

Общероссийский математический портал

Б. П. Аллахвердиев, О самосопряженных и несамосопряженных расширениях симметрического оператора порожденного бесконечной матрицей Якоби, *Матем. заметки*, 1991, том 50, выпуск 5, 3–8

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 185.233.181.130

2 ноября 2023 г., 09:50:37

Математические заметки

том 50 выпуск 5 нояорь 1991

О САМОСОПРЯЖЕННЫХ И НЕСАМОСОПРЯЖЕННЫХ РАСШИРЕНИЯХ СИММЕТРИЧЕСКОГО ОПЕРАТОРА, ПОРОЖДЕННОГО БЕСКОНЕЧНОЙ МАТРИЦЕЙ ЯКОБИ

Б. П. Аллахвердиев

Рассматривается минимальный симметрический оператор L_0 , порожденный бесконечной матрицей Якоби с матричными элементами, действующий в гильбертовом пространстве l^2 ($[0, \infty)$; E) (dim $E=n<\infty$) с индексами дефекта (n,n). В терминах граничных условий на бесконечности дается описание всех самосопряженных, максимально диссипативных, аккумулятивных и других расширений симметрического оператора L_0 . Подобная задача в скалярном случае (dim E=1) решена в работе [1].

1. В этом пункте, следуя монографиям [2, 3], приведем необходимые нам в дальнейшем сведения о бесконечной матрице Якоби с матричными элементами.

Бесконечной матрицей Якоби с матричными элементами называется матрица вида

где A_k , B_k — самосопряженные операторы, действующие в n-мерном ($n < \infty$) евклидовом пространстве E, причем $\det A_k \neq 0$ ($k=0,\ 1,\ 2,\ \ldots$). Для всякой вектор-последовательности $y=\{y_k\}_0^\infty$, ($y_k \in E,\ k=0,\ 1,\ 2,\ \ldots$) через Λy обозначим вектор-последовательность, компоненты (Λy) $_k$ ($k=0,\ 1,\ 2,\ \ldots$) которой определяются по формуле (Λy) $_0=B_0y_0+A_0y_1$, (Λy) $_k=A_{k-1}y_{k-1}+B_ky_k+A_ky_{k+1},\ k=1,\ 2,\ \ldots$ Далее, для произвольных двух вектор-последовательностей $y=\{y_k\}_0^\infty$ и $z=\{z_k\}_0^\infty$ через $[y,\ z]$ обозначим последовательность чисел с компонентами

 $[y, z]_k \equiv (A_k y_k, z_{k+1})_E - (A_k y_{k+1}, z_k)_E \quad (k = 0, 1, 2, \ldots).$ (1) Легко проверяется следующая формула Грина:

$$\sum_{k=0}^{N} \{ ((\Lambda y)_k, \ z_k)_E - (y_k, \ (\Lambda z)_k)_E \} = -[y, \ z]_N, \tag{2}$$

где N — произвольное натуральное число.

3

Введем гильбертово пространство l^2 ($[0, \infty)$; E), состоящее из всех вектор-последовательностей $y=\{y_k\}_0^\infty$ таких, что $\sum_{k=0}^\infty \|y_k\|_E^2 < \infty$ со скалярным произведением $(y, z)=\sum_{k=0}^\infty (y_k, z_k)_E$. Далее, обозначим через D линейное множество всех элементов $y \in l^2$ ($[0, \infty)$; E) таких, что $\Lambda y \in l^2$ ($[0, \infty)$; E). На D определим оператор L равенством $Ly = \Lambda y$.

Из формулы (2) следует, что для всех $y, z \in D$ существует и конечен предел $\lim_{N\to\infty} [y, z]_N = [y, z]_\infty$. Поэтому, переходя в (2) к пределу при $N\to\infty$, получаем, что для произвольных двух элементов y и z из D справедлива формула

$$(Ly, z) - (y, Lz) = -[y, z]_{\infty}.$$
 (2')

В l^2 ([0, ∞); E) рассмотрим линейное всюду плотное множество D_0' , состоящее из финитных векторов (т. е. из векторов, имеющих лишь конечное число отличных от нуля компонент). Обозначим через L_0' сужение оператора L на D_0' . Из формулы (2') следует, что оператор L_0' является симметрическим. Следовательно, он допускает замыкание. Замыкание оператора L_0' обозначим через L_0 . Область определения D_0 оператора L_0 состоит из тех и только тех векторов $y \in D$, которые удовлетворяют условию

$$[y, z]_{\infty} = 0, \quad \forall z \in D. \tag{3}$$

 L_0 является замкнутым симметрическим оператором с индексами дефекта (m, m), где $0 \leqslant m \leqslant n$. Оператор L является сопряженным к оператору L_0 : $L = L_0^*$. Операторы L_0 и L называются соответственно минимальным и максимальным операторами.

