Selçuk J. Appl. Math.
Vol. 10. No. 2. pp. 3-13, 2009

The Eigenvalues and Eigenvectors of a Dissipative Second Order Difference Operator with a Spectral Parameter in the Boundary Conditions

Aytekin Eryılmaz ${ }^{1}$, Bilender P. Allahverdiev ${ }^{2}$
${ }^{1}$ Department of Mathematics, Nevsehir University, Nevsehir, Türkiye
e-mail: eryilmazaytekin@gmail.com
${ }^{2}$ Department of Mathematics, Süleyman Demirel University, Isparta, Türkiye
e-mail: bilender@fef.sdu.edu.tr

Received Date: April 13, 2007
Accepted Date: July 20, 2009
Abstract. This paper is devoted to study of a nonselfadjoint difference operator in the Hilbert space $l_{w}^{2}(\mathbb{N})$ generated by an infinite Jacobi matrix with a spectral parameter in the boundary condition. We determine eigenvalues and eigenvectors of operator generated by boundary value problem.

Key words: Second order difference equation, Infinite Jacobi matrix, Dissipative operator, The system of eigenvectors and associated vectors. 2000 Mathematics Subject Classification: 47B36, 47B39, 47 B44.

1.Introduction

Boundary value problems with a spectral parameter in equations and boundary conditions form an important part of spectral theory of operators. Many studies have been devoted to boundary value problems with a spectral parameter in boundary conditions (see [1-5]).

In this paper, an operator which has the same eigenvalue on the problem that is discussed in terms of boundary value problem and is introduced in the space $l_{w}^{2}(\mathbb{N})$ has been constructed. Then we obtained the eigenvalues and eigenvectors of operator generated by boundary value problem.

A matrix of the form of an infinite Jacobi matrix is defined by

$$
J=\left[\begin{array}{cccccccc}
b_{0} & a_{0} & 0 & 0 & 0 & . & . & . \\
a_{0} & b_{1} & a_{1} & 0 & 0 & . & . & . \\
0 & a_{1} & b_{2} & a_{2} & 0 & . & . & . \\
. & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . & .
\end{array}\right],
$$

where $a_{n} \neq 0$ and $\operatorname{Im} a_{n}=\operatorname{Im} b_{n}=0(n \in \mathbb{N})$. For all sequence $y=\left\{y_{n}\right\}$ $(n \in \mathbb{N})$ composed of complex numbers y_{0}, y_{1}, \ldots denote by $l y$ sequence whose components $(l y)_{n}(n \in \mathbb{N})$ is defined by

$$
\begin{aligned}
& (l y)_{0}:=\frac{1}{w_{0}}(J y)_{0}=\frac{1}{w_{0}}\left(b_{0} y_{0}+a_{0} y_{1}\right) \\
& (l y)_{n}:=\frac{1}{w_{n}}(J y)_{n}=\frac{1}{w_{n}}\left(a_{n-1} y_{n-1}+b_{n} y_{n}+a_{n} y_{n+1}\right), n \geq 1
\end{aligned}
$$

where $w_{n}>0(n \in \mathbb{N})$. For two arbitrary sequences $y=\left\{y_{n}\right\}$ and $z=\left\{z_{n}\right\}$ Wronskian of them is defined by

$$
W_{n}(y, z)=[y, \bar{z}]_{n}=a_{n}\left(y_{n} z_{n-1}-y_{n+1} z_{n}\right)(n \in \mathbb{N})
$$

Then for all $n \in \mathbb{N}$

$$
\begin{equation*}
\sum_{j=0}^{n}\left\{w_{j}(l y)_{j} \bar{z}_{j}-w_{j} y_{j}(l \bar{z})_{j}\right\}=-[y, z]_{n} \quad(n \in \mathbb{N}) \tag{1.1}
\end{equation*}
$$

equality is called Green's formula.
To pass from the matrix J to operators let's construct Hilbert space $l_{w}^{2}(\mathbb{N})$ $\left(w:=\left\{w_{n}\right\} \quad n \in \mathbb{N}\right)$ composed of all complex sequences $y=\left\{y_{n}\right\} \quad(n \in \mathbb{N})$ provided $\sum_{n=0}^{\infty} w_{n}\left|y_{n}\right|^{2}<\infty$, with the inner product $(y, z)=\sum_{n=0}^{\infty} w_{n} y_{n} \bar{z}_{n}$. Let's denote with D the set of $y=\left\{y_{n}\right\} \quad(n \in \mathbb{N})$ sequences in $l_{w}^{2}(\mathbb{N})$ providing $l y \in l_{w}^{2}(\mathbb{N})$. Define L on D being $L y=l y$. For all $y, z \in D$, we obtain existing and being finite of the limit $[y, z]_{\infty}=\lim _{n \longrightarrow \infty}[y, z]_{n}$ from (1.1). Therefore, passing to the limit as $n \longrightarrow \infty$ in (1.1) it is obtained

$$
\begin{equation*}
(L y, z)-(y, L z)=-[y, z]_{\infty} . \tag{1.2}
\end{equation*}
$$

In $l_{w}^{2}(\mathbb{N})$ we consider the linear set D_{0}^{\prime} consisting of finite vector having only finite many nonzero components. We denote the restriction of L operator in D_{0}^{\prime} by L_{0}^{\prime}. It is clear from (1.2) that L_{0}^{\prime} operator is symmetric. The clousure of L_{0}^{\prime} operator is denoted by L_{0}. The domain of L_{0} operator is D_{0} and it consists the vector of $y \in D$ satisfying the condition $[y, z]_{\infty}=0 \quad \forall z \in D$. The operator L_{0} is a closed symmetric operator with defect index $(0,0)$ and (1.1). Moreover $L=L_{0}^{*}$ (see $\left.[1]-[4],[6]-[9]\right)$. The operators L_{0}, L are called respectively the minimal and maximal operators. The operator L_{0} is a self adjoint operator for defect index $(0,0)$. That is $L_{0}^{*}=L_{0}=L$.

