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1. Introduction

In the last few decades, the q-difference equations have been studied extensively
because it plays an important role in different mathematical and physical areas,
such as the calculus of variations, mechanics, orthogonal polynomials, statistic
physics, nuclear and high energy physics, conformal quantum mechanics, and
theory of relativity. For a general introduction to the quantum calculus we refer
the reader to the references [16, 11, 7].

Although much work has been done on the existence of solutions of q-differ-
ence equations (see [1, 2, 3, 4, 21, 22, 23, 25, 26, 10, 15, 14, 19, 20, 9]), no one
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has studied the existence of solutions for singular impulsive nonlinear q-Sturm–
Liouville problems that the limit-circle case holds at infinity. Our goal is to
fill the gap in this area by using a special way to pose boundary conditions at
infinity. In the analysis that follows, we will largely follow the development of
the theory in [5, 6, 12].

In the following section, we introduce some necessary fundamental concepts
of quantum calculus. We use the standard notations found in [16, 7].

2. Preliminaries

Let q be a positive number with 0 < q < 1, A ⊂ R := (−∞,∞) and 0 ∈ A.

A q-difference equation is an equation that contains q-derivatives of a function
defined on A. Let y be a complex-valued function on A. The q-difference operator
Dq, the Jackson q-derivative is defined by

Dqy (x) =
y (qx) − y (x)

qx− x
for all x ∈ A.

Note that there is a connection between q-deformed Heisenberg uncertainty rela-
tion and the Jackson derivative on q-basic numbers (see [24]). In the q-derivative,
as q → 1, the q-derivative is reduced to the classical derivative. The q-derivative
at zero is defined by

Dqy (0) = lim
n→∞

y (qnx)− y (0)

qnx
(x ∈ A),

if the limit exists and does not depend on x. Since the formulation of the exten-
sion problems requires the definition of Dq−1 in a same manner to be

Dq−1f(x) :=

{

f(x)−f(q−1x)
x−q−1x if x ∈ A\{0},

Dqf(0) if x = 0,

provided that Dqf(0) exists. Associated with this operator there is a non-
symmetric formula for the q-differentiation of a product

Dq[f(x)g(x)] = g(x)Dqf(x) + f(qx)Dqg(x).

A right-inverse to Dq, the Jackson q-integration is given by

∫ x

0

f (t) dqt = x (1− q)

∞
∑

n=0

qnf (qnx) (x ∈ A),

provided that the series converges, and

∫ b

a

f (t) dqt =

∫ b

0

f (t) dqt−

∫ a

0

f (t) dqt (a, b ∈ A).
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The q-integration for a function is defined in [13] by the formulas

∫ ∞

0

f (t) dqt = (1− q)

∞
∑

n=−∞

qnf (qn) ,

∫ 0

−∞

f (t) dqt = (1− q)

∞
∑

n=−∞

qnf (−qn) ,

∫ ∞

−∞

f (t) dqt = (1− q)

∞
∑

n=−∞

qn [f (qn) + f (−qn)] .

A function f which is defined on A, 0 ∈ A, is said to be q-regular at zero if

lim
n→∞

f (xqn) = f (0) ,

for every x ∈ A. Through the remainder of the paper, we deal only with functions
q-regular at zero.

If f and g are q-regular at zero, then we have

∫ a

0

g (t)Dqf (t) dqt−

∫ a

0

f (qt)Dqg (t) dqt = f (a) g (a)− f (0) g (0) .

Let L2
q(R) be the space of all real-valued functions defined on R such that

‖f‖ :=

(
∫ ∞

−∞

f2 (x) dqx

)1/2

<∞.

The space L2
q(R) is a separable Hilbert space with the inner product (see [7, 8])

(f, g) :=

∫ ∞

−∞

f (x) g (x) dqx, f, g ∈ L2
q(R)

The q-Wronskian of y (x) and z (x) is defined to be

Wq (y, z) (x) := y (x)Dqz (x) − z (x)Dqy (x) , x ∈ R. (1)

Let us consider the following nonlinear q-Sturm–Liouville equation

Λy := −
1

q
Dq−1 (p(x)Dqy(x)) + r(x)y(x) = f (x, y (x)) , (2)

where p, r are real-valued functions defined on R and continuous at zero, 1
p , r ∈

L1
q,loc (R) and y = y (x) is a desired solution.

