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ON THE THEORY OF NONSELFADJOINT OPERATORS
OF SCHRODINGER TYPE WITH A MATRIX POTENTIAL

UDC 517.984

B. P. ALLAKHVERDIEV

ABSTRACT. The author studies the theory of dilation, characteristic function, and spec-
tral analysis of dissipative operators of Schrodinger type with a matrix potential in
Ζ^2((0, oo); Ε) which are an extension of a minimal symmetric operator with defect
indices (2« , 2n) (dim£ = η < oo).

I N T R O D U C T I O N

It is k n o w n [ l ] - [5] that t h e theory of di lat ions wi th appl icat ion of o p e r a t o r m o d -

els gives a n a d e q u a t e a p p r o a c h t o t h e analysis of dissipative (contractive) operators .

T h e character is t ic function occupies a central place in this theory; it carries complete

i n f o r m a t i o n regarding t h e spectral propert ies of a dissipative operator . For example,

the ques t ion of completeness of a system of eigenvectors is answered in t e r m s of

factorizat ion of the characterist ic function. C o m p u t a t i o n of the characterist ic func-

t ion of diss ipative opera tors is p r e c e d e d by t h e const ruct ion a n d investigation of a

selfadjoint (unitary) di lat ion a n d of t h e corresponding scattering p r o b l e m in which

t h e character is t ic funct ion is real ized as t h e scattering matr ix . T h e adequacy of this

a p p r o a c h t o dissipative differential operators has been d e m o n s t r a t e d , for example, in

[2]-[4], [7], a n d [8].

In this paper, which consists of three sections, we apply this a p p r o a c h to t h e s tudy

of diss ipative operators of Schrodinger type with a matr ix potent ia l in the space

Z,2((0, oo); E) that are extensions of a minimal symmetric operator with defect in-
dices (2n, 2M) (dim Ε = η < oo). To this end in § 1 we first describe all maximal dis-
sipative extensions of the minimal operator in terms of boundary conditions at zero
and infinity. In §2 we then investigate three different classes of dissipative operators.
We first investigate two classes of operators with decomposed boundary conditions,
called "dissipative at zero" and "dissipative at infinity". We then investigate a dissi-
pative operator with, generally speaking, nondecomposed (nonseparated) boundary
conditions. In particular, if we consider separated boundary conditions, then at zero
and at infinity nonselfadjoint boundary conditions are prescribed simultaneously. In
each of these cases we construct a selfadjoint dilation and its incoming and out-
going spectral representations, which makes it possible to determine the scattering
matrix according to the scheme of Lax and Phillips. With the help of the incoming
spectral representation we construct a functional model of the dissipative operator
and construct its characteristic function in terms of solutions of the corresponding
differential equation. In the last section, §3, on the basis of the results obtained re-
garding the theory of the characteristic function we prove theorems on completeness
of the system of eigenvectors and associated vectors of dissipative operators. Similar
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q u e s t i o n s p e r t a i n i n g t o t h e c a s e s o f " d i s s i p a t i o n at z e r o " a n d " d i s s i p a t i o n at in f in i ty"

i n t h e scalar c a s e ( d i m i i = 1) w e r e i n v e s t i g a t e d i n t h e a u t h o r ' s p a p e r s [ 7 ] a n d [ 8 ] .

§ 1. D E S C R I P T I O N O F D I S S I P A T I V E E X T E N S I O N S O F A S Y M M E T R I C O P E R A T O R

O F S C H R O D I N G E R T Y P E W I T H A M A T R I X P O T E N T I A L

Let Ε be «-dimensional (n < oo) Euclidean space. We denote by L2((0, oo), E)
the Hilbert space of vector-valued functions with values in Ε.

We consider the system of differential equations of Schrodinger type

(1.1) l{y) = -y"{x) + Q{x)y{x) = Xy{x), 0 < x < + o o ,

where Q{x) = Q*(x) is a continuous matrix-valued function on [0, oo).
We denote by Lo (with domain Do) the closure of the minimal operator generated

by the expression l(y). Let D be the set of all vector-valued functions y(x) e
L2((0, oo); E) such that y'{x) is locally absolutely continuous on [0, oo) and l(y) e
L2((0, oo); E). Then D is the domain of the maximal operator L, and L = L\.

Suppose that the matrix-valued function Q(x) is such that for operator (matrix-
valued) solutions <ρι(χ, λ) and φ2(χ, λ) of (1.1) with initial conditions

Ψι(0,λ) = Ι, fl»i(0,A) = 0; φ2(0,λ) = 0, φ'2(0,λ) = Ι

(I is the identity operator in E) for some λ = λο and λ = λο the following integrals
converge:

/•oo
/ \\<Pi(x,X)\\E2dx<oo, i=l,2.

