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ON THE THEORY OF NONSELFADJOINT OPERATORS
OF SCHRODINGER TYPE WITH A MATRIX POTENTIAL
UDC 517.984

B. P. ALLAKHVERDIEV

ABSTRACT. The author studies the theory of dilation, characteristic function, and spec-
tral analysis of dissipative operators of Schridinger type with a matrix potential in
L,((0, 00); E) which are an extension of a minimal symmetric operator with defect
indices (2n,2n) (dimE =n < o0).

INTRODUCTION

It is known [1]-[5] that the theory of dilations with application of operator mod-
els gives an adequate approach to the analysis of dissipative {contractive) operators.
The characteristic function occupies a central place in this theory; it carries complete
information regarding the spectral properties of a dissipative operator. For example,
the question of completeness of a system of eigenvectors is answered in terms of
factorization of the characteristic function. Computation of the characteristic func-
tion of dissipative operators is preceded by the construction and investigation of a
selfadjoint (unitary) dilation and of the corresponding scattering problem in which
the characteristic function is realized as the scattering matrix. The adequacy of this
approach to dissipative differential operators has been demonstrated, for example, in
[2]-14], [7], and [8].

In this paper, which consists of three sections, we apply this approach to the study
of dissipative operators of Schrodinger type with a matrix potential in the space
L,((0, oo); E} that are extensions of a minimal symmetric operator with defect in-
dices (2n, 2n) (dim E = n < o0). To this end in §1 we first describe all maximal dis-
sipative extensions of the minimal operator in terms of boundary conditions at zero
and infinity. In §2 we then investigate three different classes of dissipative operators.
We first investigate two classes of operators with decomposed boundary conditions,
called “dissipative at zero” and “dissipative at infinity”. We then investigate a dissi-
pative operator with, generally speaking, nondecomposed (nonseparated) boundary
conditions. In particular, if we consider separated boundary conditions, then at zero
and at infinity nonselfadjoint boundary conditions are prescribed simultaneously. In
each of these cases we construct a selfadjoint dilation and its incoming and out-
going spectral representations, which makes it possible to determine the scattering
matrix according to the scheme of Lax and Phillips. With the help of the incoming
spectral representation we construct a functional model of the dissipative operator
and construct its characteristic function in terms of solutions of the corresponding
differential equation. In the last section, §3, on the basis of the results obtained re-
garding the theory of the characteristic function we prove theorems on completeness
of the system of eigenvectors and associated vectors of dissipative operators. Similar
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questions pertaining to the cases of “dissipation at zero” and “dissipation at infinity”
in the scalar case (dim E = 1) were investigated in the author’s papers [7] and [8].

§1. DESCRIPTION OF DISSIPATIVE EXTENSIONS OF A SYMMETRIC OPERATOR
OF SCHRODINGER TYPE WITH A MATRIX POTENTIAL

Let £ be n-dimensional (n < oo) Euclidean space. We denote by L;((0, o0), E)
the Hilbert space of vector-valued functions with values in F .

We consider the system of differential equations of Schrodinger type
(1.1) I(y) = =y"(x) + Q(x)y(x) = Ay(x),  0<x<+oo,
where Q(x) = @*(x) is a continuous matrix-valued function on [0, oo).

We denote by Ly (with domain Dy) the closure of the minimal operator generated
by the expression /(y). Let D be the set of all vector-valued functions y(x) €
Ly((0, o0); E) such that y'(x) islocally absolutely continuous on [0, o) and /(y) €
L,((0, 00); E). Then D is the domain of the maximal operator L,and L= Lj.

Suppose that the matrix-valued function @(x) is such that for operator (matrix-
valued) solutions ¢;(x, A) and ¢,(x, 1) of (1.1) with initial conditions

e1(0,4)=1, ¢1(0,4)=0;  ¢2(0,4)=0, ¢30,4)=I

(I is the identity operator in E) for some A = 4y and A = Ay the following integrals
converge:

/ loi(x, Mllgzdx <o,  i=1,2.
0

(We note that this condition is satisfied under the conditions of Lidskii {9].) Then
these integrals converge for any 1 ¢ C and the “absolutely overdetermined case”
obtains, i.e., the defect index of the operator Lg is equal to (2n, 2n). We consider
this case below.
Let v;(x) and v,(x) be operator solutions of the equation /(y)} = O satisfying
the initial conditions
v(0)=1, v{(0)=0; v12(0)=0, v;(0)=1.
We adopt the following notation:
- Wy)(X)) - (’v*’(X)y(X) —v*(X)y’(X))

wy)x) = [ (M =72\ 2\ .

w2 = (e ) = (B livtn Foore
It can be shown that for all y(x) € D the limit

Jim (Wy)(x) = (Wy)(c0)

exists.