Denote by D the linear set of all functions y ∈ L2
q(R) such that y and pDqy

are q-regular at zero and Λ (y) ∈ L2
q (R). The operator L defined by Ly = Λ(y)

is called the maximal operator on L2
q(R).
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For every y, z ∈ D we have q-Green’s formula (or q-Lagrange’s identity)
∫ t

0

(Ly)(x)z(x)dqx−

∫ t

0

y(x)(Lz)(x)dqx = [y, z]t − [y, z]0, t ∈ R, (3)

where [y, z]x := p(x){y(x)Dq−1z(x)−Dq−1y(x)z(x)} (see [7, 8]).

It is clear from (3) that limit

[y, z]±∞ = lim
n→∞

[y, z]
(

±q−n
)

exists and is finite for all y, z ∈ D.

For any function y ∈ D, y (0) and (pDq−1y) (0) can be defined by

y(0) := lim
n→∞

y(qn),

(pDq−1y) (0) := lim
n→∞

(pDq−1y)(qn).

These limits exist and are finite (since y and (pDq−1)y are q-regular at zero).

We assume that the following conditions are satisfied:
(A1) The functions p and r are such that all solutions of the the equation

Λ (y) = 0 (4)

belong to L2
q (R) , i.e., Weyl limit-circle case holds for the q-Sturm–Liouville

expression Λ [8].

(A2) The function f (x, y) is a real-valued and continuous in (x, ζ) ∈ R×R, and

|f (x, ζ)| ≤ g (x) + µ |ζ| (5)

for all (x, ζ) in R × R, where g (x) ≥ 0, g ∈ L2
q (R) , and µ is a positive

constant.
Denote by u (x) and v (x) the solution of the equation (4) satisfying the

initial conditions

u (0) = 0,
(

pDq−1u
)

(0) = 1, v (0) = −1,
(

pDq−1v)
)

(0) = 0. (6)

Since the Wronskian of any two solutions of equation (4) are constant, we have
Wq (u, v) = 1. Then, u and v are linearly independent and they form a fun-
damental system of solutions of equation (4). By the condition (A1), we get
u, v ∈ L2

q (R) and moreover, u, v ∈ D. So, the values [y, u]±∞ and [y, v]±∞ exist
and are finite for every y ∈ D. By using Green’s formula (3) and the conditions
(6), we can get

[y, u]−∞ = y (0)−

∫ 0

−∞

u (x) (Λy) (x) dqx,

[y, v]−∞ = (pDq−1y) (0)−

∫ 0

−∞

v (x) (Λy) (x) dqx,

[y, u]∞ = y (0) +

∫ ∞

−∞

u (x) (Λy) (x) dqx,

[y, v]∞ = (pDq−1y) (0) +

∫ ∞

−∞

v (x) (Λy) (x) dqx.

(7)
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Now, we will add to problem (2) the boundary conditions

[y, u]−∞ cosα+ [y, v]−∞ sinα = c1,

[y, u]∞ cosβ + [y, v]∞ sinβ = c2,
(8)

where α, β ∈ R,

(A3) ρ := cosα sinβ − cosβ sinα 6= 0,

and c1, c2 are arbitrary given real numbers.

Since the function y in (8) satisfies equation (2), we have

[y, u]−∞ = y (0)−

∫ 0

−∞

u (x) f (x, y (x)) dqx,

[y, v]−∞ = (pDq−1y) (0)−

∫ 0

−∞

v (x) f (x, y (x)) dqx,

[y, u]∞ = y (0) +

∫ ∞

0

u (x) f (x, y (x)) dqx,

[y, v]∞ = (pDq−1y) (0) +

∫ ∞

0

v (x) f (x, y (x)) dqx.

3. Green’s Function

In this section, we consider the Green’s function for the boundary-value problem
(2), (8). Then, we define a fixed point problem by using the Green’s function.

Consider the linear boundary value problem

−
1

q
Dq−1 (p(x)Dqy(x)) + r(x)y(x) = g (x) , x ∈ R, g ∈ L2

q (R) (9)

[y, u]−∞ cosα+ [y, v]−∞ sinα = 0, α ∈ R,

[y, u]∞ cosβ + [y, v]∞ sinβ = 0, β ∈ R,
(10)

where y is a desired solution, u and v are solutions of equation (4) under the
conditions (6).

