
Khazar Journal of Science and Technology Volume 6 №2 2022, 85-89

 Khazar University Press 2022 DOI: 10.5782/2520-613.202.6.2.85

76

Security Analysis While Transitioning from

Monolithic Applications to Microservices

Tural Sadigov

Graduate School of Science, Art and Technology,

Khazar University, Azerbaijan

Corresponding author: tural.sadiqov@khazar.org

Abstract

Microservice architectures have evolved as an enticing alternative to more typical

monolithic software application approaches. Microservices give various benefits in

terms of code base knowledge, deployment, testability, and scalability. As the

information technology (IT) industry expands, it makes sense for IT behemoths to

adopt the microservice, but new software solutions creates new security

vulnerabilities, as the technology is young and the faults have not been adequately

mapped out. Authentication and authorization are key components of any software

with a significant number of users. However, owing to the lack of microservice

research, which derives from their relatively young, there are no specified design

standards for how authentication and authorization are best performed in a

microservice.

This thesis analizes existing microservice in order to safeguard it using a security

design pattern for authentication and authorization. Different security patterns were

assessed and different degrees of security helped in identifying an acceptable

security vs. performance trade-off.The objective was to strengthen the patterns'

validity as known security patterns. Another purpose was to establish a security

pattern that was suitable for the microservice.

Introduction

Usually in backend applications, often referred as monolithic applications, the code

is developed and deployed as a whole, single project. But in microservices, this

Security Analysis While Transitioning from Monolithic Applications to Microservices 77

artifact is divided into multiple small applications or services that can be developed,

tested and deployed independently from each other. Today most companies are

trying to shift from monolithic to microservices because of its effective approach to

development, but in the current microservices DevOps environment, there are new

and evolving challenges for developers and teams to consider on top of the more

traditional ones.

As it becomes much more difficult to maintain a microservices setup than a

monolithic one, each microservice setup may evolve from a wide variety of

frameworks and coding languages and this brings new challenges to the development

environment and security is the top one to consider.

Authorization and authentication are the foundations of security for every

application, monolithic or not. The MSA offers potential improvements at many

stages of the software development process, but it also creates new challenges.

Unsurprisingly, when multiple components of an MSA need to communicate with

one another, securing requests to and from as well as within a microservice becomes

a much more difficult task than it is for a monolithic application, where

authentication and authorization can be done once when accessing the application.

The main goal of the research is look into the security patterns that may be used to

organize authentication and authorization in a microservice to implement a security

solution.

Background

The concept of microservices has been known since the early 2000s, however the

name "microservices" only appeared in particular situations in the early 2010s

(Richardson, 2019). However, others claim it was coined as late as 2014

(Zimmermann, 2017). Still, the concept of microservices is very new when

compared to other software development methods and architectures. Microservices

can be thought as different small applications independent of each other (in reality

no services are fully independent though), so it makes the whole application more

reliable, because if some of the services is not available, it does not affect the others.

Since small services becomes large in number, Kubernetes can be used to orchestrate

the whole application by running each service in individual virtual machines. Figure

1 describes MSA and communication flow of microservices.

78 Tural Sadigov

Figure 1. Graph displaying a microservice and communication flows

So, as seen in the figure, each service can communicate with each other through API

gateway. API gateway is a middleman between services and external client requests.

IPC is the protocol used to communicate between services and the API gateway.

Hypertext Transfer Protocol (HTTP) and, by extension, Hypertext Transfer Protocol

Secure are two implementations of such a mechanism (HTTPS). Because the HTTP

protocol is stateless, there is no built-in mechanism for a server to remember any

interactions with a client. In order to safeguard resources, future HTTP requests must

remember a previously authenticated and approved client in case they need to be

reauthenticated and reauthorized. To preserve the verified status, a token comprising

user information and permissions may be supplied with each subsequent request.

The JSON Web Token is one such standard (JWT). It may be used to transfer

information in the form of a JSON object, which can then be signed or encrypted to

guarantee integrity or confidentiality. In their paper (Xu, 2019), Rongxu Xu,

Wenquan Jin, and Dohyeun Kim propose how an MSA may be protected using JWT.

It is anticipated in this technique that an API Gateway intercepts all requests so that

an authorization server may give JWTs for future requests to sensitive data services.

Moreover, OAuth 2.0 is used to secure the microservices. OAuth is an open standard

Security Analysis While Transitioning from Monolithic Applications to Microservices 79

which minimizes the number of permission stages by requesting a user to give a

service authorization to other services holding sensitive data (OAuth, 2022). Today,

the OAuth protocol is regarded outdated since its successor version accomplishes the

same function but has minimal technical similarities (Hardt, 2012).

Authentication and authorization in a Kubernetes microservice

This chapter dives into the technical aspects of the authentication and authorization

components' implementation. The authentication and authorization service

(abbreviated auth-service) were required, along with a Redis store, gateways, and

some example services (which emulates the business logic of a microservice).