We recall [10] that the triple (#, T}, I';), where # is a Hilbert space and I’
and TI'; are linear mappings of D(A*) into #, is called the space of boundary
values of the closed symmetric operator 4 in the Hilbert space H with equal (finite
or infinite) defect indices if the following conditions hold:

1) For any f, g € D(4*)

Af, e~ (f, A°8n=T1f,T28)r —2f . T18)x.
2) For any F), F, € # there exists a vector f € D(A4*) such that I', f = F; and
Inuf=5.
Returning to our case, we denote by Iy and I'; the linear mappings of D into
EaoFE
(1.2) Ny = (-y(0), (Wiy)(c0)), Ly = (¥'(0), (W2y)(o0)).
We then have the following assertion.
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Lemma 1.1. The triple (E ® E, 'y, TI';) defined by (1.2) is that space of boundary
values of the operator Ly .

From [10], Chapter 3, Theorem 1.6, and Lemma 1.1 we obtain

Corollary 1.1. For any contraction K in E & E the restriction of the operator L to
vector-valued functions y € D which satisfy the boundary conditions

(1.3) (K=ITy+i(K+Dy =0
or
(1.4) (K-=DTyy —i(K+ DTy =0,

is, respectively, the maximal dissipative and maximal accretive extension of the op-
erator Ly. Conversely, any maximal dissipative (accretive) extension of Lo is the
restriction of L to a set of vector-valued functions y € D satisfying (1.3) ((1.4)),
and the contraction K is uniquely determined by the extension. These conditions give
selfadjoint extensions if K is unitary. In the latter case (1.3) and (1.4) are equiva-
lent to the condition (cos A)T'1y — (sin A)I',y = 0, where A is a selfadjoint operator

in EoE.
(K, 0
K_(O Kz)

Let
where K, and K, are contractions in E. Then by Corollary 1.1 the boundary
conditions (y € D)

(L.5) —(Ki1 ~Dy(0) + i(K; + )y'(0) = 0,

(1.6) (Kz — I)(Wy)(o0) + i(Kz + I)(Way)(o0) = 0

describe all maximal dissipative extensions with separated boundary conditions of
the operator Lg.

Below we investigate maximal dissipative operators of two types: “dissipative at
zero”, i.e., where K, 1is a strict contraction and K, is a unitary operator, and “dissi-
pation at infinity”, i.e., where K is a unitary operator and K is a strict contraction.

§2. SELFADJOINT DILATIONS OF DISSIPATIVE OPERATORS.
SCATTERING THEORY OF DILATIONS
AND A FUNCTIONAL MODEL OF DISSIPATIVE OPERATORS

1. In this subsection we investigate the operator Ly in the case of “dissipation at
zero”. Let K be a strict contraction (i.e., ||Kpllr < 1) in E, and let Ay be any
fixed selfadjoint operator in E. We denote by Lk, the maximal dissipative operator
generated by the expression /()) and the boundary conditions

(2.1) —(Ko— Ny(0) + i(Ko + 1)y'(0) = 0,
(2.2) cos Ag(W1y)(oo) — sin Ag(W2y)(occ) = 0.
Since Kj is a strict contraction, (2.1} is equivalent to

(2.3) ¥'(0) — Boy(0) =0,

where By = —i(Ko+ 1)~ (Ko —1I), Im By > 0, and —Kp is the Cayley transform of
the dissipative operator By. We denote by Ly, the operator generated by /(y) and
boundary conditions (2.2) and (2.3). It is here obvious that Lg, = Lg, .
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To construct a selfadjoint dilation of the dissipative operator Lx, (= Lp,) we ad-
jointo H = L,((0, o0); E) the “incoming” and “outgoing” channels L,{(—o0,0); E)
and L,((0, c); E), we form the orthogonal sum # = L;((—c0,0); E)® H &
L,((0, oo); E), and we call it the basic Hilbert space of the dilation. In the space #Z
we consider the operator %3, generated by the expression

