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Abstract

In this study, the classical Dirac equation was investigated on the basis of q-multiplicative calculus. We discuss some spectral properties of
the q-multiplicative Dirac system, such as formally self-adjointness, and orthogonality of eigenfunctions. Finally, Green’s function for this
system has been reconstructed.
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1. Introduction

The Non-Newtonian calculus (or multiplicative calculus) was introduced into the mathematical literature by Grosman and Katz in 1967 as
an alternative to Newtonian calculus (see [11, 12]). In [11, 12], Grosman and Katz made a new definition of derivatives and integrals and
turned addition and subtraction into multiplication and division. But until recently, multiplicative calculus did not attract much attention from
researchers. Recently, studies on this subject have begun to emerge (see [2, 5, 7, 8, 9, 10, 13, 20]). In 2016, Yener and Emiroğlu introduced
the concept of multiplicative calculus for quantum calculus ([21]).
On the other hand, Sturm–Liouville and Dirac problems are among the problems that mathematicians are most interested in. There are many
studies on these problems ([1, 4, 15, 16, 17, 22]). Especially, the Dirac system is one of the most important equations in physics since this
equation predicts the existence of antimatter and gives a description of the electron spin ([15, 18, 19]).
This study aims to investigate the basic properties of the Dirac system in q-multiplicative calculus. According to the authors’ knowledge,
there is no study on this subject in the literature. Thus, it will contribute to the literature by filling the gap in the literature.

2. Preliminaries

Now, we give some concepts of multiplicative quantum calculus ([3, 6, 14, 21]). Let 0 < q < 1 and let A⊂R is a q-geometric set, i.e., qx ∈ A
for all x ∈ A. The q-derivative Dq is defined by

Dqy(x) =
1

qx− x
[y(qx)− y(x)]

for all x ∈ A. A function y which is defined on A, 0 ∈ A, is said to be q-regular at zero if

lim
n→∞

y(xqn) = y(0) ,

for every x ∈ A. Through the remainder of the paper, we deal only with functions q-regular at zero.

Definition 2.1 ([21]). Let y be a positive function. The q-multiplicative derivative D∗q is defined by

D∗qy(x) =
(

y(qx)
y(x)

) 1
qx−x

.
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From Definition 2.1, one obtains

D∗qy(x) = eDq(lny(x)),

and[
D∗q−1 y(x)

]1/q
= D∗qy

(
xq−1

)
(2.1)

Theorem 2.2 ([21]). Let y,z be q∗-differentiable functions. Then we have the following properties.
i)

D∗q (cy) = D∗q (y) ,

where c is a positive constant,
ii)

D∗q (yz) = D∗q (y)D∗q (z) ,

iii)

D∗q

(
y
z

)
=

D∗q (y)
D∗q (z)

,

The q-integration is given by

∫ b

a
y(t)dqt =

∫ b

0
y(t)dqt−

∫ a

0
y(t)dqt,

where a,b ∈ A and

∫ x

0
y(t)dqt = x(1−q)

∞

∑
n=0

qny(qnx) , (x ∈ A).

Definition 2.3 ([21]). Let y be a positive bounded function. Then the q-multiplicative integral is defined as∫
y(t)dqt = e

∫
lny(t)dqt .

Theorem 2.4 ([21]). Let y,z be q∗-integrable functions. Then we have the following properties.
i)

∫ (
y(t)k

)dqt
=

(∫
y(t)dqt

)k
, where k ∈ R,

ii)∫
(y(t)z(t))dqt) =

∫
y(t)dqt

∫
z(t)dqt ,

iii)

∫
(y(t)/z(t))dqt) =

(∫
y(t)dqt

)
/
∫

z(t)dqt .

Theorem 2.5 ([21]). Let y be q∗-integrable and z be q-differentiable, they are continuous on the interval 0≤ a < b, then

[∫ b

a

(
D∗qy(t)

)z(t)
]dqt

=
y(b)z(b)

y(a)z(a)

([∫ b

a
(y(qt))Dqz(t)

]dqt
)−1

.

