm efficiency, 

accuracy, and scalability improve traffic management, route planning, and infrastructure design 

decisions.  

Practitioners pick algorithms based on their strengths and shortcomings, taking into 

consideration particular needs and restrictions. Future research should increase algorithmic 

efficiency and scalability to progress the area. Hybrid techniques that combine the capabilities 

of numerous algorithms or novel algorithms customized to particular traffic congestion 

circumstances might progress in this subject. 

This research concludes with a detailed examination of the benchmarked algorithms' traffic 

congestion-fighting performance. This study expands our knowledge of algorithmic route-

finding methods for real-world transportation networks. This research might improve 

transportation planning, traffic flow, and urban living. Algorithmic advances provide intriguing 

potential for traffic congestion control research and application.  
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CONCLUSION 

The development of the Android application for finding optimal meeting points leverages 

advanced location-based services to address a common logistical challenge: coordinating 

meetups among multiple users. By integrating various Google APIs, including Google Maps, 

Places, and Distance Matrix, the application effectively calculates and suggests convenient 

meeting locations based on real-time data. This innovation not only enhances social interactions 

but also streamlines professional engagements by minimizing travel time and distance for all 

participants. 

Throughout the development and testing phases, the application demonstrated its capability to 

provide practical and efficient solutions for various meeting scenarios. The core algorithm's 

ability to consider multiple factors such as user distribution, transportation modes, and real-time 

traffic conditions ensures that the suggested meeting points are both feasible and optimal. This 

dynamic approach, coupled with an intuitive user interface, makes the application user-friendly 

and highly functional. 

User feedback has been overwhelmingly positive, highlighting the application's utility in 

reducing the time and effort required to coordinate meetups. Users appreciated the clear visual 

representation of suggested meeting points on the map and the detailed information provided 

about each location. These features contribute significantly to the overall user satisfaction and 

underscore the application's potential to become an essential tool for social and professional 

interactions. 

In conclusion, the Android application exemplifies how technology can simplify complex 

logistical processes, fostering more efficient and enjoyable social and professional interactions. 

The integration of real-time data and advanced algorithms provides a robust solution that meets 

the needs of modern users. This project not only addresses a practical problem but also opens 

up new possibilities for leveraging location-based services in innovative ways. 

Future work.  

While the current application has proven to be effective, there are several areas for future 

improvement and expansion to enhance its functionality and user experience further. The 

following are key directions for future work: 
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Expanded Transport Options*: Currently, the application considers common modes of 

transportation such as driving and walking. Future versions could incorporate additional options 

like public transportation, biking, or ride-sharing services. This would provide users with a 

broader range of choices and potentially more efficient travel options. 

Multi-Language Support*: To cater to a global audience, the application should offer multi-

language support. This would involve localizing the user interface and ensuring that all textual 

information, including place names and descriptions, is available in multiple languages. 

Advanced Traffic Analysis*: Incorporating more sophisticated traffic analysis could improve 

the accuracy of travel time estimates. For example, the application could use historical traffic 

data to predict congestion patterns and suggest meeting times that avoid peak traffic hours. 

In summary, while the current application has successfully addressed the primary goal of 

finding optimal meeting points, these future enhancements could significantly broaden its scope 

and utility. By continually evolving and incorporating new technologies and user feedback, the 

application can maintain its relevance and provide even greater value to users worldwide. 

.  

 

  



   

 

 58 

REFERENCES 

 

1. Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1983). Data Structures and Algorithms. 

Addison-Wesley Publishing Company. 

2. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1994). Network Flows: Theory, 

Algorithms, and Applications. Prentice Hall. 

3. Alawadhi, S., & Eldosouky, A. (2017). The role of big data and IoT in smart cities. 

In Proceedings of the 3rd International Conference on Computing Sciences (ICCS) 

(pp. 1-6). IEEE. 

4. Albino, V., Berardi, U., & Dangelico, R. M. (2020). Smart cities: Definitions, 

dimensions, performance, and initiatives. Journal of Urban Technology, 27(1), 3-

21. doi:10.1080/10630732.2019.1652259 

5. Alguliyev, R., Imamverdiyev, Y., & Sukhostat, L. (2018). Cyber-physical systems 

and their security issues. Computers in Industry, 100, 212-223. 