_ “ 1 dv~ 1 dvt
(24) 3(’() ,u,v)—< Y'W,I(U), 7'—CE—>
on the set D(Z,) of elements (v—,u,v") satisfying the conditions v~ €
Wil((—o0,0); E), vt € W} ((0,00); E), u € D, u'(0) — Bou(0) = Cov=(0),
u'(0) — B§u(0) = Cov*(0), and cos Ao(Wju)(oc) — sin Ag(Wau)(co) = 0, where W)
is the Sobolev space and Cg =2ImBy, Cy> 0. We then have

Theorem 2.1. The operator Z3, is selfadjoint in # and is a selfadjoint dilation of
the dissipative operator Lg, (Lg,).

We associate with the operator %3, the unitary group %, = exp[i.¥g,t], t € R.
The group {#%;} has an important property which makes it possible to apply to it
the Lax-Phillips scheme [6], namely, it has incoming and outgoing subspaces D_ =
(L2((=00,0); E),0,0) and D, = (0,0, Ly((0, o0); E)) possessing the following
properties:

OW#D_cD_, t<0,and D, CcD,, t>0;

2) nt_<_0 “wD_ = ﬂtZO %D, = {0}3

3) Uppo #%D- =Uico#%Dy = 7 ;

4) D_ L D,.

Property 4) is obvious. To prove property 1) for D, (the proof for D_ is similar),
we set By = (Fp,—Al)~!. Forall A with ImA < 0 and forany /= (0,0, v*)€ D,
we have

. S
Ff = <0, 0, —ie”"f/ e”sv+(s)ds> .

0
From this it follows that #, f € D, . Therefore, if g 1 D, , then

0= (Bf g)w = i / ML, Qpdt, Tmi<O.
0

From this it follows that (Z;f, g) =0 forall ¢t > 0. Hence, D, c D, for t >0,
and property 1) has thus been proved.

To prove property 2) we denote by P.: # — L;((0,00); E) and ;.
Ly((0,00); E) — D, the mappings acting according to the formulas P,:
(v=,u,v*) — vy and Z,:v — (0,0, v) respectively. We note that the semi-
group of isometries %,* = P, %%, , t > 0, is a one-sided shift in L,((0, c0); E).
Indeed, the generator of the semigroup of the one-sided shift V; in L((0, o0); E)
is the differential operator id/dé with boundary condition v(0) = 0. On the other

hand, the generator A of the semigroup of isometries #%,*, ¢t > 0, is the operator
.dv dv
Av = P, %3, Pv = P.%,(0,0,v) =P, <0, 0, ld_€> = ld—é,

where v € W}'((0, o0); E) and v(0) = 0. Since a semigroup is determined by its
generator, it follows that Z,* = V;, and hence

>0 >0
i.e., property 2) is proved.
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In the scheme of the Lax-Phillips scattering theory the scattering matrix is defined
in terms of the theory of spectral representations. We proceed to their construction.
Along the way we also prove property 3) of the incoming and outgoing subspaces.

We first prove the following lemma.

Lemma 2.1. The operator ZBO is totally nonselfadjoint (simple).

Proof. Let H' C H be a nontrivial subspace in which EBO induces a selfadjoint
operator Lp with domain D(Lj )= H'ND(Lg,). If f€ D(Ly),then f € D(Ly)
and

d
0=+ i

From this for the eigenvectors v;(x) of the operator ZBO that lie in H’ and
are eigenvectors of I~,B we have v;(0) — 0. From the boundary condition v'(0) —
Byv(0) = 0 we obtam v3(0) = 0, and then by the uniqueness theorem of the
Cauchy problem for the equation —y”(x) + Q(x)y(x) = Ay(x), 0 < x < o0, we
have v;{x) = 0. Since all solutions of (1.1) belong to L((0, o0); E), from this it

can be concluded that the resolvent R,l(LBO) of the operator LB0 is a completely
continuous operator, and hence the spectrum of L;_z;0 is purely discrete. Hence, by
the theorem on expansion in eigenvectors of the selfadjoint operator Lj , we have

H' = {0}, i.e., the operator iBO is simple. The lemma is proved.
We set

T 2
i
By

— _2(Im Bo(e'"% £)(0), (¢'7% 1)(0) .

x=\J#ub-, #=|J%D,.
>0 t<0
Lemma22. Z +# =#.