Now we will give the notation we will use in our work.

y⊕ z = y.z, y	 z =
y
z
, y� z = ylnz = zlny,

where y,z ∈ R+.
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Definition 2.6 ([13]). Let H 6= /0 and 〈., .〉∗ : H×H→ R+ be a function such that the following axioms are satisfied for all x,y,z ∈ H :
i)

〈x⊕ y,z〉∗ = 〈x,y〉∗⊕〈y,z〉∗,

ii)

〈x,y〉∗ = 〈y,x〉∗,

iii)

〈x,x〉∗ = 1 if and only if x = 1,

iv)

〈x,x〉∗ ≥ 1,

v)

〈ek� x,y〉∗ = ek�〈x,y〉∗, k ∈ R.

Then (H,〈., .〉∗) is called multiplicative inner product space.

Let

L2
∗,q (0,a) :=

{
y :
∫ a

0
|y(x)� y(x)|dqx < ∞

}
.

By Definition 2.6, L2
∗,q (0,a) is a multiplicative inner product space with

〈., .〉∗,q : L2
∗,q (0,a)×L2

∗,q (0,a)→ R+, (2.2)

〈y,z〉∗,q =
∫ a

0
|y(x)� z(x)|dqx ,

where y,z ∈ L2
∗,q (0,a) are positive functions.

3. q-multiplicative Dirac system

In this section, we shall study a q-multiplicative Dirac (q-MD) system.
Let us define a system of equations D∗qz1 (x)⊕

(
e−r(x)� z2 (x)

)
= e−λ � z2 (x)(

D∗q−1

)1/q
z2 (x)⊕

(
ep(x)� z1 (x)

)
= eλ � z1 (x)

, x ∈ [0,a], (3.1)

where r (.) and p(.) are real-valued functions on [0,a], and λ is a parameter independent of x; and two supplementary conditions

(ecosα � z1 (0))⊕
(

esinα � z2 (0)
)
= 1, (3.2)

(
ecosβ � z1 (a)

)
⊕
(

esinβ � z2

(
aq−1

))
= 1, (3.3)

where α,β ∈ R. This type of boundary-value problem is called a q-MD system. Denoting in (3.1)

z =
(

z1
z2

)
and

Γz :=

 D∗qz1 (x)⊕
(

e−r(x)� z2 (x)
)

(
D∗q−1

)1/q
z2 (x)⊕

(
ep(x)� z1 (x)

) ,

we can write the system (3.1) in the form

Γz =
(

e−λ � z2 (x)
eλ � z1 (x)

)
Now let’s define a Hilbert space compatible with system (3.1). Let H = L2

∗,q

[
(0,a) :

(
R+
)2
]

be a multiplicative inner product space with

〈y,z〉∗,q =
∫ a

0
|(y1 (x)� z1 (x))⊕ (y2 (x)� z2 (x))|dqx ,

where y =
(

y1
y2

)
and z =

(
z1
z2

)
∈ H and y1,y2,z1,z2 are positive functions.
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Theorem 3.1. q-MD operator defined by (3.1)-(3.3) is formally self-adjoint on the Hilbert space H.

Proof. Let z =
(

z1
z2

)
, t =

(
t1
t2

)
∈ H. It follows from (2.2) and (2.1) that

〈Γz, t〉∗,q =
∫ a

0

∣∣∣∣([D∗qz1 (x)
][

z2 (x)
r(x)
])− ln t2(x)

∣∣∣∣dqx
⊕
∫ a

0

∣∣∣∣∣
([(

D∗q−1

)1/q
z2 (x)

][
z1 (x)

p(x)
])ln t1(x)

∣∣∣∣∣
dqx

=
∫ a

0

∣∣∣([D∗qz1 (x)
])− ln t2(x)

∣∣∣dqx
⊕
∫ a

0

∣∣∣∣([z2 (x)
r(x)
])− ln t2(x)

∣∣∣∣dqx
⊕
∫ a

0

∣∣∣∣([D∗qz2

(
xq−1

)])ln t1(x)
∣∣∣∣dqx
⊕
∫ a

0

∣∣∣∣[z1 (x)
p(x)
]ln t1(x)

∣∣∣∣dqx

By Theorem 2.5, we get

〈Γz, t〉∗,q =
(z1 (a))

− ln t2(a)

(z1 (0))
− ln t2(0)

1∫ a
0

∣∣∣(z1 (qx))−Dq ln t2(x)
∣∣∣dqx ×

∫ a

0

∣∣∣∣([z2 (x)
r(x)
])− ln t2(x)