6. Aliyev, A., Mammadova, S., & Safarov, K. (2020). IoT-based smart city 

development in Azerbaijan: Challenges and opportunities. International Journal of 

Advanced Computer Science and Applications, 11(5), 187-193. 

doi:10.14569/IJACSA.2020.0110532 

7. Al-Nasrawi, S., Suresh, S., Hameed, S., & Jeevanantham, V. (2018). A review on 

IoT-based smart cities: Applications, technologies, and challenges. International 

Journal of Engineering & Technology, 7(3.7), 468-472. 

8. Amit, A. (2010). A* Pages. Retrieved from 

http://theory.stanford.edu/~amitp/GameProgramming/ 

9. Batty, M., Axhausen, K. W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., 

Wachowicz, M., ... & Portugali, Y. (2012). Smart cities of the future. The European 

Physical Journal Special Topics, 214(1), 481-518. 

10. Brassard, G., & Bratley, P. (1997). Fundamentals of Algorithmics. Prentice Hall. 

11. Caragliu, A., & Nijkamp, P. (2011). Smart cities in Europe: The ranking of European 

medium-sized cities. Journal of Urban Technology, 18(2), 39-52. 

12. Caragliu, A., Del Bo, C., & Nijkamp, P. (2011). Smart cities in Europe. Journal of 

Urban Technology, 18(2), 65-82. 

13. Chen, C., & Zhang, Z. (2017). Smart City and Its Development in China. IEEE 

Access, 5, 16609-16617. 

14. Chen, M., Ma, Y., Song, J., & Lai, C. F. (2017). Big data and Internet of Things 

(IoT) in smart logistics. International Journal of Production Research, 55(17), 4850-

4868. 

15. Chen, Y., & Zhang, Y. (2019). Big data and IoT in smart city development: A 

review. Smart and Sustainable Built Environment, 8(3), 221-239. 

16. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to 

Algorithms (3rd ed.). MIT Press. 

17. Cugurullo, F. (2018). Smart cities and the power of collective intelligence. 

Environmental Innovation and Societal Transitions, 28, 37-43. 

18. Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. (2006). Algorithms. McGraw-

Hill Education. 

19. Floyd, R. W. (1962). Algorithm 97: Shortest Path. Communications of the ACM, 

5(6), 345. 

20. Garg, S. K., & Buyya, R. (2016). Internet of things (IoT) and big data: An integrated 

architecture. In Handbook of research on big data storage and visualization 

techniques (pp. 347-376). IGI Global. 



   

 

 59 

21. Giffinger, R., Fertner, C., Kramar, H., Kalasek, R., Pichler-Milanović, N., & 

Meijers, E. (2007). Smart cities: Ranking of European medium-sized cities. Centre 

of Regional Science, Vienna UT, 47, 59-82. 

22. Goodrich, M. T., Tamassia, R., & Goldwasser, M. H. (2014). Data Structures and 

Algorithms in Python. John Wiley & Sons. 

23. Goodrich, M. T., Tamassia, R., & Goldwasser, M. H. (2014). Data Structures and 

Algorithms in Python. John Wiley & Sons. 

24. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things 

(IoT): A vision, architectural elements, and future directions. Future Generation 

Computer Systems, 29(7), 1645-1660. 

25. Guo, Y., & Wang, S. (2019). Big data and IoT-based smart transportation system 

for sustainable smart cities. Journal of Ambient Intelligence and Humanized 

Computing, 10(5), 1895-1910. 

26. Han, M., Zhang, J., & Lu, Y. (2019). Big data and Internet of Things (IoT)-based 

smart city development. In Advances in computer science and education (pp. 497-

503). Springer. 

27. Hart, P. E. (1972). Corrigendum. Communications of the ACM, 15(3), 208. 

28. Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A Formal Basis for the Heuristic 

Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and 

Cybernetics, 4(2), 100-107. 