Proof. Considering property 1) of the subspace D, , it is easy to show that the sub-
space Z' =X o(# + #;) is invariant relative to the group {#%;} and has the form
A" ={0, H,0), where H' is a subspace in H . Therefore, it is the subspace #’
(and hence also H') were nontrivial, then the unitary group {%}/} restricted to this

subspace would be a unitary part of the group {%}, and hence the restriction ngo

of ZBO to H' would be selfadjoint operator in H'. From the simplicity of the op-
erator Lg, (see Lemma 2.1) it follows that H' = {0}, i.e., &’ = {0}. The lemma
is proved.

We denote by L., 4, the selfadjoint operator generated by the expression /(y)
and the boundary conditions

y(0)=0,  cosAg(Wiy)(oo) — sin Ag(Way)(o0) =

Let ¢(x, A) and w(x, A) be the operator-valued solutions of the equation /(y) =
satisfying the initial conditions

@0, A)=0, ¢(O0,A=-I; wO,=1I, w0,1i)=

Then the Weyl-Titchmarsh matrix-valued function M, 4 (4) of the operator L 4,
is parametrized from the conditions

cos Ag(Wi (¥ + ¢ M, 4,(2)))(00) — sin Ao(W2(y + 9 Mo, 4,(4)))(00) =
From this we have
M(2) = My 4,(A) = — [cos Ao(Wp)(c0) — sin Ao(W2p)(c0)]™!

(2:3) x [cos Ao( Wi ) (00) — sin Ag(W3w)(oo)].
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From (2.5) it follows that M (1) is a meromorphic function on the complex plane
C with a countable number of poles on the real axis, and these poles coincide with
the eigenvalues of the operator L., Ag. Further, it is possible to show that the
matrix-valued function M(4) possesses the following properties:

a) ImM(1) <0 for ImA >0, and ImM(A) >0 for ImA < 0.

b) M(A) = M*(4) for real A with the exception of the poles of M(1).

We denote by X(x, 1) the Weyl solution of the equation /(y) = Ay, i.e., X(x,4) =
wix,A)+o(x, H)M(A). We set
%, — (x,&) = (e %e;, —X(x, A)(M*(A) + Bo) "' Coe;

Cy{(M*(2) + B3)(M* (1) + Bo)"1Coe~*e;) (J=1,...,n),

where {e;}7_, is an orthonormal basis in E.
We note that the elements %;; (j =1,...,n) for real A do not belong to the
space # . However, %; (J =1,...,n) satisfy the equation % = A% and
the corresponding boundary conditions for the operator .#3,. Below we shall see
that %7 (j=1, ..., n) are (generalized) eigenvectors of the absolutely continuous
spectrum of the operator .3, .
With the help of the vectors ?/A; (j=1,...,n) we define the transformation

F.: f— f(A) onelements f = (v—,y,vt) in which v*(£) and y(x) are com-
pactly supported, smooth functions by the formula

&, A= F0) =) F7 (e,
j=1
where [ (A) = (1/V2n)(f, %)% (J=1,...,n).

Lemma 2.3. The transformation F_ maps #. isometrically onto Ly((—o0, o0); E).
For all elements f, g € #_ the Parseval equality and the inversion formula hold-

o= 2m= [ i 0g Dk,
3

1 o B A

where f_(3) = (F_f)(A) and §_(A) = (F 2)A).
We set
%5, &) = (Cg H(M(A) + Bo)(M(A) + Bg)™' Coe~¥e;,
- X(x, )Y(M(A) +B3)“Coe,~, e'“‘fej) (G=1,...,n).

With the help of the vectors %‘; (J =1,...,n) we define the transformation

F.: f — fi(A) onelements f = {(v~,y,v"), in which v*(£) and y(x) are com-
pactly supported smooth functions, by setting

(F)A) = fr ) =) fF ey,
j=1

where f7(A) = (1/V20)(f, %5)w (J=1,...,n).
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Lemma 2.4. The transformation &, maps #, isometrically onto Ly((—o0, o0); E).
For all elements f, g € #, the Parseval equality and the inversion formula hold:

(fe 8=t = [ S I @G D i,
gy

1 [ .
f=———/ % (2 da,
V27I "Oojz=:l Aj

where f.(A) = (F.f)(A) and 2.(A) = (F:8)(A).
We set
(2.6) Sp,(4) = CO“(M(/I) + Bo)(M(4) + B{,‘)_lCo.