Let the solution of equation of

$$
\begin{equation*}
a_{n-1} y_{n-1}+b_{n} y_{n}+a_{n} y_{n+1}=\lambda w_{n} y_{n} \quad(n=1,2, \ldots) \tag{1.3}
\end{equation*}
$$

satisfying initial conditions of

$$
\begin{equation*}
P_{0}(\lambda)=1, P_{1}(\lambda)=\frac{\lambda w_{0}-b_{0}}{a_{0}}, Q_{0}(\lambda)=0, Q_{1}(\lambda)=\frac{1}{a_{0}} \tag{1.4}
\end{equation*}
$$

be $P(\lambda)=\left\{P_{n}(\lambda)\right\}$ and $Q(\lambda)=\left\{Q_{n}(\lambda)\right\}$ where the function $P_{n}(\lambda)$ is called the first kind polynomial of degree n in λ and the function $Q_{n}(\lambda)$ is called the second kind polynomial of degree $n-1$ in λ. For $n \geq 1 P(\lambda)$ is a solution of $(J y)_{n}=\lambda w_{n} y_{n}$ is $P_{n}(\lambda)$. However because of $(J Q)_{0}=b_{0} Q_{0}+a_{0} Q_{1}=$ $b_{0} 0+a_{0} \frac{1}{a_{0}}=1 \neq 0=\lambda Q_{0}, Q(\lambda)$ is not a solution of $(J Q)_{n}=\lambda w_{n} Q_{n}$. For $n \in \mathbb{N}$ and under boundary condition $y_{-1}=0$, the equation $(J y)_{n}=\lambda w_{n} y_{n}$ is equivalent to (1.3). The Wronskian of the solutions $y=\left\{y_{n}\right\}$ and $z=\left\{z_{n}\right\}$ of the equation (1.3) is as follows

$$
W_{n}(y, z):=a_{n}\left(y_{n} z_{n+1}-y_{n+1} z_{n}\right)=[y, \bar{z}]_{n},(n \in I N)
$$

The Wronskian of the two solutions of (1.3) does not depend on n, and two solutions of this equations is linearly indepent if only if their Wronskian is nonzero. From Wronskian constacy, $W_{0}(P, Q)=1$ is obtained from the condition (1.4). Consquently, $P(\lambda)$ and $Q(\lambda)$ form a fundamental system of solutions (1.3).

Suppose that the minimal symmetric operator L_{0} has defect index $(1,1)$ so that the Weyl limit circle case holds for the expression ly (see[1] - [4], [7] - [9]). As the defect index of L_{0} is $(1,1)$ for all $\lambda \in \mathbb{C}$ the solutions of $P(\lambda)$ and $Q(\lambda)$ belong to $l_{w}^{2}(\mathbb{N})$. The solutions of $u=\left\{u_{n}\right\}$ and $v=\left\{v_{n}\right\}$ of the equality (1.3) be $u=P(0)$ and $v=Q(0)$ satisfying the initial condition of

$$
u_{0}=1, u_{1}=-\frac{b_{0}}{a_{0}}, v_{0}=0, v_{1}=\frac{1}{a_{0}}
$$

while $\lambda=0$. In addition it is $u, v \in D$ and

$$
(J u)_{n}=0, \quad(n \in I N),(J v)_{n}=0, n \geq 1
$$

Lemma 1. For arbitrary vectors $y=\left\{y_{n}\right\} \in D$ and $z=\left\{z_{n}\right\} \in D$ it is

$$
[y, z]_{n}=[y, u]_{n}[\bar{z}, v]_{n}-[y, v]_{n}[\bar{z}, u]_{n}, \quad(n \in \mathbb{N} \cup\{\infty\})
$$

Theorem 2. The domain D_{0} of the operator L_{0} consists precisely of those vectors $y \in D$ satisfying the following boundary conditions

$$
[y, u]_{\infty}=[y, v]_{\infty}=0
$$

Consider boundary value problem

$$
\begin{align*}
& (l y)_{n}=\lambda y_{n} \quad y \in D, \quad n \geq 1, \tag{1.5}\\
& y_{0}+h y_{-1}=0, \quad \operatorname{Im} h>0 \tag{1.6}
\end{align*}
$$

for the following difference expression

$$
\begin{aligned}
& (l y)_{0}:=\frac{1}{w_{0}}(J y)_{0}=\frac{1}{w_{0}}\left(b_{0} y_{0}+a_{0} y_{1}\right) \\
& (l y)_{n}:=\frac{1}{w_{n}}(J y)_{n}=\frac{1}{w_{n}}\left(a_{n-1} y_{n-1}+b_{n} y_{n}+a_{n} y_{n+1}\right), n \geq 1
\end{aligned}
$$

where λ is spectral parameter and $\alpha_{1}, \alpha_{2}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime} \in \mathbb{R}$ and α is defined by

$$
\alpha:=\left|\begin{array}{ll}
\alpha_{1}^{\prime} & \alpha_{1} \\
\alpha_{2}^{\prime} & \alpha_{2}
\end{array}\right|=\alpha_{1}^{\prime} \alpha_{2}-\alpha_{1} \alpha_{2}^{\prime}>0 .
$$