Set

ϕ (x) = cosαu (x) + sinαv (x) , ψ (x) = cosβu (x) + sinβv (x) , (11)

where Wq (ϕ, ψ) = cosα sinβ − cosβ sinα = W. It is clear that these functions
are solutions of equation (4) and are in L2

q (R) . Further, we have

[ϕ, u]x = ϕ (0) = − sinα, [ϕ, v]x =
(

pDq−1ϕ
)

(0) = cosα, (12)

[ψ, u]x = ψ (a) = − sinβ, [ψ, v]x =
(

pDq−1ψ
)

(0) = cosβ, (13)

[ϕ, u]±∞ = − sinα, [ϕ, v]±∞ = cosα,
[ψ, u]±∞ = − sinβ, [ψ, v]±∞ = cosβ.

(14)
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Define the Green’s function of the boundary-value problem (9)-(10) by the for-
mula

G (x, t) =

{

−ϕ(x)ψ(t)
W if −∞ < t ≤ x <∞,

−ϕ(t)ψ(x)
W if −∞ < x < t <∞.

(15)

Since ϕ, ψ ∈ L2
q (R) , G (x, t) is a q-Hilbert-Schmidt kernel, i.e.,

∫ ∞

−∞

∫ ∞

−∞

|G (x, t)|2 dqxdqt <∞. (16)

Theorem 3.1. The function

y (x) =

∫ ∞

−∞

G (x, t) g(t)dqt, x ∈ R, (17)

is the unique solution of the boundary-value problem (9)-(10).

Proof. Using the variation of constants formula, the general solution of equation
(9) has the form

y (x) =k1ϕ (x) + k2ψ (x) +
q

W
ψ (x)

∫ x

−∞

ϕ (qt) g(qt)dqt

−
q

W
ϕ (x)

∫ x

−∞

ψ (qt) g(qt)dqt,

(18)

where k1 and k2 are arbitrary constants.

By (18), we get
(

pDq−1y
)

(x) =k1
(

pDq−1ϕ
)

(x) + k2
(

pDq−1ψ
)

(x)

+
q

W

(

pDq−1ψ
)

(x)

∫ x

−∞

ϕ (qt) g(qt)dqt

−
q

W

(

pDq−1ϕ
)

(x)

∫ x

−∞

ψ (qt) g(qt)dqt.

Hence, we have

[y, u]x = p(x)
{

y(x)Dq−1u(x)−Dq−1y(x)u(x)
}

=k1[ϕ, u]x + k2[ψ, u]x +
q

W
[ψ, u]x

∫ x

−∞

ϕ (qt) g(qt)dqt

−
q

W
[ϕ, u]x

∫ x

−∞

ψ (qt) g(qt)dqt = −k1 sinα− k2 sinβ

−
q

W
sinβ

∫ x

−∞

ϕ (qt) g(qt)dqt+
q

W
sinα

∫ x

−∞

ψ (qt) g(qt)dqt

=− k1 sinα− k2 sinβ +
q

W

∫ x

−∞

(− sinβϕ (qt) + sinαψ (qt)) g(qt)dqt

=− k1 sinα− k2 sinβ +
q

W

∫ x

−∞

u (qt) g(qt)dqt.

(19)
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Likewise

[y, v]x = p(x)
{

y(x)Dq−1v(x) −Dq−1y(x)v(x)
}

=k1[ϕ, v]x + k2[ψ, v]x +
q

W
[ψ, v]x

∫ x

−∞

ϕ (qt) g(qt)dqt

−
q

W
[ϕ, v]x

∫ x

−∞

ψ (qt) g(qt)dqt = k1 cosα+ k2 cosβ

+
q

W
cosβ

∫ x

−∞

ϕ (qt) g(qt)dqt−
q

W
cosα

∫ x

−∞

ψ (qt) g(qt)dqt

=k1 cosα+ k2 cosβ +
q

W

∫ x

−∞

(− cosβϕ (qt) + cosαψ (qt)) g(qt)dqt

=k1 cosα+ k2 cosβ +
q

W

∫ x

−∞

v (qt) g(qt)dqt.

(20)

From (19) and (20), we get

[y, u]−∞ = −k1 sinα− k2 sinβ,

[y, v]−∞ = k1 cosα+ k2 cosβ.
(21)

Substituting (21) into (10), we obtain

k2 (cosα sinβ − sinα cosβ) = 0, k2W = 0,

i.e., k2 = 0. Further, we have

[y, u]∞ = −k1 sinα+
q

W

∫ ∞

−∞

u (qt) g(qt)dqt,

[y, v]∞ = k1 cosα+
q

W

∫ ∞

−∞

v (qt) g(qt)dqt.