∣∣∣∣dqx (z2
(
aq−1))ln t1(a)

(z2 (0))
ln t1(0)

× 1∫ a
0

∣∣∣(z2 (x))
Dq ln t1(x)

∣∣∣dqx

∫ a

0

∣∣∣∣[z1 (x)
p(x)
]ln t1(x)

∣∣∣∣dqx

=
(z1 (a))

− ln t2(a)

(z1 (0))
− ln t2(0)

1

e
∫ a

0 −Dq lnz1(qx)Dq ln t2(x)dqx

×
∫ a

0

∣∣∣∣([z2 (x)
r(x)
])− ln t2(x)

∣∣∣∣dqx (z2
(
aq−1))ln t1(a)

(z2 (0))
ln t1(0)

× 1

e
∫ a

0 Dq lnz2(x)Dq ln t1(x)dqx

∫ a

0

∣∣∣∣[z1 (x)
p(x)
]ln t1(x)

∣∣∣∣dqx
. (3.4)

Similarly,

〈z,Γt〉∗,q =
∫ a

0

∣∣∣∣([D∗qt1 (x)
][

t2 (x)
r(x)
])− lnz2(x)

∣∣∣∣dqx
⊕
∫ a

0

∣∣∣∣∣
([(

D∗q−1

)1/q
t2 (x)

][
t1 (x)

p(x)
])lnz1(x)

∣∣∣∣∣
dqx

=
∫ a

0

∣∣∣([D∗qt1 (x)
])− lnz2(x)

∣∣∣dqx
⊕
∫ a

0

∣∣∣∣([t2 (x)r(x)
])− lnz2(x)

∣∣∣∣dqx

⊕
∫ a

0

∣∣∣∣([D∗qt2
(

xq−1
)])lnz1(x)

∣∣∣∣dqx
⊕
∫ a

0

∣∣∣∣[t1 (x)p(x)
]lnz1(x)

∣∣∣∣dqx

=
(t1 (a))

− lnz2(a)

(t1 (0))
− lnz2(0)

1

e
∫ a

0 −Dq ln t1(qx)Dq lnz2(x)dqx

×
∫ a

0

∣∣∣∣([t2 (x)r(x)
])− lnz2(x)

∣∣∣∣dqx (t2 (aq−1))lnz1(a)

(t2 (0))
lnz1(0)

× 1

e
∫ a

0 Dq ln t2(x)Dq lnz1(x)dqx

∫ a

0

∣∣∣∣[t1 (x)p(x)
]lnz1(x)

∣∣∣∣dqx
(3.5)

From (3.4) and (3.5), simple calculations yield

〈Γz, t〉∗,q =

(
z2
(
aq−1))ln t1(a)

(z2 (0))
ln t1(0)(

t2
(
aq−1))lnz1(a)

(t2 (0))
lnz1(0)

〈z,Γt〉∗,q.

Then we have

〈Γz, t〉∗,q =
[z, t] (a)
[z, t] (0)

〈z,Γt〉∗,q, (3.6)

where

[z, t] (x) :=
(

t1 (x)� z2

(
xq−1

))
	
(

z1 (x)� t2
(

xq−1
))

.



Konuralp Journal of Mathematics 65

By virtue of (3.2) and (3.3), we conclude that

〈Γz, t〉∗,q = 〈z,Γt〉∗,q. (3.7)

Theorem 3.2. Eigenfunctions corresponding to distinct eigenvalues are orthogonal.

Proof. Let ζ ,δ be two distinct eigenvalues with corresponding eigenfunctions z, t, respectively. It follows from (3.7) that

〈Γz, t〉∗,q = 〈z,Γt〉∗,q

〈eζ � z, t〉∗,q = 〈z,eδ � t〉∗,q

eζ−δ 〈z, t〉∗,q = 1.

Then we obtain

〈z, t〉∗,q = 1,

since ζ 6= δ .

The q∗-Wronskian is defined by the formula

W∗,q (z, t) =
(

t1 (x)� z2

(
xq−1

))
	
(

z1 (x)� t2
(

xq−1
))

,

where z =
(

z1
z2

)
, t =

(
t1
t2

)
∈ H. Then we have the following theorems.