It is obvious that Sg(4) is a meromorphic matrix-valued function in the complex
plane C, and all its poles are located in the open lower half plane. It can be shown
that ||Sp,(4)|le <1 for ImA > 0, and Sg,(4) is a unitary operator for all 1 € R.

Since Sg,(4) is unitary for all A € R, from the explicit expressions for the vectors
%’; and Z; (j=1,...,n) it follows that

n
Uh=> sp W%,  (U=1,...,n),
k=1

where S (A) (j=1,...,n) are the elements of the matrix Sp(1). According to
Lemma 2.2, from the last equality it then follows that # = #, = # . Hence, prop-
erty 3) of the incoming and outgoing subspaces presented above has been established.

Thus, the transformation % maps # isometrically onto L,((—oc, oo0); E); the
subspace D_ is mapped onto HZ2(E), while the operators %; go over into operators
of multiplication by e*. This means that % is an incoming spectral represen-
tation of the group {%;}. Similarly, #, is an outgoing spectral representation of
{%,} . From the explicit formulas for #;; and ?/;; (j=1,...,n) it follows that
passage from the Z_-representation of an element f € # to its #, -representation
is accomplished as follows: f, (1) = SEOI (A)f-(A). According to [6], we have now
proved

Theorem 2.2. The matrix S;O' (A) is the scattering matrix of the group {%} (of the
operator Zg,).

We set Z = (0, H, 0), so that # = D_ & % © D, . From the explicit form of
the unitary transformation % it follows that under the mapping %~ we have
# = Ly((=00, )3 E), [ f-() = (Ff)(A),
D_— HX(E),  D,— SgHE),
Z — H(E)o Sp,H2(E),
Uf = (FUF ) (a) = e™Mf-(4).

(2.7)

Formulas (2.7) show that the operator ZBO (A) (Lg,) is unitarily equivalent to the
model dissipative operator with characteristic function Sg,(41). We have thus proved

Theorem 2.3. The characteristic function of the dissipative operator Z,Bo (Lg,) co-
incides with the matrix-valued function Sp,(A) defined by (2.6). The matrix-valued
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function Sp () is meromorphic in the complex plane C, and is an inner function in
the upper half plane.

2. In this subsection we investigate the operator Ly in the case of “dissipation
at infinity”. Let T be a strict contraction (i.e., ||T]lz < 1), and let B; be any
fixed selfadjoint operator in £. We denote by L7 the maximal dissipative operator
generated by the expression /(y) and the boundary conditions

(2.8) cos By y(0) + sin By’ (0) = 0,

(2.9) (T = D)(W1y)(oo) + i(T + I)(W2y)(o0) = 0.

Since T 1is a strict contraction, the operator 7 — I must be invertible, and the
boundary condition (2.9) is equivalent to

(2.10) (W1y)(oo) — A(Way)(o0) = 0,

where A = —i(T = I)"Y(T +~1), ImA > 0, and T is the Cayley transform of the
operator 4. We denote by L, the operator generated by tlle expression /(y) and
the boundary conditions (2.8) and (2.10). Obviously, Lt = L4.

In Z we consider the operator % generated by the expression (2.4) on the set
D(%;) of elements {(v=,u,v*), v~ € W)((-00,0); E), v+ € W}H(0, x); E),
uebD,

cos Byu(0) + sin Byju'(0) =0, (Wu)(0) — A(Whu)(oo) = Fv—(0),
(Whu)(o0) — A*(Whu)(o0) = Fv*(0),
where F2=2Imd, F>0.
Theorem 2.4. The operator £, is selfadjoint in # and is a selfadjoint dilation of
the dissipative operator L, (L7).

In # the selfadjoint operator %% generates a unitary group %; = exp(i.Zyt)

(t € R). The group {%Z;} has the incoming and outgoing subspaces
D_ = (LZ((_OO> O)s E)a 0’ 0)a D+ = <0$ 09 LZ((Oa OO), E))-

We denote by Lp, ~ the selfadjoint operator generated by the expression /(y)

and the boundary conditions
cos B y(0) +sin B1y'(0) =0, (Way)(oc) = 0.