From the conditions (10), we have

k1 (− sinα cosβ + cosα sinβ) + q

∫ ∞

−∞

[cosβu (qt) + sinβv (qt)] g(qt)dqt = 0.

Hence,

k1 = −
q

W

∫ ∞

−∞

ψ (qt) g(qt)dqt.

By (18), we get

y (x) = −
q

W

∫ x

−∞

ϕ (qt)ψ (x) g(qt)dqt−
q

W

∫ ∞

x

ϕ (x)ψ (qt) g(qt)dqt

i.e., (15) and (17) hold.
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Theorem 3.2. The unique solution of the equation (9) under the conditions (8)
is given by the formula

y (x) = ω (x) +

∫ ∞

−∞

G (x, t) g (t) dqt,

where
ω (x) =

c2

W
ϕ (x) −

c1

W
ψ (x) .

Proof. By the conditions (12)-(14), the function ω (x) is a unique solution of
the equation (4) satisfying the conditions (8). By Theorem 3.1 the function
(G (x, .) , g(.)) a unique solution of the equation (9) satisfying the conditions
(10). This completes the proof.

From Theorem 3.2, the boundary-value problem (2), (8) in L2
q (R) is equiva-

lent to the nonlinear q-integral equation

y (x) = ω (x) +

∫ ∞

−∞

G (x, t) f (t, y (t)) dqt, (22)

where the functions ω (x) and G (x, t) are defined above. Hence, we shall study
the equation (22).

By (5) and (16), we can define the operator T : L2
q (R) → L2

q (R) by the
formula

(Ty) (x) = ω (x) +

∫ ∞

−∞

G (x, t) f (t, y (t)) dqt, x ∈ R, (23)

where y, ω ∈ L2
q (R) . Then the equation (22) can be written as y = Ty.

Now, our next goal is to search the fixed points of the operator T because it
is equivalent to solving the equation (22).

4. The Fixed Points of the Operator T

In this section, we investigate the fixed points of the operator T by using the
following Banach fixed point theorem.

Definition 4.1. [17] Let A be a mapping of a metric space R into itself. Then x

is called a fixed point of A if Ax = x. Suppose there exists a number α < 1 such
that

ρ (Ax,Ay) ≤ αρ (x, y)

for every pair of points x, y ∈ R. Then A is said to be a contraction mapping.

Theorem 4.2. [17] Every contraction mapping A defined on a complete metric
space R has a unique fixed point.
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Theorem 4.3. Suppose that the conditions (A1), (A2) and (A3) are satisfied.
Further, let the function f (x, y) satisfy the following Lipschitz condition: there
exist a constant K > 0 such that

∫ ∞

−∞

|f (x, y (x))− f (x, z (x))|
2
dqx ≤ K2

∫ ∞

−∞

|y (x)− z (x)|
2
dqx (24)

for all y, z ∈ L2
q (R) . If

K

(
∫ ∞

−∞

∫ ∞

−∞

|G (x, t)|
2
dqxdqt

)1/2

< 1, (25)

then the boundary-value problem (2), (8) has a unique solution in L2
q (R) .

Proof. It is sufficient to show that the operator T is a contraction operator. For
y, z ∈ L2

q (R) , we have

|(Ty) (x)− (Tz) (x)|
2

=

∣

∣

∣

∣

∫ ∞

−∞

G (x, t) [f (t, y (t))− f (t, z (t))] dqt

∣

∣

∣

∣

2

≤

∫ ∞

−∞

|G (x, t)|
2
dqt

∫ ∞

−∞

|f (t, y (t))− f (t, z (t))|
2
dqt

≤K2 ‖y − z‖
2
∫ ∞

−∞

|G (x, t)|
2
dqt, x ∈ R.

Thus, we get

‖Ty − Tz‖ ≤ α ‖y − z‖ ,

where

α = K

(
∫ ∞

−∞

∫ ∞

−∞

|G (x, t)|2 dqxdqt

)1/2

< 1,

i.e., T is a contraction mapping.

Now, we claim that the function f (x, y) satisfies a Lipschitz condition on a
subset of L2

q (R) but not of the whole space.

Theorem 4.4. Suppose that the conditions (A1), (A2) and (A3) are satisfied. In
addition, let the function f (x, y) satisfy the following Lipschitz condition: there
exist constants M, K > 0 such that

∫ ∞

−∞

|f (x, y (x))− f (x, z (x))|
2
dqx ≤ K2

∫ ∞

0

|y (x) − z (x)|
2
dqx (26)
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for all y and z in SM =
{

y ∈ L2
q (R) : ‖y‖ ≤M

}

, where K may depend on M.