Theorem 3.3. The q∗-Wronskian of any two solutions of Eq. (3.1) is independent of x.

Proof. Let z and t be two solutions of Eq. (3.1). By (3.6), we see that

〈ϒz, t〉∗,q =
[z, t] (a)
[z, t] (0)

〈z,ϒt〉∗,q.

Then, we obtain

[z, t] (a)
[z, t] (0)

= 1,

since Γz = eλ � z and Γt = eλ � t. Thus

[z, t] (a) = [z, t] (0) =W∗,q (z, t)(0) .

Theorem 3.4. Any two solutions of Eq. (3.1) are multiplicative linearly dependent if and only if W∗,q = 1.

Proof. Let z and t be two multiplicative linearly dependent solutions of Eq. (3.1), i.e, z = tξ , where ξ 6= 1 ([20]). Then, we obtain

W∗,q (z, t)(x) =
(

t1 (x)� z2

(
xq−1

))
	
(

z1 (x)� t2
(

xq−1
))

=
(

t1 (x)� tξ

2

(
xq−1

))
	
(

tξ

1 (x)� t2
(

xq−1
))

= 1.

Conversely, let

W∗,q (z, t)(x) =
(

t1 (x)� z2

(
xq−1

))
	
(

z1 (x)� t2
(

xq−1
))

= 1.

Then,

t
lnz2(xq−1)
1 = z

ln t2(xq−1)
1

ln t1 lnz2

(
xq−1

)
= lnz1 ln t2

(
xq−1

)

ln t1 lnz2

(
xq−1

)
− lnz1 ln t2

(
xq−1

)
=

∣∣∣∣ ln t1 lnz1
ln t2

(
xq−1) lnz2

(
xq−1) ∣∣∣∣= 0,

i.e., lnz =
(

lnz1
lnz2

)
, and ln t =

(
ln t1
ln t2

)
are linearly dependent (see [1]). Hence lnz = ξ ln t, where ξ 6= 1.
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Theorem 3.5. All eigenvalues of (3.1)-(3.3) are simple from the geometric point of view.

Proof. Let γ be an eigenvalue with eigenfunctions z(.) and t (.) . From (3.2), we deduce that

W∗,q (z, t)(0) = (t1 (0)� z2 (0))	 (z1 (0)� t2 (0)) = 1,

i.e., z and t are multiplicative linearly dependent.

4. Green’s function

In this section, we study Green’s function for the following nonhomogeneous system D∗qz1 (x)⊕
(

eλ−r(x)� z2 (x)
)
= e f2(x)(

D∗q−1

)1/q
z2 (x)⊕

(
ep(x)−λ � z1 (x)

)
= e f1(x)

, x ∈ [0,a], (4.1)

where r (.) and p(.) are real-valued functions on [0,a], and(
e f1(.)

e f2(.)

)
∈ H,

which satisfy the following conditions

(ecosα � z1 (0))⊕
(

esinα � z2 (0)
)
= 1, (4.2)

(
ecosβ � z1 (a)

)
⊕
(

esinβ � z2

(
aq−1

))
= 1, (4.3)

where α,β ∈ R.
Let

χ (x,λ ) =
(

χ1 (x,λ )
χ2 (x,λ )

)
and ψ (x,λ ) =

(
ψ1 (x,λ )
ψ2 (x,λ )

)
be two basic solutions of Eq. (3.1) which satisfy the following initial conditions

χ1(0,λ ) = e−sinα , χ2(0,λ ) = ecosα ,

ψ1(a,λ ) = e−sinβ , ψ2

(
aq−1,λ

)
= ecosβ .

It is obvious that

ω (λ ) =−W∗,q (χ,ψ) 6= 1.

Theorem 4.1. If λ is not an eigenvalue of (3.1)-(3.3), then the function

z(x,λ ) = 〈G(x, .,λ ) ,
(

e f1(.)

e f2(.)

)
〉∗,q, (4.4)

where

G(x, t,λ ) = e−
1

ω(λ ) �
{

ψ (x,λ )�χT (t,λ ) , 0≤ t ≤ x
χ (x,λ )�ψT (t,λ ) , x < t ≤ a,

(4.5)

is the solution of the system (4.1)-(4.3). Conversely, if λ is an eigenvalue of (3.1)-(3.3), then the system (4.1)-(4.3) is generally unsolvable.