Let ¢(x, A) and w(x, 1) be the operator-valued solutions of the equation /(y) =
Ay satisfying the initial conditions
9(0,A)=sinB;, ¢'(0,1)=-cosB;; w(0,A)=cosB;, ¥'(0,A)=sinB;.
Then the matrix-valued Weyl-Titchmarsh function Mp,  ..(4) of the operator Lg,
is parametrized by the conditions (W>(y + Mp, (4)9))(c0) = 0. From this we get
(2.11) M(2) = Mp, o(A) = —(Way)(c0) - [(W29)(c0)] ™"

We set F(1) = (W) 9)(o0) - [(Waw)(00)]~! and ®(4) = F(A) - M(4). Then it can be
shown that ®(1) is a meromorphic function in the complex plane C with real poles,
and ®(1) has the following properties:

a) Im®(4) <0 for ImAi >0, and ImP(4) >0 for Imi < 0.

b) ®*(A) = ®(A) for all A € R except for the poles of ®(1).

We further set

(2.12) S4(A) = F~H(®D() + A)(P(A) + 4*)"'F.
Then the matrix-valued function S4(4) is meromorphic in C, and all poles are

located in the lower half plane. Ii is further possible to show that ||S4(4)||z < 1 for
ImA >0 and S4(A) is a unitary matrix for all A e R.
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Theorem 2.5. The characteristic function of the dissipative operator L, (Lt) coin-
cides with the matrix-valued function S4(1) defined by (2.12). The matrix-valued
Sunction S4(A) is meromorphic in the complex plane C and is an inner function in
the upper half plane. The matrix S;‘ (A) is the scattering matrix of the group {%}
(of the operator Z).

3. In this subsection we investigate the dissipative operator Lg , where K is the
strict contraction in E & E generated by the expression /(y) and boundary con-
ditions (1.3). It is obvious that the boundary conditions, generally speaking, may
be nondecomposed (nonseparated). In particular, if we consider separated bound-
ary conditions, then at zero and at infinity there are simultaneously nonselfadjoint
boundary conditions.

Since K is a strict contraction, the operator K + I must be invertible, and the
boundary conditions (1.3) are equivalent to the condition

(2.13) T,y + BTy =0,

where B=—i(K+I)""(K-1I), ImB > 0, and —K is the Cayley transform of the
operator B. We denote by L (= Lg) the operator generated by the expression
{{y) and the boundary condition (2.13).

We shall construct a selfadjoint dilation of the operator Lg (Lg). We form the
basic Hilbert space of the dilation

# = Ly((—0,0); E® E)® H® Ly((0, x0); E® E),

where H, = L,((0, o0); E), and in # we consider the operator .%3 generated by

the expression
1 dv- 1 dv*
- + - —— O — ———  ———
(2.14) L ,u,v )—< A ,A(u), A >

on the set D(.%3) of elements (v~ , u, v*) satisfying the conditions

v~ € W)((~00,0); EQE), vt € W0, o); E®E),
ueD, Thu+ BT yu = Cv=(0),
Cyu+ B*Tyu = Cv*(0), C*=2ImB, C>0.
Theorem 2.6. The operator 3 is selfadjoint in # and is a selfadjoint dilation of
the dissipative operator Lg (Lg).

In # the selfadjoint operator %3 generates a unitary group #%; = exp(iZpt)
(¢t € R). The group {Z;} has the incoming and outgoing subspaces

D_ = (L;({-x,0); E®E),0,0), D, =(0,0, L,((0, 0); E ® E)).
We denote by ¢;(x, 1) and ¢,(x, A) the operator-valued solutions of the equa-
tion /(y) = Ay satisfying the conditions
91(0,4) =0, ¢1(0,)=~I; @0, 0)=1, ¢50,4)=0.
We further denote by M, (1) the matrix-valued function satisfying the condition
(2.15) M (AT 19 =T1e; J=1,2).

It can be shown that M;(4) is meromorphic in C (all its poles are located on the
real axis R) and has the following properties:

(a) ImM;(1) <0 for ImA >0, and ImM;(4) >0 for ImA < 0.

(b) M (A) = M;(A) for all A € R except for the poles of M;(4).
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We set
(2.16) Sp(A) = (Im B)"Y2(M,(A) + B)(M,(2) + B*)"'(Im B)'/2,
It is obvious that the matrix-valued function Sp(4) is meromorphic in C, and all

poles are located in the lower half plane. Further, it can be shown that ||Sg(1)||rer <
1 for ImA >0, and Sg(4) is a unitary matrix for all A € R.