Let's suppose that the followings

$$
\begin{aligned}
M_{\infty}(y) & :=\alpha_{1}[y, v]_{\infty}-\alpha_{2}[y, u]_{\infty} \\
M_{\infty}^{\prime}(y) & :=\alpha_{1}^{\prime}[y, v]_{\infty}-\alpha_{2}^{\prime}[y, u]_{\infty} \\
N_{1}^{0}(y) & :=y_{-1} \\
N_{2}^{0}(y) & :=y_{0} \\
N_{1}^{\infty}(y) & :=[y, v]_{\infty} \\
N_{2}^{\infty}(y) & :=[y, u]_{\infty} \\
M_{0}(y) & :=N_{2}^{0}(y)+h N_{1}^{0}(y)
\end{aligned}
$$

Lemma 3. For arbitrary $y, z, \in D$ suppose that $M_{\infty} \overline{(z)}=M_{\infty}(z), M_{\infty}^{\prime} \overline{(z)}=$ $\overline{M_{\infty}^{\prime}(z)}$ and $N_{1}^{0} \overline{(z)}=\overline{N_{1}^{0}(z)}, \quad N_{2}^{0} \overline{(z)}=\overline{N_{2}^{0}(z)}$ then it is i)

$$
\begin{equation*}
\left[y, z_{\infty}\right]=\frac{1}{\alpha}\left[M_{\infty}(y) \overline{M_{\infty}^{\prime}(z)}-M_{\infty}^{\prime}(y) \overline{M_{\infty}(z)}\right] \tag{1.9}
\end{equation*}
$$

ii)

$$
\begin{equation*}
[y, z]_{-1}=N_{1}^{0}(y) \cdot N_{2}^{0}(\bar{z})-N_{1}^{0}(\bar{z}) \cdot N_{2}^{0}(y) \tag{1.10}
\end{equation*}
$$

Proof. i)

$$
\begin{aligned}
& \frac{1}{\alpha}\left[M_{\infty}(y) \overline{M_{\infty}^{\prime}(z)}-M_{\infty}^{\prime}(y) \overline{M_{\infty}(z)}\right] \\
= & \frac{1}{\alpha}\left(\alpha_{1}[y, v]_{\infty}-\alpha_{2}[y, u]_{\infty}\right)\left(\alpha_{1}^{\prime}[\bar{z}, v]_{\infty}-\alpha_{2}^{\prime}[\bar{z}, u]_{\infty}\right) \\
& -\left(\alpha_{1}^{\prime}[y, v]_{\infty}-\alpha_{2}^{\prime}[y, u]_{\infty}\left(\alpha_{1}[\bar{z}, v]_{\infty}-\alpha_{2}[\bar{z}, u]_{\infty}\right)\right) \\
= & \frac{1}{\alpha}\left[\alpha_{1}^{\prime} \alpha_{2}\left([y, v]_{\infty}[\bar{z}, u]_{\infty}-[y, u]_{\infty}[\bar{z}, v]_{\infty}\right)\right. \\
& \left.-\alpha_{1} \alpha_{2}^{\prime}\left([y, v]_{\infty}[\bar{z}, u]_{\infty}-[y, u]_{\infty}[\bar{z}, v]_{\infty}\right)\right] \\
= & \frac{1}{\alpha}\left[\left(\alpha_{1}^{\prime} \alpha_{2}-\alpha_{1} \alpha_{2}^{\prime}\right)\left([y, v]_{\infty}[\bar{z}, u]_{\infty}-[y, u]_{\infty}[\bar{z}, v]_{\infty}\right)\right] .
\end{aligned}
$$

From Lemma 1 it is obtained

$$
\frac{1}{\alpha}\left[M_{\infty}(y) \overline{M_{\infty}^{\prime}(z)}-M_{\infty}^{\prime}(y) \overline{M_{\infty}(z)}\right]=[y, z]_{\infty}
$$

$i i)$ is similar to i).

2. Linear Operator Generated by Given Boundary Value Problem in Hilbert Space

Supposing $f^{(1)} \in l_{w}^{2}(\mathbb{N}), f^{(2)} \in \mathbb{C}$ we denote linear space $H=l_{w}^{2}(\mathbb{N}) \oplus \mathbb{C}$ with two component of elements of $\widehat{f}=\binom{f^{(1)}}{f^{(2)}}$. Supposing $\alpha:=\left|\begin{array}{ll}\alpha_{1}^{\prime} & \alpha_{1} \\ \alpha_{2}^{\prime} & \alpha_{2}\end{array}\right|$, if $\alpha>0$ and

$$
\widehat{f}=\binom{f^{(1)}}{f^{(2)}}, \widehat{g}=\binom{g^{(1)}}{g^{(2)}} \in H, f^{(1)}=\left(f_{n}^{(1)}\right), g^{(1)}=\left(g_{n}^{(1)}\right)(n \in \mathbb{N})
$$

then the formula

$$
\begin{equation*}
(\widehat{f}, \widehat{g})=\sum_{n=0}^{\infty} f_{n}^{(1)} \bar{g}_{n}^{(1)} w_{n}+\frac{1}{\alpha} f^{(2)} \bar{g}^{(2)} \tag{2.1}
\end{equation*}
$$

defines an inner product in H Hilbert space. In terms of this inner product, H linear space is a Hilbert space. Thus it is Hilbert space which is suitable for boundary value problem has been defined. Suitable for boundary value problem let's define operator of $A_{h}: H \longrightarrow H$ with equalities

$$
\begin{equation*}
D\left(A_{h}\right)=\left\{\widehat{f}=\binom{f^{(1)}}{f^{(2)}} \in H: f^{(1)} \in D, M_{0}\left(f^{(2)}=M_{\infty}^{\prime}\left(f^{(1)}\right)\right\}\right. \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{h} \widehat{f}=\tilde{l}(\widehat{f}):=\binom{l\left(f^{(1)}\right)}{M_{\infty}\left(f^{(1)}\right)} \tag{2.3}
\end{equation*}
$$