Proof. Assume that λ is not an eigenvalue of (3.1)-(3.3). From (4.5), we have

G(x, t,λ )�
(

e f1(t)

e f2(t)

)
=



(
χ1 (x,λ )

− 1
ω(λ ) f1(t) lnψ1(t,λ )

χ1 (x,λ )
− 1

ω(λ ) f2(t) lnψ2(t,λ )

χ2 (x,λ )
− 1

ω(λ ) f1(t) lnψ1(t,λ )
χ2 (x,λ )

− 1
ω(λ ) f2(t) lnψ2(t,λ )

)
, 0≤ t ≤ x(

ψ1 (x,λ )
− 1

ω(λ ) f1(t) ln χ1(t,λ )
ψ1 (x,λ )

− 1
ω(λ ) f2(t) ln χ2(t,λ )

ψ2 (x,λ )
1

ω(λ ) f1(t) ln χ1(t,λ )
ψ2 (x,λ )

− 1
ω(λ ) f2(t) ln χ2(t,λ )

)
, x < t ≤ a.

(4.6)
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By (4.6), we get

z1 (x,λ ) =
∫ x

0

∣∣∣ψ1 (x,λ )
− 1

ω(λ ) f1(t) ln χ1(t,λ )
ψ1 (x,λ )

− 1
ω(λ ) f2(t) ln χ2(t,λ )

∣∣∣dqt
×
∫ a

x

∣∣∣χ1 (x,λ )
− 1

ω(λ ) f1(t) lnψ1(t,λ )
χ1 (x,λ )

− 1
ω(λ ) f2(t) lnψ2(t,λ )

∣∣∣dqt

= e−
q

ω(λ ) lnψ1(x,λ )
∫ x

0 f1(qt) ln χ1(qt,λ )dqte−
q

ω(λ ) lnψ1(x,λ )
∫ x

0 f2(qt) ln χ2(qt,λ )dqt

× e−
q

ω(λ ) ln χ1(x,λ )
∫ a

x f1(qt) lnψ1(qt,λ )dqt

× e−
q

ω(λ ) ln χ1(x,λ )
∫ a

x f2(qt) lnψ2(qt,λ )dqt
, (4.7)

and

z2 (x,λ ) =
∫ x

0

∣∣∣ψ2 (x,λ )
− 1

ω(λ ) f1(t) ln χ1(t,λ )
ψ2 (x,λ )

− 1
ω(λ ) f2(t) ln χ2(t,λ )

∣∣∣dqt
×
∫ a

x

∣∣∣χ2 (x,λ )
− 1

ω(λ ) f1(t) lnψ1(t,λ )
χ2 (x,λ )

− 1
ω(λ ) f2(t) lnψ2(t,λ )

∣∣∣dqt

= e−
q

ω(λ ) lnψ2(x,λ )
∫ x

0 f1(qt) ln χ1(qt,λ )dqt

× e−
q

ω(λ ) lnψ2(x,λ )
∫ x

0 f2(qt) ln χ2(qt,λ )dqt

× e−
q

ω(λ ) ln χ2(x,λ )
∫ a

x f1(qt) lnψ1(qt,λ )dqt

× e−
q

ω(λ ) ln χ2(x,λ )
∫ a

x f2(qt) lnψ2(qt,λ )dqt
.

It follows from (4.7) that

D∗qz1 (x) = eDq(lnz1(x)) = e
Dq

(
− q

ω(λ ) lnψ1(x,λ )
∫ x

0 f1(qt) ln χ1(qt,λ )dqt
)
× e

Dq

(
− q

ω(λ ) lnψ1(x,λ )
∫ x

0 f2(qt) ln χ2(qt,λ )dqt
)

× e
Dq

(
− q

ω(λ ) ln χ1(x,λ )
∫ a

x f1(qt) lnψ1(qt,λ )dqt
)
× e

Dq

(
− q

ω(λ ) ln χ1(x,λ )
∫ a

x f2(qt) lnψ2(qt,λ )dqt
)

= e−
q

ω(λ ) Dq lnψ1(x,λ )
∫ x

0 f1(qt) ln χ1(qt,λ )dqt × e−
q

ω(λ ) Dq lnψ1(x,λ )
∫ x

0 f2(qt) ln χ2(qt,λ )dqt

× e−
q

ω(λ ) Dq ln χ1(x,λ )
∫ a

x f1(qt) lnψ1(qt,λ )dqt × e−
q

ω(λ ) Dq ln χ1(x,λ )
∫ a

x f2(qt) lnψ2(qt,λ )dqt × e−
f2(x)W∗,q(χ,ψ)

ω(λ ) .