Jo
(We note that this condition is satisfied under the conditions of Lidskii [9].) Then
these integrals converge for any λ e C and the "absolutely overdetermined case"
obtains, i.e., the defect index of the operator Lo is equal to (2n, 2n). We consider
this case below.

Let Vi(x) and v2(x) be operator solutions of the equation l(y) — 0 satisfying
the initial conditions

We adopt the following notation:

= (v*2'(x)y(x)-v*2(x)y>(x)

It can be shown that for all y{x) e D the limit

exists.
We recall [10] that the triple {β?, Υ\, Γ 2 ) , where %f is a Hilbert space and ΓΊ

and Γ2 are linear mappings of D(A*) into %?, is called the space of boundary
values of the closed symmetric operator A in the Hilbert space Η with equal (finite
or infinite) defect indices if the following conditions hold:

1) For any f, g e D(A')

(A°f, g)H - (f, A°g)H = (Γι/, T2g)*. - (T2f, Txg)*.

2) For any F{, F2€<%* there exists a vector / e D(A*) such that T\f = Fx and
r 2 / = F2 ·

Returning to our case, we denote by Γι and Γ2 the linear mappings of D into

E®E

(1.2) r ,y = (-y(0),(^,y)(oo)), T2y =

We then have the following assertion.
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Lemma 1.1. The triple (Ε ® Ε, Υ\, Y2) defined by (1.2) is that space of boundary
values of the operator Lo.

From [10], Chapter 3, Theorem 1.6, and Lemma 1.1 we obtain

Corollary 1.1. For any contraction Κ in E®E the restriction of the operator L to
vector-valued functions y e D which satisfy the boundary conditions

(1.3) (K

or

(1.4) (K

is, respectively, the maximal dissipative and maximal accretive extension of the op-
erator LQ . Conversely, any maximal dissipative (accretive) extension of Zo is the
restriction of L to a set of vector-valued functions y e D satisfying (1.3) ((1.4)),
and the contraction Κ is uniquely determined by the extension. These conditions give
selfadjoint extensions if Κ is unitary. In the latter case (1.3) and (1.4) are equiva-
lent to the condition (cos A)Yiy — (sin A)Y2y = 0, where A is a selfadjoint operator
in Ε θ Ε.

Let

K = V 0 K2

where Κι and K2 are contractions in Ε. Then by Corollary 1.1 the boundary
conditions (y e D)

(1.5) - ( * , - /MO) + i(Kx + /)/(0) = 0,

(1.6) (K2 - I)(W2y)(oo) + i(K2 + I)(W2y)(oc) = 0

describe all maximal dissipative extensions with separated boundary conditions of
the operator LQ .

Below we investigate maximal dissipative operators of two types: "dissipative at
zero", i.e., where K\ is a strict contraction and K2 is a unitary operator, and "dissi-
pation at infinity", i.e., where K\ is a unitary operator and K2 is a strict contraction.

§2. SELFADJOINT DILATIONS OF DISSIPATIVE OPERATORS.

SCATTERING THEORY OF DILATIONS

AND A FUNCTIONAL MODEL OF DISSIPATIVE OPERATORS

1. In this subsection we investigate the operator LQ in the case of "dissipation at
zero". Let K$ be a strict contraction (i.e., ||ATo||£ < 1) in Ε, and let AQ be any
fixed selfadjoint operator in Ε. We denote by Lx0 the maximal dissipative operator
generated by the expression l(y) and the boundary conditions

(2.1) -(Ko - /MO) + i(KQ + I)y'(0) = 0,

(2.2) cosA0(Wiy)(oo) - s i n ^ o ^ X o o ) = 0.

Since Ko is a strict contraction, (2.1) is equivalent to

(2.3) y'(0)-B0y(0) = 0,

where Bo = -i(K0 + I)~l(Ko -1), imBo > 0, and -KQ is the Cayley transform of
the dissipative operator BQ . We denote by LBo the operator generated by l(y) and
boundary conditions (2.2) and (2.3). It is here obvious that LBo = LK0 .
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To construct a self adjoint dilation of the dissipative operator L^o (= LB0) we ad-
join to Η = 1-2((0, oo); Ε) the "incoming" and "outgoing" channels L2((-oo,0); E)
and L2((0> oo); E), we form the orthogonal sum X = L2((-oo , 0); £) θ // Θ
L2((0, oo); Ε), and we call it the basic Hilbert space of the dilation. In the space %f
we consider the operator Jz?g0 generated by the expression