Lemma 4. In Hilbert space $H=l_{w}^{2}(\mathbb{N}) \oplus \mathbb{C}$ for A_{h} operator defined with equalities (2.2) and (2.3) the equality

$$
\begin{align*}
& \left(A_{h} \widehat{f}, \widehat{g}\right)-\left(\widehat{f}, A_{h} \widehat{g}\right)=\left[f^{(1)}, g^{(1)}\right]_{-1}-\left[f^{(1)}, g^{(1)}\right]_{\infty} \\
& \quad+\frac{1}{\alpha}\left[M_{\infty}\left(f^{(1)}\right) \overline{M_{\infty}\left(g^{(1)}\right)}-M_{\infty}^{\prime}\left(f^{(1)}\right) \overline{M_{\infty}\left(g^{(1)}\right)}\right] \tag{2.4}
\end{align*}
$$

is provided.
Proof. From (1.8) and (2.1) it is

$$
\begin{aligned}
&\left(A_{h} \widehat{f}, \widehat{g}\right)_{N}: \quad=\sum_{n=0}^{N} \frac{1}{w_{n}}\left(a_{n-1} f_{n-1}^{(1)}+b_{n} f_{n}^{(1)}+a_{n} f_{n+1}^{(1)}\right) \overline{g_{n}^{(1)}} w_{n} \\
&+\frac{1}{\alpha} M_{\infty} f^{(1)} \overline{M_{\infty}^{2}}\left(g^{(1)}\right)+\frac{1}{\alpha} M_{\infty} f^{(1)} \overline{M_{\infty}^{\prime}}\left(g^{(1)}\right) \\
&= \sum_{n=0}^{N}\left(a_{n-1} f_{n-1}^{(1)}+b_{n} f_{n}^{(1)}+a_{n} f_{n+1}^{(1)}\right) \overline{g_{n}^{(1)}} \\
&+\frac{1}{\alpha} M_{\infty} f^{(1)} \overline{M_{\infty}^{\prime}}\left(g^{(1)}\right) \\
&= \sum_{n=0}^{N}\left(a_{n-1} f_{n-1}^{(1)} \overline{g_{n}^{(1)}}+b_{n} f_{n}^{(1)} \overline{g_{n}^{(1)}}+a_{n} f_{n+1}^{(1)} \overline{g_{n}^{(1)}}\right) \\
&+\frac{1}{\alpha} M_{\infty} f^{(1)} \overline{M_{\infty}^{\prime}}\left(g^{(1)}\right) \\
&=\left(a_{-1} f_{-1}^{(1)} \bar{g}_{0}^{(1)}+b_{0} f_{0}^{(1)} \bar{g}_{0}^{(1)}+a_{0} f_{1}^{(1)} \bar{g}_{0}^{(1)}+a_{0} f_{0}^{(1)} \bar{g}_{1}^{(1)}\right. \\
&+b_{1} f_{1}^{(1)} \bar{g}_{1}^{(1)}+a_{1} f_{2}^{(1)} \bar{g}_{1}^{(1)}+\ldots+a_{N-1} f_{N-1}^{(1)} \bar{g}_{1}^{(1)} \\
&\left.+b_{N} f_{N}^{(1)} \bar{g}_{N}^{(1)}+a_{N} f_{N+1}^{(1)}\right) \bar{g}_{N}^{(1)}+\frac{1}{\alpha} M_{\infty} f^{(1)} \overline{M_{\infty}^{\prime}}\left(g^{(1)}\right)
\end{aligned}
$$

Similarly it is

$$
\begin{aligned}
\left(\widehat{f}, A_{h} \widehat{g}\right)_{N}: & =\sum_{n=0}^{N} \frac{1}{w_{n}}\left(a_{n-1} \bar{g}_{n-1}^{(1)}+b_{n} \bar{g}_{n}^{(1)}+a_{n} g_{n+1}^{(1)}\right) f_{n}^{(1)} w_{n} \\
& +\frac{1}{\alpha} M_{\infty}^{\prime}\left(f^{(1)}\right) \overline{M_{\infty}}\left(g^{(1)}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{n=0}^{N}\left(a_{n-1} \bar{g}_{n-1}^{(1)}+b_{n} \bar{g}_{n}^{(1)}+a_{n} g_{n+1}^{(1)}\right) f_{n}^{(1)}+\frac{1}{\alpha} M_{\infty}^{\prime}\left(f^{(1)}\right) \overline{M_{\infty}}\left(g^{(1)}\right) \\
= & \sum_{n=0}^{N}\left(a_{n-1} f_{n}^{(1)} \bar{g}_{n-1}^{(1)}+b_{n} f_{n}^{(1)} \bar{g}_{n}^{(1)}+a_{n} f_{n}^{(1)} g_{n+1}^{(1)}\right) \\
& +\frac{1}{\alpha} M_{\infty}^{\prime} f^{(1)} \overline{M_{\infty}}\left(g^{(1)}\right) \\
= & \left.\left.\left.a_{-1} f_{0}^{(1)} \bar{g}_{-1}^{(1)}+b_{0} f_{0}^{(1)} \bar{g}_{0}^{(1)}+a_{0} f_{0}^{(1)}\right) \bar{g}_{1}^{(1)}\right)+a_{0} f_{1}^{(1)}\right) \bar{g}_{0}^{(1)} \\
& +b_{1} f_{1}^{(1)} \bar{g}_{1}^{(1)}+a_{1} f_{1}^{(1)} \bar{g}_{2}^{(1)}+\ldots+a_{N-1} f_{N}^{(1)} \bar{g}_{N-1}^{(1)}+b_{N} f_{N}^{(1)} \bar{g}_{N}^{(1)} \\
& \left.+a_{N} f_{N}^{(1)}\right) \bar{g}_{N+1}^{(1)}+\frac{1}{\alpha} M_{\infty} f^{(1)} \overline{M_{\infty}^{\prime}}\left(g^{(1)}\right)
\end{aligned}
$$