Hence, we see that

D∗qz1 (x) = e−
q

ω(λ ) (r(x)−λ ) lnψ2(x,λ )
∫ x

0 f1(qt) ln χ1(qt,λ )dqt

× e−
q

ω(λ ) (r(x)−λ ) lnψ2(x,λ )
∫ x

0 f2(qt) ln χ2(qt,λ )dqt

× e−
q

ω(λ ) (r(x)−λ ) ln χ2(x,λ )
∫ a

x f1(qt) lnψ1(qt,λ )dqt

× e−
q

ω(λ ) (r(x)−λ ) ln χ2(x,λ )
∫ a

x f2(qt) lnψ2(qt,λ )dqt

× e f2(x) = z(r(x)−λ )
2 ⊕ e f2(x).

It is proved similarly that the validity of the second equation in (4.1). Further, it is easy to check that (4.4) satisfies (4.2)-(4.3).

Theorem 4.2. Green’s function G(x, t,λ ) defined by (4.5) is unique.

Proof. Suppose that there is another Green’s function G̃(x, t,λ ) for the system (4.1)-(4.3). Then, we have

z(x,λ ) = 〈G̃(x, .,λ ) ,
(

e f1(.)

e f2(.)

)
〉∗,q.

Thus,

〈G(x, t,λ )	 G̃(x, .,λ ) ,
(

e f1(.)

e f2(.)

)
〉∗,q = 0. (4.8)

Putting f (x) = ln
[
G(x, t,λ )	 G̃(x, t,λ )

]
in (4.8), we conclude that

G(x, t,λ ) = G̃(x, t,λ ) .
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Theorem 4.3. Green’s function G(x, t,λ ) is defined by (4.5) satisfies the following properties.
i) G(x, t,λ ) is continuous at (0,0) .
ii) G(x, t,λ ) = G(t,x,λ ) .
iii) For each fixed t ∈ (0,qa], as a function of x, G(x, t,λ ) satisfies Eq. (4.1) in the intervals [0, t),(t,qa] and it satisfies (4.2)-(4.3).

Proof. i) Since ψ (.,λ ) and χ (.,λ ) are continuous at 0, we conclude that G(x, t,λ ) is continuous at (0,0).
ii) It is easy to be checked.
iii) Let t ∈ (0,qa] be fixed and x ∈ [0, t]. Then, we get

G(x, t,λ ) =
(

G1 (x, t,λ )
G2 (x, t,λ )

)

=

(
χ1 (x,λ )

− 1
ω(λ ) lnψ1(t,λ )

χ1 (x,λ )
− 1

ω(λ ) lnψ2(t,λ )

χ2 (x,λ )
− 1

ω(λ ) lnψ1(t,λ )
χ2 (x,λ )

− 1
ω(λ ) lnψ2(t,λ )

)
.

Thus,

ΓG(x, t,λ ) = eλ �G(x, t,λ ) .

Similarly for x ∈ (t,qa]. Furthermore, we see that

(ecosα �G1 (0, t,λ ))⊕
(

esinα �G2 (0, t,λ )
)

=
(

χ1 (0,λ )
cosα

χ2 (0,λ )
sinα

)− 1
ω(λ )

lnψ1(t,λ )−
1

ω(λ )
lnψ2(t,λ )

= 1,

and(
ecosβ �G1 (a, t,λ )

)
⊕
(

esinβ �G2

(
aq−1, t,λ

))

=

(
ψ1 (a,λ )

cosβ

ψ2

(
aq−1,λ

)sinβ
)− 1

ω(λ ) ln χ1(t,λ )− 1
ω(λ ) ln χ2(t,λ )

= 1.

5. Conclusion

In this study, the q-multiplicative Dirac system is defined. Then, some spectral properties of this problem were examined. Green’s function is
created for this system. Some properties of this function have been given.
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