/-> AS OPI - + v / 1 dv~ 1 dv+

(2.4) S?( +) ( / ( ) άξ

on the set D(=2B0) of elements (v~,u,v+) satisfying the conditions v~ e
^ ( ( - o o , ( ) ) ; £ ) , v+ e ^ ( ( 0 , ο ο ) ; £ ) , u € D, u'(0) - Bou(O) = C0«-(0),
w'(0) - BoM(°) = Q^ + (0 ) , and COS/40(WIM)(OO) - sin^0(^2w)(oo) = 0, where W}
is the Sobolev space and Cfi = 2 Im BQ , Q > 0. We then have

Theorem 2.1. The operator JzfBo is selfadjoint in %? and is a selfadjoint dilation of
the dissipative operator LB0 (LK0) •

We associate with the operator 3Έα the unitary group f/t — exp[i-2j0i], / G R.
The group {%} has an important property which makes it possible to apply to it
the Lax-Phillips scheme [6], namely, it has incoming and outgoing subspaces D_ =
(L2((-oo, 0); E), 0, 0) and D+ = (0,0, L2((0, oo); E)) possessing the following
properties:

1) %D_ c D - , t < 0, and %D+ c D+ , t>0;

2)

3)
ί ο ί ο

4) D_ ± D+ .
Property 4) is obvious. To prove property 1) for D+ (the proof for D_ is similar),

we set ^ λ = (£?Bo -λΙ)~χ. For all λ with Im λ < 0 and for any / = (0, 0, v+) e D+

we have

&rf= / θ , 0, -/«-'« / eiXsv+(s)ds\ .

From this it follows that 3lxf e D+ . Therefore, if g ± D+ , then

0 = W , g)r = ~i / ° V ' A W , g)rdt, ImA < 0.

From this it follows that (%f, g) = 0 for all t > 0. Hence, ^ (Z)+ c D+ for ί > 0,
and property 1) has thus been proved.

To prove property 2) we denote by P+: %? —> L 2 ((0,oo);£) and £P+:
Li({0, oo); E) ->• Z)+ the mappings acting according to the formulas Ρ+:
(v~ , u, v+) ι-» i;+ and ̂ + : υ ι-» (Ο, 0, ν) respectively. We note that the semi-
group of isometries %ft

+ = Ρ+%£Ρ+ , ί > 0, is a one-sided shift in L2((0, oo); E).
Indeed, the generator of the semigroup of the one-sided shift Vt in L2((0, oo); E)
is the differential operator ίά/άξ with boundary condition v(0) = 0. On the other
hand, the generator A of the semigroup of isometries 2 (̂

+ , t > 0, is the operator

Αν = Ρ+ΉοΡ+υ = P+S?B0(0, Ο,ν) = Ρ

where υ e ^ ' ( ( 0 , oo); E) and v(0) = 0. Since a semigroup is determined by its
generator, it follows that %ft

+ = Vt, and hence

f]%D+ = ( θ , Ο, Π VtL2((0, oo);E)\ = {0},
(>0 \ i>0 /

i.e., property 2) is proved.
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In the scheme of the Lax-Phillips scattering theory the scattering matrix is defined
in terms of the theory of spectral representations. We proceed to their construction.
Along the way we also prove property 3) of the incoming and outgoing subspaces.

We first prove the following lemma.

Lemma 2.1. The operator LBQ is totally nonselfadjoint {simple).

Proof. Let H' c Η be a nontrivial subspace in which LBo induces a self adjoint
operator L'BQ with domain D(L'Bo) = H'nD(LBo). If / e D{L'BQ) , then / 6
and

d
0 = -y- e

dt H

iLB

2
= -2(lmB0(e

From this for the eigenvectors νλ(χ) of the operator LBo that lie in H' and
are eigenvectors of L'BQ we have νλ(0) — 0. From the boundary condition v'(0) -
Bov(O) = 0 we obtain ν'λ(0) = 0, and then by the uniqueness theorem of the
Cauchy problem for the equation —y"(x) + Q(x)y(x) = ky{x), 0 < JC < oo, we
have νλ(χ) = 0. Since all solutions of (1.1) belong to L2((0, oo); Ε), from this it
can be concluded that the resolvent Rx(LBo) of the operator LBo is a completely
continuous operator, and hence the spectrum of LBo is purely discrete. Hence, by
the theorem on expansion in eigenvectors of the self adjoint operator L'B , we have
H' = {0} , i.e., the operator LBQ is simple. The lemma is proved.