Thus it is obtained:

$$
\begin{aligned}
\left(A_{h} \widehat{f}, \widehat{g}\right)_{N}-\left(\widehat{f}, A_{h} \widehat{g}\right)_{N}= & a_{-1} f_{-1}^{(1)} \bar{g}_{0}^{(1)}-a_{-1} f_{0}^{(1)} \bar{g}_{-1}^{(1)}+a_{N} f_{N+1}^{(1)} \bar{g}_{N}^{(1)} \\
& \left.-a_{N} f_{N}^{(1)}\right) \bar{g}_{N+1}^{(1)}+\frac{1}{\alpha} M_{\infty} f^{(1)} \overline{M_{\infty}^{\prime}}\left(g^{(1)}\right) \\
& -\frac{1}{\alpha} M_{\infty}^{\prime}\left(f^{(1)}\right) \overline{M_{\infty}}\left(g^{(1)}\right) \\
= & a_{-1}\left(f_{-1}^{(1)} \bar{g}_{0}^{(1)}-f_{0} \bar{g}_{-1}^{(1)}\right)-a_{N}\left(f_{N}^{(1)} \bar{g}_{N+1}^{(1)}\right. \\
& \left.-f_{N+1} \bar{g}_{N}^{(1)}\right)+\frac{1}{\alpha} M_{\infty}\left(f^{(1)}\right) \overline{M_{\infty}^{\prime}}\left(g^{(1)}\right) \\
& -\frac{1}{\alpha} M_{\infty}^{\prime}\left(f^{(1)}\right) \overline{M_{\infty}}\left(g^{(1)}\right. \\
= & {\left[f^{(1)}, g^{(1)}\right]_{-1}-\left[f^{1}, g^{(1)}\right]_{N}+\frac{1}{\alpha} M_{\infty}\left(f^{(1)}\right) \overline{M_{\infty}^{\prime}}\left(g^{(1)}\right) } \\
& -\frac{1}{\alpha} M_{\infty}^{\prime}\left(f^{(1)}\right) \overline{M_{\infty}}\left(g^{(1)}\right)
\end{aligned}
$$

As $N \longrightarrow \infty$, passing to limit, it is obtained

$$
\begin{aligned}
\left(A_{h} \widehat{f}, \widehat{g}\right)-\left(\widehat{f}, A_{h} \widehat{g}\right)= & {\left[f^{(1)}, g^{(1)}\right]_{-1}-\left[f^{(1)}, g^{(1)}\right]_{\infty} } \\
& +\frac{1}{\alpha}\left[M_{\infty}\left(f^{(1)}\right) \overline{M_{\infty}^{\prime}\left(g^{(1)}\right)}-M_{\infty}^{\prime}\left(f^{(1)}\right) \overline{M_{\infty}\left(g^{(1)}\right)}\right]
\end{aligned}
$$

Theorem 5. A_{h} operator is dissipative in H space.
Proof. For $\widehat{y}=\left\{\widehat{y}_{n}\right\} \in D\left(A_{h}\right)$ and $\overline{D\left(A_{h}\right)}=H$, from equality (2.4), it is
obtained

$$
\begin{aligned}
\left(A_{h} \widehat{y}, \widehat{y}\right)-\left(\widehat{y}, A_{h} \widehat{y}\right)= & {\left[y^{(1)}, y^{(1)}\right]_{-1}-\left[y^{(1)}, y^{(1)}\right]_{\infty} } \\
& +\frac{1}{\alpha}\left[M_{\infty}\left(y^{(1)}\right) \overline{M_{\infty}^{\prime}\left(y^{(1)}\right)}-M_{\infty}^{\prime}\left(y^{(1)}\right) \overline{M_{\infty}\left(y^{(1)}\right)}\right]
\end{aligned}
$$