Обозначим через $P(\lambda) = \{P_k(\lambda)\}_0^\infty$ и $Q(\lambda) = \{Q_k(\lambda)\}_0^\infty$ операторные решения уравнения (разностного уравнения второго порядка на полуоси)

$$(ly)_k \equiv A_{k-1}y_{k-1} + B_ky_k + A_ky_{k+1} = \lambda y_k \quad (k = 1, 2, \ldots), (4)$$

удовлетворяющие начальным условиям

 $P_{_0}(\lambda)=I,\ P_{_1}(\lambda)=A_{_0}^{-1}(\lambda I-B_{_0}),\ Q_{_0}(\lambda)=0,\ Q_{_1}(\lambda)=A_{_0}^{-1}.$ (4') $P_{_k}(\lambda)$ является многочленом от λ степени k и называется многочленом первого рода, а $Q_{_k}(\lambda)$ является многочленом от λ степени k-1 и носит название многочлена второго рода.

2. В этом пункте будем предполагать, что оператор L_0 имеет индекс дефекта (n, n), так что для матрицы Λ имеет место «абсолютно неопределенный случай» (см. [2]).

Положим u=P (0), v=Q (0), так что $u=\{u_k\}_0^\infty$ и $v=\{v_k\}_0^\infty$ являются решениями уравнения (4) при $\lambda=0$, удовлетворяющими начальным условиям

$$u_0 = I, \ u_1 = -A_0^{-1}B_0, \ v_0 = 0, \ v_1 = A_0^{-1}.$$
 (5)

Положим

$$y_k\equiv {\widetilde V}_k c\equiv (u_k,\,v_k){c_1\choose c_2}=u_k c_1+v_k c_2,\quad k=0,1,2,\ldots,$$
где $c_1,\,\,c_2 \in E.$ Пусть

$$U_k = \begin{pmatrix} u_k & v_k \\ u_{k+1} & v_{k+1} \end{pmatrix} \quad (k = 0, 1, 2, \ldots).$$

Тогда можно показать, что

$$U_{\mathbf{k}}^{-1} = \begin{pmatrix} v_{\mathbf{k}+1}^* A_{\mathbf{k}} & - v_{\mathbf{k}}^* A_{\mathbf{k}} \\ - u_{\mathbf{k}+1}^* A_{\mathbf{k}} & u_{\mathbf{k}}^* A_{\mathbf{k}} \end{pmatrix}$$

И

$$U_k^{-1} = J U_k^* J \begin{pmatrix} A_k & 0 \\ 0 & A_k \end{pmatrix} \quad (k = 0, 1, 2, \ldots),$$
 (6)

где $J=i\begin{pmatrix} 0 & I\\ -I & 0 \end{pmatrix},\ J=J^*,\ J^2=I_{E\oplus E},\ I_{E\oplus E}$ — единичный оператор в $E\oplus E$. Примем следующее обозначение:

$$(Wy)_{k} = {(W_{1}y)_{k} \choose (W_{2}y)_{k}} = U_{k}^{-1} {y_{k} \choose y_{k+1}} =$$

$$= {\begin{pmatrix} v_{k+1}^{*} A_{k} y_{k} - v_{k}^{*} A_{k} y_{k+1} \\ -u_{k+1}^{*} A_{k} y_{k} + u_{n}^{*} A_{k} y_{k+1} \end{pmatrix}} (k = 0, 1, 2, \ldots).$$