Theorem 2.7. The characteristic function of the dissipative operator Ly (Lg) coin-
cides with the matrix-valued function Sg(A) defined by (2.16). The matrix-valued
Junction Sg(A) is meromorphic in the complex plane C and is an inner function in
the upper half plane. The matrix SE‘(A) is the scattering matrix of the group {Z;}
(of the operator £3) .

§3. SPECTRAL ANALYSIS OF THE DISSIPATIVE OPERATORS Lx, L7, AND Ly

As we noted in the Introduction, questions of the spectral analysis of the dissi-
pative operators Lg,, L7, and Lg can be solved in terms of the characteristic
function. Thus, for example, the absence of the singular factor s(A) in the factoriza-
tion detS,4(4) = s(A)F (1) (F(A) is the Blaschke product) ensures the completeness

of the system of eigenvectors and associated vectors of the operator L 4 (L7) in the
space L,((0, o0); E).
We first use the following lemma.

Lemma 3.1. The characteristic function §K0 (A) of the operator Lk, has the form
Sko(R) = Sy(4) = X1 (I - K\ K})"V4O(0) — Ki)(I — K1©(0)) ™' (I - K1 K1)'2 X7,

where Ky = —Ky is the Cayley transform of the operator By, while ©({) is the Cayley
transform of the matrix-valued function My, 4,(A), {=(A—0)(A+i)7!, and

X, = (Im By)~V2(I — K)~'(I - K\ K})V/2,
Xy = (I - K{Ky)™'2(I - K})(Im By)'/?,
|det X1| - {det X = 1.

Similar lemmas hold also for the operators Ly and Lg .

It is known (see [1], [5], or [12]) that the inner matrix-valued function S(4) is
a Blaschke-Potopov product if and only if detS(4) is a Blaschke product. From
Lemma 3.1 it then follows that the characteristic function Sk,(4) is a Blaschke-
Potopov product if and only if the matrix-valued function

Xk, (§) = (I - K1K7)™3(0(0) — Ki)(I - K1O()) (I - KT Ky)'?

is a Blaschke-Potopov product in the unit disk.

In order to formulate a completeness theorem we first formulate the definition of
I"-capacity in a form convenient for what follows (see [11] and [12]).

Let E be an m-dimensional (m < oco) Hilbert space. In E we fix an orthonormal
basis e;,..., e, and denote by E;, (k =1, ..., m) the linear hull of the vectors
e,...,e.. If McCE,, then we denote by I',_,; M the set of x € E;_; such that

Cap{Alh € C, (x + i) C M} > 0.

(Here Cap G is the inner logarithmic capacity of the set G C C.) The I'-capacity of
aset M C E is the number

I'-Cap M =supCap{i|A€ C, ey eIy - T M},
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where the supremum is taken over all possible orthonormal basis in E . It is known
(see [11]) that any set M C E of zero I'-capacity has zero Lebesgue 2m-measure
(in the decomplexified E), but the converse is not true.

We denote by [E] ([E®E]) the set of all linear operators actingin E (E®E). We
convert [E] ([E @ E)) into an n?- (4n2-) dimensional Hilbert space by introducing
for 4, B € [E] ([E & E]) the scalar product (4, B) =trB*4 (trB*A is the trace
of the operator B*A4). It is then possible to speak of the I'-capacity of a set in {E]
((E®E)).

The following result of [12] is important for our purposes.

Proposition 3.1. Ler X({) (|| < 1) be a holomorphic function whose values are
contractive operators in [E] (| X({)|| € 1). Then or TU-almost all strictly contractive
K € [E] (i.e., for all strictly contractive K € [E] with the possible exception of a set
of T-capacity zero) the inner part of the contractive function
Xk($) = - KK (X)) - K)I - K*X({)~' (I - K*K)'7?

is a Blaschke-Potapov product.

Summarizing all the results obtained for the dissipative operators Lg,, Lr, and
Lg , we have thus proved
Theorem 3.1. For T-almost all strictly contractive Ko € [E], T € [E], and K €
[E & E] the characteristic functions Sk, , Sr, and SK(A) of the dissipative operators
Lk,, Lt, and L are Blaschke-Potapov products, the spectrum of each of the operators

Lk, , L,, and Lk is purely discrete, and the system of the eigenvectors and associated
vectors of each of the operators Lg,, L., and Lk is complete in Ly((0, o), E).