Because of (1.9), it is

$$
\left(A_{h} \widehat{y}, \widehat{y}\right)-\left(\widehat{y}, A_{h} \widehat{y}\right)=\left[y^{(1)}, y^{(1)}\right]_{-1}
$$

and from (1.10), it is obtained

$$
\left(A_{h} \widehat{y}, \widehat{y}\right)-\left(\widehat{y}, A_{h} \widehat{y}\right)=N_{1}^{0}\left(y^{(1)}\right) N_{2}^{0}\left(\bar{y}^{(1)}\right)-N_{1}^{0}\left(\bar{y}^{(1)}\right) N_{2}^{0}\left(y^{(1)}\right)
$$

because of $M_{0}(y)=0$ and $N_{2}^{0}\left(y^{(1)}\right)=-h N_{1}^{0}\left(y^{(1)}\right)$, it is obtained

$$
\begin{aligned}
\left(A_{h} \widehat{y}, \widehat{y}\right)-\left(\widehat{y}, A_{h} \widehat{y}\right) & =N_{1}^{0}\left(y^{(1)}\right)\left(-\bar{h} N_{1}^{0}\left(\bar{y}^{(1)}\right)+N_{1}^{0}\left(\bar{y}^{(1)}\right) h N_{1}^{0}\left(y^{(1)}\right)\right. \\
& =(h-\bar{h})\left(N_{1}^{0}\left(y^{(1)}\right) N_{1}^{0}\left(\bar{y}^{(1)}\right)\right. \\
& =(h-\bar{h})\left|N_{1}^{0}\left(y^{(1)}\right)\right|^{2} \\
& =2 i \operatorname{Im} h\left|N_{1}^{0}\left(y^{(1)}\right)\right|^{2}
\end{aligned}
$$

Therefore, it is

$$
\operatorname{Im}\left(A_{h} \widehat{y}, \widehat{y}\right)=\operatorname{Imh}\left|N_{1}^{0}\left(y^{(1)}\right)\right|^{2} \geq 0 \quad(\operatorname{Imh}>0)
$$

That is A_{h} operator is dissipative in H space.
3. The Eigenvalues and Eigenspaces of A_{h} Operator Generated by Boundary Value Problem in Hilbert Space

For all $\lambda \in \mathbb{C}$, the solutions of (1.5) be $\phi(\lambda)$ and $\chi(\lambda)$ for the following conditions:

$$
\begin{align*}
& N_{1}^{0}(\phi(\lambda))=\phi_{-1}(\lambda)=-1 \\
& N_{2}^{0}(\phi(\lambda))=y_{0}=h \tag{3.1}\\
& N_{1}^{\infty}(\chi(\lambda))=\alpha_{2}-\lambda \alpha_{2}^{\prime} \\
& N_{1}^{\infty}(\chi(\lambda))=\alpha_{1}-\lambda \alpha_{1}^{\prime}
\end{align*}
$$

From (1.10) for $\Delta_{-1}(\lambda)$ having Wronskian is

$$
\begin{aligned}
\Delta_{-1}(\lambda) & :=[\chi(\lambda), \phi(\lambda)]_{-1}=-[\phi(\lambda), \chi(\lambda)]_{-1} \\
& =-N_{1}^{0}(\phi(\lambda)) N_{2}^{0}(\chi(\lambda))+N_{1}^{0}(\chi(\lambda)) N_{2}^{0}(\phi(\lambda)) \\
& =N_{2}^{0}(\chi(\lambda))+h N_{1}^{0}(\chi(\lambda)) \\
& =M_{0}(\chi(\lambda))
\end{aligned}
$$

From (1.9) for $\Delta_{\infty}(\lambda)$ having Wronskian is

$$
\begin{aligned}
\Delta_{\infty}(\lambda) & : \quad=[\chi(\lambda), \phi(\lambda)]_{\infty}=-[\phi(\lambda), \chi(\lambda)]_{\infty} \\
& =-\frac{1}{\alpha}\left[M_{\infty}\left(\phi(\lambda) M_{\infty}^{\prime}(\chi(\lambda))-M_{\infty}^{\prime}(\phi(\lambda)) M_{\infty}(\chi(\lambda))\right]\right.
\end{aligned}
$$

Therefore, in terms of the definition of α, it is

$$
\begin{aligned}
\Delta_{\infty}(\lambda)= & -\frac{1}{\alpha}\left[\left(\alpha_{1} N_{1}^{\infty}(\phi(\lambda))\right)-\alpha_{2} N_{2}^{\infty}(\phi(\lambda))\left(\alpha_{1}^{\prime} N_{1}^{\infty}(\chi(\lambda))\right)-\alpha_{2}^{\prime} N_{2}^{\infty}(\chi(\lambda))\right. \\
& -\alpha_{1}^{\prime} N_{1}^{\infty}(\phi(\lambda))-\alpha_{2}^{\prime} N_{2}^{\infty}(\phi(\lambda))\left(\alpha_{1} N_{1}^{\infty}(\chi(\lambda))-\alpha_{2} N_{2}^{\infty}(\chi(\lambda))\right] \\
= & -\frac{1}{\alpha}\left[\left(\alpha_{1}^{\prime} \alpha_{2}-\alpha_{2}^{\prime} \alpha_{1}\right)\left(N_{1}^{\infty}(\phi(\lambda)) N_{2}^{\infty}(\chi(\lambda))\right)-N_{2}^{\infty}(\phi(\lambda)) N_{1}^{\infty}(\chi(\lambda))\right] \\
= & -\frac{1}{\alpha}\left[(-\alpha) N_{1}^{\infty}(\phi(\lambda))\left(\alpha_{1}+\lambda \alpha_{1}^{\prime}\right)-N_{2}^{\infty}(\phi(\lambda))\left(\alpha_{2}+\lambda \alpha_{2}^{\prime}\right)\right] \\
= & \alpha_{1} N_{1}^{\infty}(\phi(\lambda))-\alpha_{2} N_{2}^{\infty}(\phi(\lambda))+\lambda\left(\alpha_{1}^{\prime} N_{1}^{\infty}(\phi(\lambda))-\alpha_{2}^{\prime} N_{2}^{\infty}(\phi(\lambda))\right) \\
= & M_{\infty}\left(\phi(\lambda)+\lambda M_{\infty}^{\prime}(\phi(\lambda))\right.
\end{aligned}
$$