Покажем, что при всех $y \in D$ существует предел

$$\lim_{k\to\infty} (Wy)_k = (Wy) (\infty).$$

Пусть $y, z \in D$. Тогда имеет место формула Грина (2) и (2'). Далее, для $y_k = \widetilde{V}_k c, \ y = \{y_k\}_1^\infty \in D$ и $z \in D$ имеем

$$\begin{split} [y,z]_{k} &= i \left(J \begin{pmatrix} A_{k}y_{k} \\ A_{k}y_{k+1} \end{pmatrix}, \begin{pmatrix} z_{k} \\ z_{k+1} \end{pmatrix} \right)_{E \oplus E} = \\ &= i \left(J \begin{pmatrix} A_{k}\overline{V}_{k} & c \\ A_{k}\overline{V}_{k+1}c \end{pmatrix}, \begin{pmatrix} z_{k} \\ z_{k+1} \end{pmatrix} \right)_{E \oplus E} = \\ &= i \left(J \begin{pmatrix} A_{k} & 0 \\ 0 & A_{k} \end{pmatrix} U_{k}c, \begin{pmatrix} z_{k} \\ z_{k+1} \end{pmatrix} \right)_{E \oplus E} = \\ &= i \left(c, U_{k}^{*} \begin{pmatrix} A_{k} & 0 \\ 0 & A_{k} \end{pmatrix} J \begin{pmatrix} z_{k} \\ z_{k+1} \end{pmatrix} \right)_{E \oplus E} = \\ &= i \left(c, J^{2}U_{k}^{*} \begin{pmatrix} A_{k} & 0 \\ 0 & A_{k} \end{pmatrix} J \begin{pmatrix} z_{k} \\ z_{k+1} \end{pmatrix} \right)_{E \oplus E} = \\ &= i \left(Jc, U_{k}^{-1} \begin{pmatrix} z_{k} \\ z_{k+1} \end{pmatrix} \right)_{E \oplus E} = i \left(Jc, (Wz)_{k} \right)_{E \oplus E}. \end{split}$$

Отсюда вытекает, что при всех $z \in D$ существует предел $\lim_{k \to \infty} (Wz)_k = (Wz) (\infty).$

Имеет место следующая

ЛЕММА 1. Каковы бы ни были векторы α , $\beta \in E$, существует элемент $y \in D$, удовлетворяющий условиям

$$(W_1 y)(\infty) = \alpha, \quad (W_2 y)(\infty) = \beta. \tag{7}$$

Доказательство. Пусть f — произвольный элемент из l^2 ($[0, \infty)$; E), удовлетворяющий условиям

$$(f, ve_j) = -\alpha_j, (f, ue_j) = \beta_j, j = 1, 2, \ldots, n,$$
 (8)

где $\{e_j\}_1^n$ — ортонормированный базис в E и $\alpha_j=(\alpha,\ e_j)_E$, $\beta_j=(\beta,\ e_j)_E$ $(j=1,\ 2,\ \ldots,\ n)$. Такой элемент f существует, и притом даже среди линейных комбинаций элементов ue_j и ve_k $(j,\ k=1,\ 2,\ \ldots,\ n)$ (так как оператор L_0 имеет индекс дефекта $(n,\ n)$, то будем иметь ue_j , $ve_j \in l^2$ $([0,\ \infty);\ E)$ $(j=1,\ 2,\ \ldots,\ n)$). Действительно, если положить

$$f = \sum_{j=1}^{n} c_1^{(j)} u e_j + \sum_{j=1}^{n} c_2^{(j)} v e_j,$$

то условия (8) будут системой уравнений относительно постоянных $c_1^{(j)}, c_2^{(j)}$ $(j=1, 2, \ldots, n)$, определитель которой есть определитель Грама линейно независимых векторов ue_j, ve_k $(j, k=1, 2, \ldots, n)$ и, следовательно, отличен от нуля.

Обозначим через $y=\{y_k\}_0^\infty$ решение уравнения $\Lambda y=f$, удовлетворяющее условию $y_0=0$. Это решение выражается формулой

$$y_k = \sum_{j=0}^k (v_k u_j - u_k v_j) f_j \quad (k = 0, 1, 2, ...)$$

и, следовательно, принадлежит l^2 ([0, ∞); E). Применяя формулу (2) при $N \to \infty$, получим

$$(f, ue_j) = (\Lambda y, ue_j) = -[y, ue_j]_{\infty} + (y, \Lambda ue_j), (f, ve_j) = (\Lambda y, ve_j) = -[y, ve_j]_{\infty} + (y, \Lambda ve_j).$$
 (9)