We set

sir = (J %D-, sr+ = U %D+.

i>0 r<0

Lemma 2.2. SeL+ST+=St.

Proof. Considering property 1) of the subspace D+ , it is easy to show that the sub-

space SH" = Sf θ {%* + SP+) is invariant relative to the group {%} and has the form
β?' — (0, Η', 0), where Η' is a subspace in Η. Therefore, it is the subspace %?'
(and hence also H') were nontrivial, then the unitary group {̂ /} restricted to this
subspace would be a unitary part of the group {^}, and hence the restriction L'B
of LBo to H' would be selfadjoint operator in H'. From the simplicity of the op-
erator LBo (see Lemma 2.1) it follows that H' = {0} , i.e., β?" = {0} . The lemma
is proved.

W e d e n o t e b y £ Ο Ο , Λ 0 t n e s e l f a d j o i n t o p e r a t o r g e n e r a t e d b y t h e e x p r e s s i o n l ( y )

a r i d t h e b o u n d a r y c o n d i t i o n s

y(0) = 0, cos.4oW>0(oo) - sin^0(^2^)(oo) = 0.

Let φ(χ, λ) and ψ(χ, λ) be the operator-valued solutions of the equation l(y) = Xy
satisfying the initial conditions

φ(0,λ) = 0, φ'{Ο,λ) = -Ι; ψ(0,λ) = Ι, ψ'(0,λ) = 0.

Then the Weyl-Titchmarsh matrix-valued function Μοο>Αο(λ) of the operator L^ ,Ao

is parametrized from the conditions

φοο,Λο&Μ) 4 > T O v φχ,Αο{))){) = 0.

From this we have

Μ{λ) = Mx,,4.W =
5

χ [cosA0(Wiψ)(οο) -sinA0(W2y/){oo)].
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F r o m ( 2 . 5 ) i t f o l l o w s t h a t M(X) i s a m e r o m o r p h i c f u n c t i o n o n t h e c o m p l e x p l a n e

C w i t h a c o u n t a b l e n u m b e r o f p o l e s o n t h e real ax is , a n d t h e s e p o l e s c o i n c i d e w i t h

t h e e i g e n v a l u e s o f t h e o p e r a t o r L x , AQ . Further, it i s p o s s i b l e t o s h o w that t h e

m a t r i x - v a l u e d f u n c t i o n M(X) p o s s e s s e s t h e f o l l o w i n g proper t ies :

a) I m M ( A ) < 0 for I m A > 0 , a n d I m M ( A ) > 0 for I m A < 0.

b) Μ(λ) = Μ* (λ) for real λ with the exception of the poles of M(X).
We denote by X(x, X) the Weyl solution of the equation l{y) = Xy, i.e., X(x, X) =

ψ(χ, λ) + φ(χ, λ)Μ{λ). We set

%. - (χ, ξ) = (e-Kej, -Χ(χ, λ)(Μ*(λ) + Β0)~ιCoej,

C-\M*{X) + Β*0)(Μ*(λ) + Bo)-lCoe-^ej) (j=l,...,n),

where {^}?=1 is an orthonormal basis in Ε.
We note that the elements %_,- (j = 1,...,«) for real λ do not belong to the

space %*. However, 2^~ (j = I, ... , n) satisfy the equation 3% = λ% and
the corresponding boundary conditions for the operator £?Bo. Below we shall see
that ^ ~ (j = 1, . . . , n) are (generalized) eigenvectors of the absolutely continuous
spectrum of the operator .2β0.

With the help of the vectors ^ J (j = 1, ... , n) we define the transformation

&L: f »-» f-(X) on elements / = (v~ , y, v+) in which ν±(ξ) and y(x) are com-
pactly supported, smooth functions by the formula

where f'{X) = (l/>/2i)(/, W^)* (j = 1 , . . . , « ) .

Lemma 2.3. The transformation &L maps %?- isometrically onto L 2((-oo, oo); E).
For all elements f, g e Z . the Parseval equality and the inversion formula hold:

(/, g)jr = (f-, g-)Ll = Γ Y^f-{X)g~f(J)dk,
J-oc J=l

where /_(A) = {9Lf){X) and g_(A) = (9L

We set

%+{x, ζ) = {Cu\M{X) + BQ)(M(X) + BZr'Coe-^ej,

- X(x, X){M{X) + Btr'Coej, e^ej) (j = \,...,n).