Lemma.6. Boundary values problem (1.5) - (1.7) has eigenvalues iff it consists of zeroes of $\Delta(\lambda)$.

$$
\left(\Delta(\lambda)=\Delta_{-1}(\lambda)=\Delta_{\infty}(\lambda)\right)
$$

Proof. (\Rightarrow) Let λ_{0} be zeroes of $\Delta_{-1}(\lambda)$. Then it is

$$
\Delta_{-1}\left(\lambda_{0}\right)=\phi_{-1}\left(\lambda_{0}\right) \chi_{0}\left(\lambda_{0}\right)-\phi_{0}\left(\lambda_{0}\right) \chi_{-1}\left(\lambda_{0}\right)=0
$$

For $n=-1$, because $\Delta(\lambda)$ is the Wronskian of $\phi\left(\lambda_{0}\right)$ and $\chi\left(\lambda_{0}\right)$ vectors according to (3.1) the solution of ϕ and χ are linearly dependent. That is, a fix number $k \neq 0$ will be found to be $\phi\left(\lambda_{0}\right)=k \chi\left(\lambda_{0}\right)$. Because of $(3.1), \phi\left(\lambda_{0}\right)$ is a solution of $(1.5)-(1.7)$. That is $\lambda=\lambda_{0}$ is an eigenvalue.
(\Leftarrow) Let us assume that $\lambda=\lambda_{0}$ is an eigenvalue. Then we show $\Delta_{-1}\left(\lambda_{0}\right)=0$ and $\Delta_{\infty}(\lambda)=0$ are true. For $\lambda=\lambda_{0}$ let us assume $\Delta_{-1}\left(\lambda_{0}\right) \neq 0$ and $\Delta_{\infty}(\lambda) \neq$ 0 .If $\Delta_{-1}\left(\lambda_{0}\right) \neq 0$ and $\Delta_{\infty}(\lambda) \neq 0$, then $\phi\left(\lambda_{0}\right)$ and $\chi\left(\lambda_{0}\right)$ vectors will be linearly independent. Thus the general solution of (1.5) equation can be written as

$$
y\left(\lambda_{0}\right)=c_{1}\left(\lambda_{0}\right) \phi\left(\lambda_{0}\right)+c_{2} \chi\left(\lambda_{0}\right)
$$

Because of boundary condition (1.6), $y_{0}+h y_{-1}=0$ equality is provided. If condition (1.6) is considered the equality

$$
c_{1}\left(\phi_{0}\left(\lambda_{0}\right)+h \phi_{-1}\left(\lambda_{0}\right)\right)+c_{2}\left(\chi_{0}\left(\lambda_{0}\right)+h \chi_{-1}\left(\lambda_{0}\right)\right)=0
$$

will be obtained. In this equality $\phi\left(\lambda_{0}\right)$ is a solution providing boundary condition (1.6). Then we have

$$
c_{2}\left(\chi_{0}\left(\lambda_{0}\right)+h \chi_{-1}\left(\lambda_{0}\right)\right)=c_{2} \Delta_{-1}\left(\lambda_{0}\right)=0
$$

As we accepted $\Delta_{-1}\left(\lambda_{0}\right) \neq 0$ it is $c_{2}=0$. Because of (1.6) and $c_{2}=0$ it is

$$
c_{1}\left\{\left[\phi\left(\lambda_{0}\right), v\right]_{\infty}\left(\alpha_{1}-\lambda \alpha_{1}^{\prime}\right)-\left[\phi\left(\lambda_{0}\right), u\right]_{\infty}\left(\alpha_{2}-\lambda \alpha_{2}^{\prime}\right)\right\}=c_{1} \Delta_{\infty}\left(\lambda_{0}\right)=0
$$

As it is accepted $\Delta_{-1}\left(\lambda_{0}\right) \neq 0$ then it is $c_{1}=0$. As $c_{1}=0$ and $c_{2}=0$. Then $y\left(\lambda_{0}\right)=0$. This conradicts λ_{o} being eigenvalue. Thus the proof is completed. If should we show the zeroes of $\Delta_{-1}(\lambda)$ and $\Delta_{\infty}(\lambda)$ as $\lambda_{n} \quad(n=0,1,2, \ldots)$, the vectors of

$$
\widehat{\chi}_{n}=\binom{\chi\left(\lambda_{n}\right)}{M_{\infty}\left(\chi\left(\lambda_{n}\right)\right)} \in D\left(A_{h}\right)
$$

provides equality of $A_{h} \widehat{\chi}_{n}=\lambda_{h} \widehat{\chi}_{n}$. That is, the vectors of $\widehat{\chi}_{n}$'s are eigenvectors of the operator A_{h}.