Замечая, что $\Lambda ue_j=0$, $(\Lambda ve_j)_k=0$ $(j=1,2,\ldots,n;k=1,2,\ldots)$ $y_0=0$, $(\Lambda v)_0=I$, будем иметь $(y,\ \Lambda ue_j)=0$, $(y,\ \Lambda ve_j)=0$ $(j=1,\ 2,\ \ldots,\ n)$. Тогда из соотношения (9) вытекает, что

$$\beta_{j} = -[y, ue_{j}]_{\infty} = ((W_{2}y)(\infty), e_{j})_{E},$$

$$\alpha_{j} = [y, ve_{j}]_{\infty} = ((W_{1}y)(\infty), e_{j})_{E} \quad (j = 1, 2, \ldots, n).$$

Отсюда имеем'

$$(W_1y)(\infty) = \alpha, (W_2y)(\infty) = \beta.$$

Лемма 1 доказана.

 $\Pi EMMA\ 2.\ \mathcal{J}_{\mathcal{I}\mathcal{A}}$ произвольных векторов $y,\ z \in D$ справедливо тож дество

$$[y, z]_k = ((W_1y)_k, (W_2z)_k)_E - ((W_2y)_k, (W_1z)_k)_E$$

 $(k = 1, 2, \ldots).$

В частности,

$$[y, z]_{\infty} = ((W_1 y) (\infty), (W_2 z) (\infty))_E - ((W_2 y) (\infty), (W_1 z) (\infty))_E.$$

Доказательство. Для произвольных $y,\ z \in D$ имеет место

$$\begin{split} &((W_{1}y)_{k},(W_{2}z)_{k})_{E} - ((W_{2}y)_{k},(W_{1}z)_{k})_{E} = \\ &= i \, (J \, (Wy)_{k},(Wz)_{k})_{E \oplus E} = i \, \Big(JU_{k}^{-1} {y_{k} \choose y_{k+1}},U_{k}^{-1} {z_{k} \choose z_{k+1}}\Big)_{E \oplus E} = \\ &= i \, \Big(JU_{k}^{-1} {y_{k} \choose y_{k+1}},JU_{k}^{*}J {A_{k} \quad 0 \choose 0 \quad A_{k}} {z_{k} \choose z_{k+1}}\Big)_{E \oplus E} = \\ &= i \, \Big({A_{k} \quad 0 \choose 0 \quad A_{k}} JU_{k}J^{2}U_{k}^{-1} {y_{k} \choose y_{k+1}}, {z_{k} \choose y_{k+1}}\Big)_{E \oplus E} = \\ &= i \, \Big(J {A_{k} \quad 0 \choose 0 \quad A_{k}} {y_{k} \choose y_{k+1}}, {z_{k} \choose z_{k+1}}\Big)_{E \oplus E} = [y,z]_{k} \quad (k = 1, 2, \ldots). \end{split}$$

В последнем равенстве, перейдя к пределу при $k \to \infty$, получим $((W_1y)(\infty), (W_2z)(\infty))_E - ((W_2y)(\infty), (W_1z)(\infty))_E = [y, z]_{\infty}$. Лемма доказана.

TEOPEMA 1. Область определения D_0 оператора L_0 состоит из тех и только тех элементов $y \in D$, которые удовлетворяют граничным условиям на бесконечности

$$(W_1 y) (\infty) = (W_2 y) (\infty) = 0.$$
 (10)

Доказательство. Как отмечено выше, область определения D_0 оператора L_0 совпадает с множеством всех элементов $y \in D$, удовлетворяющих условию (3). В силу леммы 2 равенство (3) эквивалентно условию

$$((W_1y)(\infty), (W_2z)(\infty))_E - ((W_2y)(\infty), (W_1z)(\infty))_E = 0.$$
 (11)

В силу леммы 1 векторы $(W_1z)(\infty)$ и $(W_2z)(\infty)$ ($z \in D$) могут быть произвольными. Поэтому равенство (11) для всех $z \in D$ возможно тогда и только тогда, когда выполняются условия (10). Теорема 1 доказана.