With the help of the vectors ^t (j = 1, ... ,n) we define the transformation

&+: f >-> f+(X) on elements / = {v~ , y, v+), in which ν±(ξ) and y(x) are com-
pactly supported smooth functions, by setting

7 = 1

where f+ (X) = (\/y/2H)(f, %+)^ (; = ! , . . . , « )
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Lemma 2.4. The transformation &+ maps %?+ isometrically onto Li((-oo, oo);E).
For all elements f, g e£P+ the Parseval equality and the inversion formula hold:

- /

where f+(X) = (&+f){k) and g+(X) =

We set

(2.6) SBo(A) = C^{M{k) + Βο)(Μ(λ)

It is obvious that Sso(A) is a meromorphic matrix-valued function in the complex
plane C, and all its poles are located in the open lower half plane. It can be shown
that ||5βο(-ί.)||£ < 1 for Ιτηλ > 0, and SBo(A) is a unitary operator for all λ e R.

Since SB0 (A) is unitary for all λ e R, from the explicit expressions for the vectors
and W[j {j=\,...,n) it follows that

k=l

where Sjk(A) (j = 1, ... , n) are the elements of the matrix SBO(A) . According to
Lemma 2.2, from the last equality it then follows that <%i. = %?+ = %f. Hence, prop-
erty 3) of the incoming and outgoing subspaces presented above has been established.

Thus, the transformation &L maps %? isometrically onto L2((-oo, oo);E); the
subspace D- is mapped onto //Ι (Ε), while the operators %t go over into operators
of multiplication by elt. This means that &L is an incoming spectral represen-
tation of the group {%} . Similarly, ^ is an outgoing spectral representation of
{%} . From the explicit formulas for W~ and ^ (j = I, ... ,n) it follows that
passage from the ^-representation of an element / e <%* to its ^-representation
is accomplished as follows: f+ (λ) = 5'go

1(A)/_(A). According to [6], we have now
proved

Theorem 2.2. The matrix Sgo

l(A) is the scattering matrix of the group {%} {of the
operator 2")

We set 3? = (0, Η, 0), so that ^F = D- θ 3ΐ θ D+ . From the explicit form of
the unitary transformation 9^ it follows that under the mapping &L we have

(2 ? ) D- - Hi (E), D+ - SBoH
2

+ (Ε),

%f - {

Formulas (2.7) show that the operator ίΒο(λ) (LKo) is unitarily equivalent to the
model dissipative operator with characteristic function SB0 {λ). We have thus proved

Theorem 2.3. The characteristic function of the dissipative operator LB0 (LKO) co-
incides with the matrix-valued function SBo(X) defined by (2.6). The matrix-valued
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function SBf>(X) is meromorphic in the complex plane C , and is an inner function in

the upper half plane.

2 . I n t h i s s u b s e c t i o n w e i n v e s t i g a t e t h e o p e r a t o r Lj i n t h e c a s e o f " d i s s i p a t i o n

at infinity". Let Γ be a strict contraction (i.e., | |Γ | | £ < 1), and let B\ be any
fixed selfadjoint operator in Ε. We denote by LT the maximal dissipative operator
generated by the expression l{y) and the boundary conditions

(2.8) cosBi>'(0) + sin5 1y(0) = 0,

(2.9) (Γ - I){Wiy){oo) + i(T + I)(W2y)(oo) = 0.

Since Γ is a strict contraction, the operator Τ - I must be invertible, and the
boundary condition (2.9) is equivalent to

(2.10) (Wiy)(oo)-A(W2y)(oc) = 0,

where A = -i(T - I)~l{T + I), 1mA > 0, and Τ is the Cayley transform of the
operator A . We denote by LA the operator generated by the expression l(y) and
the boundary conditions (2.8) and (2.10). Obviously, LT = LA-

In 3i we consider the operator =2^ generated by the expression (2.4) on the set
D{&A) of elements (v~,u,v+), v~ e W2

l((-oo, 0); E), v+ e W2

l((0, oo); Ε),
ueD,

cosfiiw(O) + sinJ?i«'(0) = 0, Wu)(oo) - A{W2u)(oo) = F U ~ ( 0 ) ,

(Wiu)(oo) - A*{W2u){oo) = Fv+(0),

where F2 = 21mA, F > 0.

Theorem 2.4. The operator 2Ά is selfadjoint in %? and is a selfadjoint dilation of
the dissipative operator LA (LT) .

In %? the selfadjoint operator 2Ά generates a unitary group % = exp(iJzfAt)
(i € R). The group {%} has the incoming and outgoing subspaces

D_ = (L2((-oo, 0); E), 0, 0), D+ = (0, 0, L2((0, oo); E)).