Definition 7. If the system of vectors of $y_{0}, y_{1}, y_{2}, \ldots, y_{n}$ corresponding to the eigenvalue λ_{0} are

$$
\begin{align*}
& l\left(y_{0}\right)=\lambda_{0} y_{0} \\
& M_{\infty}\left(y_{0}\right)-\lambda_{0} M_{\infty}^{\prime}\left(y_{0}\right)=0 \\
& M_{0}\left(y_{0}\right)=0 \\
& l\left(y_{s}\right)-\lambda_{0} y_{s}-y_{s-1}=0 \tag{3.3}\\
& M_{\infty}\left(y_{s}\right)-\lambda_{0} M_{\infty}^{\prime}\left(y_{s}\right)-M_{\infty}^{\prime}\left(y_{s-1}\right)=0, \\
& M_{0}\left(y_{s}\right)=0, s=1,2, \ldots, n
\end{align*}
$$

Then the system of vectors of $y_{0}, y_{1}, y_{2}, \ldots, y_{n}$ corresponding to the eigenvalue λ_{0} is called a chain of eigenvectors and associated vectors of boundary value problem (1.5) - (1.7).

Lemma 8. The eigenvalue of boundary value problem (1.5) - (1.7) coincides with the eigenvalue of dissipative A_{h} operator. Additionally each chain of eigenvectors and associated vectors $y_{0}, y_{1}, y_{2}, \ldots, y_{n}$ corresponding to the eigenvalue λ_{0} corresponds to the chain eigenvectors and associated vectors $\widehat{y}_{0}, \widehat{y}_{1}, \widehat{y}_{2}, \ldots, \widehat{y}_{n}$ corresponding to the same eigenvalue λ_{0} of dissipative A_{h} operator. In this case, the equality

$$
\widehat{y}_{k}=\binom{y_{k}}{M_{\infty}\left(y_{k}\right)}, k=0,1,2, \ldots, n
$$

is valid.
Proof. If $\widehat{y}_{0} \in D\left(A_{h}\right)$ and $A_{h} \widehat{y}_{0}=\lambda_{0} \widehat{y}_{0}$, then $l(y)_{0}=\lambda_{0} y_{0}, M_{\infty}\left(y_{0}\right)-$ $\lambda_{0} M_{\infty}^{\prime}\left(y_{0}\right)=0$ and $M_{0}\left(y_{0}\right)=0$ equalities are provided. That is, the eigenvector
of boundary value (1.5) - (1.7) problem is y_{0}. On the contrary, if conditions (3.3) are supplied then it is $\left({ }_{M_{\infty}\left(y_{0}\right)}^{y_{0}}\right)=\widehat{y}_{0} \in D\left(A_{h}\right)$ and $A_{h} \widehat{y}_{0}=\lambda_{0} \widehat{y}_{0}$. In other words, \widehat{y}_{0} is the eigenvector of A_{h}. Further, if $\widehat{y}_{0}, \widehat{y}_{1}, \widehat{y}_{2}, \ldots, \widehat{y}_{n}$ are a chain of eigenvectors and associated vectors corresponding to the eigenvalue λ_{0} of dissipative A_{h} operator, then it is $\widehat{y}_{k} \in D\left(A_{h}\right) \quad(k=0,1,2, \ldots, n)$ and $A_{h} \widehat{y}_{0}=$ $\lambda_{0} \widehat{y}_{0}, A_{h} \widehat{y}_{s}=\lambda_{0} \widehat{y}_{s}+\widehat{y}_{s-1}, s=1,2, \ldots, n$ with (3.3) equality, where the vectors of $y_{0}, y_{1}, y_{2}, \ldots, y_{n}$ are the first component of $\widehat{y}_{0}, \widehat{y}_{1}, \widehat{y}_{2}, \ldots, \widehat{y}_{n}$. On the contrary, we obtain $\widehat{y}_{k}=\left(\begin{array}{c}M_{\infty}\left(y_{k}\right)\end{array}\right) \in D\left(A_{h}\right), k=0,1,2, \ldots, n$ and $A_{h} \widehat{y}_{0}=\lambda_{0} \widehat{y}_{0}, A_{h} \widehat{y}_{s}=$ $\lambda_{0} \widehat{y}_{s}+\widehat{y}_{s-1}, s=1,2, \ldots, n$ corresponding to boundary value problem (1.5)-(1.7). Thus the proof is completed.

References

1. Allahverdiev, B.P. and Guseinov, G, Sh., (1990): On the Spectral Theory of Dissipative Difference Operators of Second Order, Math. USSR Sbornik, 66, no:1, , 107 -125 .
2. Allahverdiev, B.P., (2004): Dissipative Second-Order Difference Operators with General Boundary Conditions, Journal of Difference Equations and Applications, Vol. 10, No.1, 1-16.
3. Allahverdiev, B.P., (2005): A Nonselfadjoint Sturm-Liouville Problem with a Spectral Parameter in the Boundary Conditions, Math . Nach. 278, No 7-8, 743-755.
4. Allahverdiev, B.P., (2005): Extensions, Dilations and Functional Models of Infinite Jacobi Matrix, Czechoslovak Math. Journal, 55 (130), 593-609.
5. Atkinson, F.V., (1964): Discrete and Continuous Boundary Problems, Acad. Pres Inc., New York.
6. Bairamov, E., Çakar, O. and Krall A.M., (2001): Non-selfadjoint Difference Operators and Jacobi Matrices with Spectral Singularities, Mathematıche Nachrıchten 229, 5-14.
7. Clark, S.L., (1996): A Spectral Analysis for Self-Adjoint Operators Generated a Class of Second Order Difference Equations, J.Math. Anal. Appl. 197, 267-285.
8. Erylmaz, A., (2006) Spectral Theory of Difference operators, Ph. D. Thesis, Süleyman Demirel University, Isparta.
9. Welstead, S. T., (1982): Boundary Conditions at Infinity for Difference Equations of Limit - Circle Type, J. Math. Anal. Appl. 89, 442-461.