If

{
∫ ∞

−∞

|ω (x)|2 dqx

}1/2

+

(
∫ ∞

−∞

∫ ∞

−∞

|G (x, t)|2 dqxdqt

)1/2

× sup
y∈SM

{
∫ ∞

−∞

|f (t, y (t))|
2
dqt

}1/2

≤M

(27)

and

K

(
∫ ∞

−∞

∫ ∞

−∞

|G (x, t)|2 dqxdqt

)1/2

< 1, (28)

then the boundary-value problem (2), (8) has a unique solution with

∫ ∞

−∞

|y (x)|
2
dqx ≤M2.

Proof. It is clear that SM is a closed set of L2
q (R) . Firstly, we will prove that

the operator T maps SM into itself. For y ∈ SM we have

‖Ty‖ =

∥

∥

∥

∥

ω (.) +

∫ ∞

−∞

G (., t) f (t, y (t)) dqt

∥

∥

∥

∥

≤ ‖ω‖+

∥

∥

∥

∥

∫ ∞

−∞

G (., t) f (t, y (t)) dqt

∥

∥

∥

∥

≤ ‖ω‖+

(
∫ ∞

−∞

∫ ∞

−∞

|G (x, t)|
2
dqxdqt

)1/2

× sup
y∈SM

{
∫ ∞

−∞

|f (t, y (t))|
2
dqt

}1/2

≤M.

Thus, T : SM → SM .

We now proceed analogously to the proof of Theorem 4.3. So, we can get

‖Ty − Tz‖ ≤ α ‖y − z‖ , y, z ∈ SM , α < 1.

If we apply the Banach fixed point theorem, then we obtain a unique solution
of the boundary-value problem (2), (8) in SM .

5. An Existence Theorem Without Uniqueness

In this section, we shall prove an existence theorem without uniqueness of solu-
tion, using the following Schauder fixed point theorem:

Definition 5.1. [12] An operator acting in a Banach space is said to be completely
continuous if it is continuous and maps bounded sets into relatively compact sets.
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Theorem 5.2. [12] Let B be a Banach space and S a nonemty bounded, convex,
and closed subset of B. Assume that A : B → B is a completely continuous
operator. If the operator A leaves the set S invariant, i.e., if A (S) ⊂ S, then A
has at least one fixed point in S.

Theorem 5.3. The operator T defined by (23) is completely continuous operator
under the conditions (A1), (A2) and (A3).

Proof. Let y0 ∈ L2
q (R) . Then, we obtain

|(Ty) (x) − (Ty0) (x)|
2

=

∣

∣

∣

∣

∫ ∞

−∞

G (x, t) [f (t, y (t))− f (t, y0 (t))] dqt

∣

∣

∣

∣

2

≤

∫ ∞

−∞

|G (x, t)|
2
dqt

∫ ∞

−∞

|f (t, y (t))− f (t, y0 (t))|
2
dqt.

Thus

‖Ty − Ty0‖
2 ≤ K

∫ ∞

−∞

|f (t, y (t))− f (t, y0 (t))|
2
dqt, (29)

where

K =

(
∫ ∞

−∞

∫ ∞

−∞

|G (x, t)|
2
dqxdqt

)

.

We know that an operator F defined by Fy (x) = f (x, y (x)) is continuous
in L2

q (R) under the condition (A2) ( see [18]). Hence, for the given ε > 0, we
can find a δ > 0 such that ‖y − y0‖ < δ implies

∫ ∞

−∞

|f (t, y (t))− f (t, y0 (t))|
2
dqt <

ε2

K
.

From (29), we get
‖Ty − Ty0‖ < ε,

i.e., T is continuous.

Set Y =
{

y ∈ L2
q (R) : ‖y‖ ≤ C

}

. By (23), we have

‖Ty‖ ≤ ‖ω‖+

{

K

∫ ∞

−∞

|f (t, y (t))|
2
dqt

}1/2

,

for all y ∈ Y. Furthermore, using (5), we get

∫ ∞

−∞

|f (t, y (t))|2 dqt ≤

∫ ∞

−∞

[g (t) + µ |y (t)|]2 dqt

≤2

∫ ∞

−∞

[

g2 (t) + µ2 |y (t)|
2
]

dqt = 2
(

‖g‖
2
+ µ2 ‖y‖

2
)

≤2(‖g‖
2
+ µ2C2).
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Thus, for all y ∈ Y, we obtain

‖Ty‖ ≤ ‖ω‖+
[

2K
(

‖g‖
2
+ µ2C2

)]1/2

,

i.e., T (Y ) is a bounded set in L2
q (R) .