We denote by LBltOo the selfadjoint operator generated by the expression l(y)
and the boundary conditions

cos£,y(0) + sin£ij/'(0) = 0, (W2y)(oc) - 0.
Let φ(χ, λ) and ψ (χ, λ) be the operator-valued solutions of the equation l(y) =

Xy satisfying the initial conditions

i»(0,A) = sin5i, φ'(0, λ) = -cosfir, ψ(0, λ) = cosBu ψ'{0, λ) = sinfli.

Then the matrix-valued Weyl-Titchmarsh function ΜΒι,οο{λ) of the operator ^Β,,ΟΟ

is parametrized by the conditions {W2{y/ + MBl y00(X)<p)){oo) = 0. From this we get

(2.11) Μ(λ) = ΜΒ,,00(λ) = -(ΐν2ψ)(οο)·[(]ν2φ)(οο)]-1.

We set F(k) = {Wi<p)(oc) · [(W2y/)(<x>)]-1 and Φ(λ) = F(A) · Λί(λ). Then it can be
shown that Φ(λ) is a meromorphic function in the complex plane C with real poles,
and Φ(Α) has the following properties:

a) ΙΐηΦ(λ) < 0 for ImA > 0, and ^ Φ ( Α ) > 0 for ImA < 0.
b) Φ*(λ) = Φ(λ) for all λ e R except for the poles of Φ(λ).
We further set

(2.12) ΞΑ(λ) = ρ-ι(Φ(λ) + Α)(Φ(λ) + Α*)-ιΕ.

Then the matrix-valued function SA(X) is meromorphic in C, and all poles are
located in the lower half plane. It is further possible to show that ||5^(λ)||£ < 1 for
ImA > 0 and SA(X) is a unitary matrix for all λ e R.
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Theorem 2.5. The characteristic function of the dissipative operator LA (LT) coin-
cides with the matrix-valued function SA(X) defined by (2.12). The matrix-valued
function SA(X) is meromorphic in the complex plane C and is an inner function in
the upper half plane. The matrix S^1 (λ) is the scattering matrix of the group {%Ί}
(of the operator £?A).

3. In this subsection we investigate the dissipative operator LK, where Κ is the
strict contraction in Ε θ Ε generated by the expression l(y) and boundary con-
ditions (1.3). It is obvious that the boundary conditions, generally speaking, may
be nondecomposed (nonseparated). In particular, if we consider separated bound-
ary conditions, then at zero and at infinity there are simultaneously nonselfadjoint
boundary conditions.

Since AT is a strict contraction, the operator Κ + I must be invertible, and the
boundary conditions (1.3) are equivalent to the condition

(2.13)

where Β = -i(K + I)~l(Κ - I), lmB >0, and -K is the Cayley transform of the
operator Β. We denote by LB (= LK) the operator generated by the expression
l(y) and the boundary condition (2.13).

We shall construct a selfadjoint dilation of the operator LB {LK) . We form the
basic Hubert space of the dilation

%T = L 2((-oo, 0); Ε φ Ε) φ Η φ L2((0, oo); Ε θ £ ) ,

where Η2 — L2((0, oo); Ε), and in %? we consider the operator £fB generated by
the expression

Ο 14Ί 5"lii~ υ ιι + \ — / —— . /CM") _ _ .
v ' x ' ' \ ι άξ K ' ι άξ

on the set D(SfB) of elements (v~ , u, v+) satisfying the conditions

ν' e W2

l((-oc,0);E®E), v+ € W2
l((0, oo); E®E),

ueD, F2u + Brxu = Cv~(Q),

F2u + B*rlu = Cv+(0), C2 = 2lmB, C > 0.

Theorem 2.6. The operator S'B is selfadjoint in %? and is a selfadjoint dilation of
the dissipative operator LB (LK).

In β? the selfadjoint operator Jz% generates a unitary group % = exp(iJzfBt)
[t e R). The group {%} has the incoming and outgoing subspaces

£>_ = (Z.2((-°°, 0); £ Φ £ ) , 0, 0), D+ = (0, 0, L2((0, oo); Ε φ £)).

We denote by φ\(χ,λ) and 9»2(^,A) the operator-valued solutions of the equa-
tion l(y) = Ay satisfying the conditions

φι{0,λ) = 0, φΊ(Ο,λ) = -Ι; φ2(0,λ) = Ι, φ'2(0,λ) = 0.

We further denote by M\ (λ) the matrix-valued function satisfying the condition

(2.15) Μ\(λ)Τ\φ = T2q>j (j = 1, 2).