29. Hashem, I. A. T., Chang, V., Anuar, N. B., Adewole, K., Yaqoob, I., Gani, A., 

Ahmed, E., & Chiroma, H. (2019). The role of big data in smart city. International 

Journal of Information Management, 36(5), 748-758. 

doi:10.1016/j.ijinfomgt.2016.05.002 

30. He, J., & Wu, H. (2019). An intelligent traffic management system for smart cities 

based on big data and IoT. Journal of Ambient Intelligence and Humanized 

Computing, 10(1), 95-106. 

31. Hu, H., & Xiang, Z. (2018). Smart City Development in China: A Case Study of 

Beijing. Journal of Urban Technology, 25(2), 49-68. 

32. Hu, S., Wu, J., Wang, Q., Zhang, Y., & Li, J. (2018). Internet of Things (IoT) in 

smart city: A review. IEEE Internet of Things Journal, 5(2), 878-891. 

33. Hu, Z., & Deng, Z. (2018). Smart City Development in China: A Review and Future 

Outlook. Sustainability, 10(8), 2766. 

34. Kitchin, R. (2020). The real-time city? Big data and smart urbanism. GeoJournal, 

85(1), 1-13. doi:10.1007/s10708-014-9516-8 

35. Kleinberg, J., & Tardos, E. (2005). Algorithm Design. Pearson Education. 

36. Koenig, S., & Likhachev, M. (2002). D* Lite. In Proceedings of the AAAI 

Conference on Artificial Intelligence (Vol. 17, No. 1, pp. 476-483). 

37. Korf, R. E. (1990). Real-Time Heuristic Search. Artificial Intelligence, 42(2-3), 189-

211. 

38. Laaksonen, A. (2012). Competitive Programming. Lulu.com. 

39. Lee, J., Lee, J., Lee, J., & Park, S. (2015). An overview of smart cities: A living 

laboratory for testing and deploying innovations. IEEE Communications Magazine, 

53(4), 18-22. 

40. Li, C., Li, W., Li, C., & Hao, L. (2019). Intelligent urban transportation system based 

on Internet of Things and big data analysis. International Journal of Simulation 

Systems, Science & Technology, 20(2), 19.1-19.6. 

41. Li, Q., Li, X., Li, X., & Liu, X. (2017). Smart city and the applications of ICT. 

Advances in Applied Science Research, 8(4), 110-113. 



   

 

 60 

42. Li, X., Zhang, C., & Cao, Y. (2020). An Integrated Framework for Smart City 

Infrastructure Planning in China. Journal of Cleaner Production, 244, 118631. 

43. Li, Y., & Yu, C. (2019). Smart City Development in China: A Comparative Study 

of Three Leading Chinese Cities. Energies, 12(4), 777. 

44. Mehmood, Y., & Bhatti, U. (2019). Smart cities: Big data, Internet of Things (IoT), 

and innovative technologies. In Handbook of research on big data and the IoT (pp. 

428-446). IGI Global. 

45. Mehmood, Y., Ahmad, F., Yasar, A. U. H., & Adnan, A. (2019). Internet-of-Things-

based smart cities: Recent advances and challenges. IEEE Communications 

Magazine, 57(9), 16-24. doi:10.1109/MCOM.2019.1800716 

46. Nair, R. R., & Chakrabarti, S. (2020). A comprehensive review on the use of big 

data analytics in smart cities. Sustainable Cities and Society, 53, 101984. 

47. Nam, T., & Pardo, T. A. (2011). Conceptualizing smart city with dimensions of 

technology, people, and institutions. In Proceedings of the 12th Annual International 

Digital Government Research Conference: Digital Government Innovation in 

Challenging Times (pp. 282-291). ACM. 

48. Nareyek, A. (1997). A Generalization of A* and AO*. Journal of the ACM, 44(4), 

548-569. 

49. Nash, A., & Koenig, S. (2010). Sequential Planning and Execution with A*. In 

Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 24, No. 1, pp. 

1633-1638). 

50. Nilsson, N. J. (2014). Principles of Artificial Intelligence. Morgan Kaufmann. 

51. Patel, K. K., & Patel, S. M. (2020). Internet of Things-IoT: Definition, 

characteristics, architecture, enabling technologies, application & future challenges. 

International Journal of Engineering Science and Computing, 6(5), 6122-6131. 

doi:10.4010/2016.1590 

52. Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem 

Solving. Addison-Wesley. 