Now on the basis of some properties of the matrix-valued function M, 4,(4) for
the operator Lk, we shall prove a theorem stronger than Theorem 3.1.
Let My 4,(A) be the Weyl-Titchmarsh matrix-valued function of the selfadjoint
operator Ly 4, generated by the expression /(y) and the boundary conditions
y'(0)=0,  cosdo(W1y)(o0)-sin Ag(W2y)(00) =0
Let 6;(x,A) and #,(x, A) be operator-valued solutions of the equation /{y) =
satisfying the initial conditions
0:(0,) =1, 61(0,4)=0, 6,0,4)—-0, 050,4)=
Then the matrix-valued function Mj ; (4) can be parametrized by the conditions
cos Ao(W1(62 + 61 My 3,(4)))(00) — sin Ao(W2(62 + 61 Mo, 3,(4)))(c0) =
From this we have
My, 1,(2) = — [cos Ag(W;6;)(00) — sin Ag(W26, )(c0)] !
x [cos Ag(W162)(c0) — sin Ag(W26;)(o0)].
It is known [13] that the matrix-valued function My 4,(4) can be expressed by means

of the spectral matrix-valued function p(4) of the operator Ly 4, in the following
manner:

(3.2) MOAO(A)=/_°°4/1_/’__(”7), —wﬂl%jrflé<oo, feE.

Comparing (2.5) with (3.1) and noting that ¢(x, 1) = —63(x, A) and y(x, i) =
0,(x, 1), we have

(3.1)

M) = Mo, 4,(2) = =My (A).
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Thus, for M(A) we have the representation

iy _ [T dp(u) *dpw)f, fE
M~'(4) = _—_,U 7 —oo_——_1+|/l| < 0, feE.
We set my(4) = (M ( Vf, f). We then have
dlp(w)f, NEe *dlpw s, e _
/ u RV BT I fek.

Below we use the following result (see [14], Russian p. 639, English p. 10).

Proposition 3.2. In order that the function g(z) defined for Imz # 0 admit an
absolutely convergent representation

g(z)=/_ f’_(’lz), Imz #0,

where t(A) is a nondecreasing function, it is necessary and sufficient that the following
conditions be satisfied:

1) g(z) is holomorphic for Imz # 0, g(Z) = g(z) for Imz # 0, and
Imz-Img(z) >0 (Imz #0).

2) The integral || > IinJ'iiﬂdy converges.

3) limy_.400 Re g(i¥) =

We note that the condition of absolute convergence of the integral
JZ (x — z)"1dt(A) is equivalent to the condition

/°° dt(4) < oo
—oo 1 +4]
Applying now Proposition 3.2 for the function m/(4), we have
Imm(iye) = Im(M ' (iyi)f, f)g — 0 for yx — +oo0, f€E,
Rem(iyx) = Re(M(iyy)f, f)g = 0 fory, — +oo0, f€E.
From the last two relations it can be deduced that for the matrix elements ms(iy)
(j,s=1,...,n) of the operator M~!(iy) we have m;(iy;) — 0 as y, — +oo.

Then for the characteristic function Sk,(iy;) of the operator Lk, as y;, — +oc we
have

det(M(iyy) + By)
det(M(iyx) + Bg)
_ | det(J + BoM~(iyy))| _ 1+0(1)
T |det(I + B3M~1(iy))|  1+0(1)
Relation (3.3) implies that det §K0 (A4) is a Blaschke product. Suppose this is not

the case. Then there is the decomposition detSx,(A) = e**.#(A), b > 0, where
% (A) is a Blaschke product. Now from (3.3) we have

1+ 0(1) = | det Sk, (ivi)| = |e B (iyy)|
=e Y| B(iyg)| <e ¥ — 0 as y — +oo.

| det Sk, (iye)| =

(3.3)

=1+o0(1).

This contradiction shows that b = 0, i.e., det §K0 (A) is a Blaschke product. Hence,
§Ko(l) is a Blaschke-Potapov product, and we have proved

Theorem 3.2. For all strictly contractive Ky € [E] (for all By with Im By > 0) the
characteristic function .§Ko(l) (SB,(A)) of the dissipative operator Lk, (EBO) is a

Blaschke-Potapov product, the spectrum of the operator Ly, (ZB(,) is purely discrete,
and the system of its eigenvectors and associated vectors is complete in L»((0, o0); E).
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