It can be shown that M\ (λ) is meromorphic in C (all its poles are located on the
real axis R) and has the following properties:

(a) ImAfi(A) < 0 for ImA > 0, and ImM,(l) > 0 for ImA < 0.
(b) Μ{(λ) = Μ*(λ) for all A 6 R except for the poles of Μχ(λ).
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W e se t

( 2 . 1 6 ) SBW = (TmB)-V2(Mi{X) + B){Mx{k) + B*yl{l

It i s o b v i o u s that t h e m a t r i x - v a l u e d f u n c t i o n SB(X) i s m e r o m o r p h i c i n C , a n d all

poles are located in the lower half plane. Further, it can be shown that ||5β(Α)||£θ£· <
1 for Im A > 0, and 5j(A) is a unitary matrix for all A e R.

Theorem 2.7. The characteristic function of the dissipative operator LB (LK) coin-
cides with the matrix-valued function SB(X) defined by (2.16). The matrix-valued
function SB{X) is meromorphic in the complex plane C and is an inner function in
the upper half plane. The matrix Sg1 (λ) is the scattering matrix of the group {%}
{of the operator J2%) •

§3. SPECTRAL ANALYSIS OF THE DISSIPATIVE OPERATORS LK , LT , AND LK

As we noted in the Introduction, questions of the spectral analysis of the dissi-
pative operators LKo, LT, and LK can be solved in terms of the characteristic
function. Thus, for example, the absence of the singular factor s(A) in the factoriza-
tion detS^W = s(X)£%(X) (3B(X) is the Blaschke product) ensures the completeness
of the system of eigenvectors and associated vectors of the operator LA {Lj) in the
space L2UO, 00); E).

We first use the following lemma.

Lemma 3.1. The characteristic function SKO(X) of the operator LKo has the form

ΞΚο(λ) = SBoW = XX(I- Ι^ΚΪ)-1'2^) - * i ) ( / - Κΐθ(ζ))~\ΐ - Κ\ΚχγΙ2Χ2,

where K\ = -Ko is the Cayley transform of the operator Bo, while θ(ζ) is the Cayley
transform of the matrix-valued function M00;/4o(A), ζ = (λ - ϊ)(λ + i)~l, and

Similar lemmas hold also for the operators LT and LK •
It is known (see [1], [5], or [12]) that the inner matrix-valued function S{k) is

a Blaschke-Potopov product if and only if detS(A) is a Blaschke product. From
Lemma 3.1 it then follows that the characteristic function SKO(X) is a Blaschke-
Potopov product if and only if the matrix-valued function

is a Blaschke-Potopov product in the unit disk.
In order to formulate a completeness theorem we first formulate the definition of

Γ-capacity in a form convenient for what follows (see [11] and [12]).
Let Ε be an m-dimensional (m < 00) Hubert space. In Ε we fix an orthonormal

basis e\, ... , em and denote by Ek (k = 1, . . . , m) the linear hull of the vectors
e\, ... , ek . If Μ c Ek , then we denote by Γ^.,Μ the set of χ e Ek_x such that

Cap{A|A e C, {x + Xek) c M} > 0.

(Here CapG is the inner logarithmic capacity of the set G c C.) The Y-capacity of

a set Μ c Ε is the number

Γ-Cap Μ = sup Cap{A|A € C, lex e Π Γ2 · • · Tm_ 1 Μ],
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where the supremum is taken ^>ver all possible orthonormal basis in Ε. It is known
(see [11]) that any set Μ c Ε of zero Γ-capacity has zero Lebesgue 2m-measure
(in the decomplexified Ε), but the converse is not true.

We denote by [Ε] ([ΕθΕ]) the set of all linear operators acting in Ε (ΕφΕ). We
convert [Ε] ([Ε θ Ε]) into an n2- (4«2-) dimensional Hubert space by introducing
for A, Β e [Ε] {[Ε φ Ε]) the scalar product (A, B) = trB*A (trB*A is the trace
of the operator B*A). It is then possible to speak of the Γ-capacity of a set in [E]
([ΕΦΕ]).

The following result of [ 12] is important for our purposes.

Proposition 3.1. Let Χ(ζ) (\ζ\ < 1) be a holomorphic function whose values are
contractive operators in [Ε] (\\Χ(ζ)\\ < 1). Then or Τ-almost all strictly contractive
Κ 6 [Ε] (i.e., for all strictly contractive Κ e [E] with the possible exception of a set
of Γ-capacity zero) the inner part of the contractive function

Χκ{ί) = (/ - n ' ) - 1 / 2 W i ) - Κ){1 - Κ*Χ(ζ)Υ\ΐ -

is a Blaschke-Potapov product.