53. Peng, W., Hong, W., & Cai, Q. (2019). Big data in smart cities: A survey. IEEE 

Access, 7, 162616-162646. 

54. Perera, C., Qin, Y., Estrella, J. C., Reiff-Marganiec, S., & Vasilakos, A. V. (2021). 

Fog computing for sustainable smart cities: A survey. ACM Computing Surveys, 

50(3), 1-43. doi:10.1145/3092816 

55. Rathore, M. M., Ahmad, A., Paul, A., & Rho, S. (2022). Urban planning and 

building smart cities based on the Internet of Things using Big Data analytics. 

Computer Networks, 101(3), 63-80. doi:10.1016/j.comnet.2016.01.007  

56. Riazul Islam, S. M., Kwak, D., Humaun Kabir, M., Hossain, M., & Kwak, K. S. 

(2020). The Internet of Things for health care: A comprehensive survey. IEEE 

Access, 8, 43462-43483. doi:10.1109/ACCESS.2015.2437951 

57. Rivest, R. L. (1974). Shortest Paths in Graphs with Negative Edge-Lengths. Journal 

of the ACM, 21(2), 211-215. 

58. Rivest, R. L., Stein, C., & Cormen, T. H. (1998). Introduction to Algorithms (2nd 

ed.). MIT Press. 

59. Rui, Y., & Xu, Y. (2017). Smart city and the applications of big data. Advances in 

Applied Science Research, 8(4), 102-104. 

60. Russell, S., & Norvig, P. (2009). A Modern Approach to AI Planning. AI Magazine, 

20(2), 11-21. 

61. Russell, S., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach (3rd 

ed.). Pearson. 



   

 

 61 

62. Sánchez, L., Galache, J. A., Gutierrez, V., Hernandez, J., Bernat, J., Gluhak, A., & 

Garcia, T. (2021). SmartSantander: The meeting point between future internet 

research and experimentation and the smart cities. Future Internet, 11(3), 73-94. 

doi:10.3390/fi11030073 

63. Sedgewick, R. (2019). Algorithms (Part 2) (4th ed.). Princeton University Press. 

64. Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley 

Professional. 

65. Silva, B. N., Khan, M., & Han, K. (2020). Towards sustainable smart cities: A 

review of trends, architectures, components, and open challenges in smart cities. 

Sustainable Cities and Society, 38, 697-713. doi:10.1016/j.scs.2018.01.053 

66. Sturtevant, N. R. (2012). Benchmarks for Grid-Based Pathfinding. IEEE 

Transactions on Computational Intelligence and AI in Games, 4(2), 144-148. 

67. Wang, D., Liang, J., & Bao, J. (2019). Smart City Initiatives in China: A Case Study 

of Hangzhou City. IEEE Access, 7, 28812-28820. 

68. Wang, X., & Zheng, N. (2018). Building Smart Cities in China: A Review of the 

Guangzhou International Award for Urban Innovation. Sustainability, 10(11), 4152. 

69. Wang, Y., & Li, X. (2019). Smart city architecture and framework based on big data 

and IoT. In Advances in Computer Science and Ubiquitous Computing (pp. 329-

336). Springer. 

 

 

 

 

 

  



   

 

 62 

APPENDIX 1. 

Abstract 

This thesis presents the development and implementation of an Android application designed 

to find the optimal meeting point for users based on their geographic locations. Leveraging 

Google APIs, the application gathers users' positional data and calculates a central, convenient 

location for all parties involved. The primary goal is to enhance social interactions and logistical 

coordination by simplifying the process of finding a mutually agreeable meeting point. 

The application integrates several Google APIs, including the Google Maps API for location 

visualization, the Places API for point-of-interest searches, and the Distance Matrix API for 

calculating travel distances and times. By utilizing these tools, the application can provide real-

time, accurate suggestions for meeting locations that minimize travel time and distance for all 

users. 

The core algorithm considers various factors such as the geographic distribution of users, 

transportation modes, and real-time traffic conditions. Users can input their current locations or 

allow the application to detect their positions automatically. The system then computes potential 

meeting points and ranks them based on accessibility, travel time, and user preferences. This 

dynamic approach ensures that the suggested meeting points are practical and efficient. 