Further, for all y ∈ Y, we have

∫ N

−∞

|Ty (x)|
2
dqx+

∫ ∞

N

|Ty (x)|
2
dqx

≤ 2(‖g‖
2
+ µ2C2)

{

∫ N

−∞

∫ ∞

−∞

|G (x, t)|
2
dqxdqt+

∫ ∞

N

∫ ∞

−∞

|G (x, t)|
2
dqxdqt

}

.

So, from (16), we see that for given ε > 0 there exists a positive number N,
depending only on ε such that

∫ N

−∞

|Ty (x)|
2
dqx+

∫ ∞

N

|Ty (x)|
2
dqx < ε2,

for all y ∈ Y.

Thus T (Y ) is a relatively compact in L2
q (R), i.e., the operator T is completely

continuous.

Theorem 5.4. Suppose that the conditions (A1), (A2) and (A3) are satisfied. In
addition, there exist constants M > 0 such that

{
∫ ∞

−∞

|ω (x)|2 dqx

}1/2

+

(
∫ ∞

−∞

∫ ∞

−∞

|G (x, t)|2 dqxdqt

)1/2

× sup
y∈SM

{
∫ ∞

−∞

|f (t, y (t))|
2
dqt

}1/2

≤M,

(30)

where SM =
{

y ∈ L2
q (R) : ‖y‖ ≤M

}

. Then the boundary-value problem (2), (8)
has at least one solution with

∫ ∞

−∞

|y (x)|2 dqx ≤M2.

Proof. Let us define an operator T : L2
q (R) → L2

q (R) by (23). From Theo-
rems 4.4, 5.3 and (30), we conclude that T maps the set SM into itself. It is
clear that the set SM is bounded, convex and closed. Using by Theorem 5.2, the
theorem follows.

References

[1] B. Ahmad, J.J. Nieto, Basic theory of nonlinear third-order q-difference equations
and inclusions, Math. Model. Anal. 18 (1) (2013) 122–135.



Nonlinear Singular q-Sturm–Liouville Problems 163

[2] B. Ahmad, S.K. Ntouyas, Boundary value problems for q-difference inclusions,
Abstr. Appl. Anal. (2011), Art. ID 292860, 15 pages.

[3] B. Ahmad, S.K. Ntouyas, Boundary value problems for q-difference equations and
inclusions with nonlocal and integral boundary conditions, Math. Model. Anal. 19
(5) (2014) 647–663.

[4] B. Ahmad, S.K. Ntouyas, I.K. Purnaras, Existence results for nonlinear q-
difference equations with nonlocal boundary conditions, Comm. Appl. Nonlinear
Anal. 19 (3) (2012) 59–72.

[5] B.P. Allahverdiev, H. Tuna, Existence of solutions for nonlinear singular q-Sturm–
Liouville problems, Ufa Mathematical Journal 12 (1) (2020) 91–102.

[6] B.P. Allahverdiev, H. Tuna, Nonlinear singular Sturm–Liouville problems with
impulsive conditions, Facta Univ., Ser. Math. Inf. 34 (3) (2019) 439–457.

[7] M.H. Annaby, Z.S. Mansour, q-Fractional Calculus and Equations, Lecture Notes
in Mathematics, Vol. 2056, 2012.

[8] M.H. Annaby, Z.S. Mansour, I.A. Soliman, q-Titchmarsh–Weyl theory: series
expansion, Nagoya Math. J. 205 (2012) 67–118.

[9] R.P. Agarwal, G. Wang, B. Ahmad, L. Zhang, A. Hobiny, S. Monaquel, On
existence of solutions for nonlinear q-difference equations with nonlocal q-integral
boundary conditions, Math. Model Analysis 20 (5) (2015) 604–618.

[10] M. El-Shahed, H.A. Hassan, Positive solutions of q-difference equation, Proc.
Amer. Math. Soc. 138 (2010) 1733–1738.

[11] T. Ernst, The History of q-Calculus and a New Method, U. U. D. M. Report,
ISSN1101-3591, Department of Mathematics, Uppsala University, 2000.

[12] G.Sh. Guseinov, I. Yaslan, Boundary value problems for second order nonlinear
differential equations on infinite intervals, J. Math. Anal. Appl. 290 (2004) 620–
638.
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