Summarizing all the results obtained for the dissipative operators LK0 , Lj, and
LK , we have thus proved

Theorem 3.1. For T-almost all strictly contractive Ko e [Ε], Τ e [E], and Κ e
[Ε φ Ε] the characteristic functions SKo, ST , and SK(A) of the dissipative operators
LK0 , LT , and LK are Blaschke-Potapov products, the spectrum of each of the operators
LK0 , Lt, and L^ is purely discrete, and the system of the eigenvectors and associated
vectors of each of the operators LKo, Lt, and LK is complete in L2HO, 00), E).

Now on the basis of some properties of the matrix-valued function Mx Ao (λ) for
the operator LKo we shall prove a theorem stronger than Theorem 3.1.

Let Μ0,Αο(λ) be the Weyl-Titchmarsh matrix-valued function of the selfadjoint
operator L0,A0 generated by the expression l(y) and the boundary conditions

y'(0) = 0, c o s ^ W ^ M - s i n ^ o ^ X o o ) = 0.

Let θ ι (χ, λ) and Θ2 (x, λ) be operator-valued solutions of the equation l{y) = Xy
satisfying the initial conditions

(9,(0, X) = /, θ[(0,λ) = 0, θ2(0,λ)~0, 02(0, A) = /.

Then the matrix-valued function MQ^(X) can be parametrized by the conditions

cosA)W(02 + θιΜΟΜ{λ))){οο) - ύηΑ0(\ν2{θ2 + 0,M>,JoW))(oo) = 0.

From this we have

χ [cosAW02)(oo) - smA0{W2e2)(oo)].

It is known [13] that the matrix-valued function Μο>Αο(λ) can be expressed by means
of the spectral matrix-valued function ρ (λ) of the operator LOtAo in the following
manner:

(3.2)

Comparing (2.5) with (3.1) and noting that φ(χ, λ) — -Θ2(χ, λ) and ψ{χ, λ) =
θ ι (χ, λ), we have
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Thus, for Μ(λ) we have the representation

L

, f)

We set mf(X) = (M~l{X)f, / ) . We then have

mfW=rd^f

]"
E, Γ*ΜΜψ*<Οο, feE.

J-oo μ —λ J_oo 1 + |μ|

Below we use the following result (see [14], Russian p. 639, English p. 10).

Proposition 3.2. In order that the function g(z) defined for Imz ji 0 admit an
absolutely convergent representation

άτ{λ)
= / I m z ^ O ,

, - ο ο λ - ζ '

where τ{λ) is a nondecreasing function, it is necessary and sufficient that the following
conditions be satisfied:

1) g(z) is holomorphic for Imz φ 0, g{z) = g(z) for Imz Φ 0, and
I m z - I m g ( z ) > 0 ( I m z / 0 ) .

2) The integral f^° I m ?W dy converges.

3) limj,_+oo Re g{iy) = 0.

We note that the condition of absolute convergence of the integral
/ ^ ( x - z)~l άτ(λ) is equivalent to the condition

/-οοΊΤρίΤ00·
Applying now Proposition 3.2 for the function m/(A), we have

f)E-+ 0 for yk -> +oo, feE,
f)£-»0 forĵ —>+oo, feE.

From the last two relations it can be deduced that for the matrix elements mjS(iy)
(j, s = I, ... , n) of the operator M~l(iy) we have mjS(iyk) —> 0 as yk —• +oo.
Then for the characteristic function Sna{iyk) of the operator L̂ o as yk—*+oo we
have

det(M(iyk) + Bo)\detSKo{iyk)\ = det(M(iyk) + B*0)(3.3)

l + o(l)
Relation (3.3) implies that det5/s:0(A) is a Blaschke product. Suppose this is not

the case. Then there is the decomposition det5jfo(A) = eikb38{X), b > 0, where
is a Blaschke product. Now from (3.3) we have

e-t ^ 0 as yk -+ +oo.

This contradiction shows that b = 0, i.e., deiS^A) is a Blaschke product. Hence,

SKOW is a Blaschke-Potapov product, and we have proved

Theorem 3.2. For all strictly contractive Ko e [E] (for all Bo with lmB0 > 0) the
characteristic function SKO(A) (5JO(A)) of the dissipative operator LKo (LBQ) is a
Blaschke-Potapov product, the spectrum of the operator LKo {LBo) is purely discrete,
and the system of its eigenvectors and associated vectors is complete in L2HO, 00); E).
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