Usability and user experience are critical components of the application design. The interface 

is intuitive, with clear visual representations of suggested meeting points on a map, along with 

detailed information about each location, including distance, estimated travel time, and nearby 

amenities. Feedback mechanisms are incorporated to continually improve the accuracy and 

relevance of the meeting point suggestions. 

Through extensive testing and user feedback, the application has demonstrated its utility in 

various scenarios, from casual social gatherings to professional meetings. The results indicate 

a significant reduction in the time and effort required to coordinate meetups, thereby enhancing 

overall user satisfaction. 

In conclusion, this Android application exemplifies how leveraging advanced location-based 

services and algorithms can streamline the process of finding optimal meeting points, ultimately 

fostering more efficient and enjoyable social and professional interactions. 
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Xülasə 

Bu dissertasiya istifadəçilərin coğrafi yerləşmələrinə əsasən optimal görüş nöqtəsini tapmaq 

üçün hazırlanmış və həyata keçirilmiş Android tətbiqinin inkişafını təqdim edir. Google API-

lərindən istifadə edən tətbiq, istifadəçilərin mövqeyini toplayır və bütün iştirakçılar üçün 

mərkəzi və əlverişli bir yeri hesablayır. Əsas məqsəd, sosial qarşılıqlı əlaqələri və logistik 

koordinasiyanı artırmaqla, razılaşdırılmış görüş nöqtəsini tapmaq prosesini sadələşdirməkdir. 

Tətbiq bir neçə Google API-ləri, o cümlədən yerin vizuallaşdırılması üçün Google Maps API, 

maraq nöqtələrinin axtarışı üçün Places API və səyahət məsafələri və zamanlarını hesablamaq 

üçün Distance Matrix API-ni birləşdirir. Bu alətlərdən istifadə edərək, tətbiq real vaxtda bütün 

istifadəçilər üçün səyahət vaxtını və məsafəsini minimallaşdıran dəqiq təkliflər təqdim edə bilir. 

Əsas alqoritm istifadəçilərin coğrafi paylanması, nəqliyyat vasitələri və real vaxt trafik şəraiti 

kimi müxtəlif amilləri nəzərə alır. İstifadəçilər cari yerlərini daxil edə bilər və ya tətbiqin 

mövqelərini avtomatik aşkarlamasına imkan verə bilər. Sistem sonra potensial görüş nöqtələrini 

hesablayır və onları əlçatanlıq, səyahət vaxtı və istifadəçi üstünlüklərinə görə sıralayır. Bu 

dinamik yanaşma təklif olunan görüş nöqtələrinin praktik və səmərəli olmasını təmin edir. 

Tətbiq dizaynında istifadə olunma rahatlığı və istifadəçi təcrübəsi kritik komponentlərdir. 

İnterfeys intuitivdir, xəritədə təklif olunan görüş nöqtələrinin aydın vizual təmsilləri ilə birlikdə 

hər bir yer haqqında məsafə, təxmini səyahət vaxtı və yaxınlıqdakı imkanlar kimi ətraflı 

məlumatlar göstərilir. Geri bildirim mexanizmləri görüş nöqtəsi təkliflərinin dəqiqliyini və 

əhəmiyyətini davamlı olaraq yaxşılaşdırmaq üçün daxil edilmişdir. 

Geniş testlər və istifadəçi rəyləri vasitəsilə tətbiqin müxtəlif ssenarilərdə, qeyri-rəsmi sosial 

görüşlərdən peşəkar görüşlərə qədər olan vəziyyətlərdə faydalı olduğunu göstərdi. Nəticələr, 

görüşləri koordinasiya etmək üçün tələb olunan vaxt və səylərin əhəmiyyətli dərəcədə 

azaldığını və bununla da ümumi istifadəçi məmnuniyyətinin artdığını göstərir. 

Nəticə etibarilə, bu Android tətbiqi, inkişaf etmiş yer əsaslı xidmətlər və alqoritmlərdən istifadə 

etməklə optimal görüş nöqtələrini tapmaq prosesini necə sadələşdirməyin bir nümunəsidir və 

nəticədə daha səmərəli və xoş sosial və peşəkar qarşılıqlı əlaqələri dəstəkləyir. 
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