Напомним (см. [4]), что тройка (\mathcal{H} , Γ_1 , Γ_2), где \mathcal{H} —гильбертово пространство, Γ_1 , Γ_2 — линейные отображения D (A^*) в \mathcal{H} , называется пространством граничных значений замкнутого симметрического оператора A в гильбертовом пространстве H с равными конечными или бесконечными дефектными числами, если:

1) для любых $f, g \in D(A^*)$

$$(A*f, g)_H = (f, A*g)_H = (\Gamma_1 f, \Gamma_2 f)_{\mathcal{H}} - (\Gamma_2 f, \Gamma_1 g)_{\mathcal{H}};$$

2) для любых F_1 , $F_2 \subset \mathcal{H}$ существует такой вектор $f \subset D$ (A^*) , что $\Gamma_1 f = F_1$, $\Gamma_2 f = F_2$.

В нашем случае обозначим через Γ_1 , Γ_2 линейные отображения D в E, определяемые формулами

$$\Gamma_1 y = (W_2 y) (\infty), \quad \Gamma_2 y = (W_1 y) (\infty). \tag{12}$$

Тогда имеет место следующая

ТЕОРЕМА 2. Тройка (E, Γ_1, Γ_2) , определенная равенство м (12), является пространством граничных значений оператора L_{0} .

Доказательство. Для произвольных $y,z \in D$ согласно лемме 2 будем иметь

$$(Ly, z) - (y, Lz) = -[y, z]_{\infty} = -((W_1y)(\infty), (W_2z)(\infty))_E + + ((W_2y)(\infty), (W_1z)(\infty))_E = (\Gamma_1y, \Gamma_2z)_E - (\Gamma_2y, \Gamma_1z)_E,$$

т. е. первое требование определения пространства граничных значений выполняется. Второе его требование выполняется благодаря лемме 1. Теорема 2 доказана.

Из теоремы 2 согласно [4, с. 159, теорема 1.6] получается сле-

дующая

ТЕОРЕМА 3. Каково бы не было сжатие K в E, сужение оператора L на множестве векторов $y \in D$, удовлетворяющих граничными условиями

$$(K-I) \Gamma_1 y + i (K+I) \Gamma_2 y = 0$$
(13)

или

$$(K-I) \Gamma_1 y - i (K+I) \Gamma_2 y = 0, \tag{14}$$

представляет собой соответственно максимально диссипативное и аккумулятивное расширение оператора L_0 . Обратно, всякое максимальное диссипативное (аккумулятивное) расширение оператора L_0 является сужением оператора L на множестве векторов $y \in D$, удовлетворяющих (13), (14), причем сжатие K определяется расширением однозначно. Эти условия задают самосопряженные расширения, если K унитарен. B последнем случае (13), (14) эквивалентны условию

$$(\cos A) \Gamma_1 y - (\sin A) \Gamma_2 y = 0,$$

 $\it ede\ A\ -$ самосопряженный оператор $\it ed\ E\ .$ Общий $\it eud\ duccunamus$ ных (аккумулятивных) расширений оператора $\it ed\ adaemcs$ условиями

$$K\left(\Gamma_{1}y+i\Gamma_{2}y\right)=\Gamma_{1}y-i\Gamma_{2}y,\ \Gamma_{1}y+i\Gamma_{2}y \in D\left(K\right),\tag{15}$$

$$K(\Gamma_1 y - i\Gamma_2 y) = \Gamma_1 y + i\Gamma_2 y, \ \Gamma_1 y - i\Gamma_2 y \in D(K)$$
 (16)

соответственно, где K — линейный оператор $c \parallel Kf \parallel \leqslant \parallel f \parallel$, $f \in D(K)$, а общий вид симметрических расширений задается формулами (15) и (16), где K — изометрический оператор.

Институт математики и механики АН АзССР Поступило 14.03.91

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- [1] Аллахвердиев Б. П., Гусейнов Г. Ш. К спектральной теории диссипативных разностных операторов второго порядка // Мат. сб. 1989. Т. 180, № 1. С. 101—118.
- [2] Березанский Ю. М. Разложения по собственным функциям самосопряженных операторов. Киев: Наукова думка, 1965.
- [3] Ахиезер Н.И. Классическая проблема моментов. М.: Физматгиз, 1961.
- [4] Горбачук В. И., Горбачук М. Л. Граничные задачи для дифференциально-операторных уравнений. Киев: Наукова думка, 1984.