Kubernetes is used to implement the microservice. Because all traffic inside the

cluster is inaccessible from the outside, an ingress controller allows communication

into the cluster from the outside (i.e., the internet or the local network in which the

cluster is implemented). The microservice is deployed in a Kubernetes cluster that

employs an NGINX ingress controller variation. The service that is to be exposed

(in this case, an edge level gateway) will be assigned an ingress object (which defines

how the ingress controller should route traffic related to the service) that specifies a

reachable URL if the requests come from a device connected to the internet or an

internal network.

The auth-service may authenticate users by interacting with an LDAP server, which

also replies with a user's roles. By providing a JWT to a logged-in user, this token

may be simply utilized to both identify a user for authentication and locate the related

roles of this user for authorization.

The services are implemented in Spring Boot and provide straightforward REST

endpoints that may either return a value directly or trigger another call to another

microservice to get further resources.

The implementation of the three distinct authentication and authorization security

patterns—edge level (3.1), service group (3.2), and service level (3.3) gateway

patterns—is covered in depth in this section

Edge level gateway pattern

The simplest of the three security patterns is the edge level gateway pattern. Despite

offering the least level of protection, it was shown to be the most popular method of

establishing authentication and authorization in a microservice. As a result, it may

80 Tural Sadigov

also be used as a benchmark against which to evaluate the other two designs (as both

are more complex and provides a higher level of security). Without initially

submitting a request to the edge API gateway, none of the services offered by the

microservice are accessible to clients or servers outside of the microservice.

Service group gateway pattern

The service group gateway design extends the edge level gateway pattern by

grouping together services that need the same degree of access to access. The auth-

service also handles this authorization. An example would be a collection of services

that all need the same role to access. This subset of services, just like the edge

gateway, would be secured by an additional gateway that is likewise located behind

the edge gateway. This adds an extra layer of security. Another feature that is

comparable to the edge level gateway approach is that communication that does not

need to transit through a gateway is not subject to authentication or authorization.

This implies that services behind the same internal gateway may send requests

without being authenticated or authorized

Service level gateway pattern

The service level gateway pattern is the third and final pattern examined in this

thesis. This security architecture necessitates that each service has its own gateway

that secures it through authentication and permission. Because it is not always

possible to have one role linked with one service, some or all of the gateways might

have the same role necessary to provide access to the protected service. While it may

seem that role verification is unneeded when two service-gateway pairs interact and

require the same role to access, it really offers a unique type of security. Because all

connections inside the microservice between its services need a security check,

services controlled by a bad actor cannot reach any other conceivable targets without

first undergoing authentication and authorization

The testing framework

This chapter discusses the two types of tests that are conducted. Section 4.1 discusses

the research methodology that influenced the testing technique. Section 4.2 covers

the security testing procedure. Finally, section 4.3 goes into depth on the load testing

that produced the most of the findings.

Security Analysis While Transitioning from Monolithic Applications to Microservices 81

Research process for load testing

The load testing software (JMeter) was used to analyze the findings and provide

numbers such as the median and average. Additional Python programs were used to

analyze the data. The Python programs employed linear regression to display the

data trend such that a forecast for how larger loads than what was tested may result

could be made. The scripts were also used to generate visual representations of the

data, such as scatter plots and box plots, in order to provide a broader variety of data.

Security tests

• The security tests examined four situations that may occur during normal use.

These were:

• Using the microservice with valid credentials

• Omitting the authorization token

• Sending an invalid token

• Sending a valid token to a user who does not have the appropriate role to

access the requested resource

Load testing

 Using JMeter load testing, the three distinct security schemes' effects on response

times were evaluated. The real loads and service should preferably be as similar to

the tested service as feasible for accurate load testing, meaning that the load

generator's delay should be as low as possible. As a result, a Spring Boot application

specifically designed for testing was installed on the machine being tested, making

all communication within the cluster local. Figure 2 shows a graphic depiction of the

location of the JMeter-running service and the flow of requests to the microservice.

Figure 2. Graph displaying the tester and measurement service in relation to

the microservice being tested

82 Tural Sadigov

Results and disscussions

Three situations were evaluated to see whether the auth-service and gateways

provide the necessary protection.

It was crucial to make sure that the security solution also rejected requests that were

found invalid since the load testing mostly focused on valid requests. The situations

listed in Section 4.2 were put to the test to confirm this. Since the token is legitimate

and the corresponding user has all necessary responsibilities for permission. When a

no or incorrect token is received, an error message with a cause is sent.

The findings of the testing are shown in this section using box plots and scatter

charts. As the number of threads rises across all security types, they show a

consistent rise in response times. What is particularly notable is that as the load

grows, the gap in reaction times between the security patterns widens. It seems that

the service level gateway pattern is more significantly impacted than the service

group gateway design. Comparing the service level gateway pattern to the other two

security patterns, this shows a quicker increase rate in response times.

For simpler comparison, Table 5.1 presents all median values. Response times for

the edge level gateway pattern increased from 1225 milliseconds for a single thread

to 2362 milliseconds for 2000 threads. This represents a growth of roughly 93%. The

comparable increase for the service group gateway pattern was 1244 milliseconds to

3086 milliseconds, or a 148% increase. Last but not least, the increase for the service

level gateway pattern was 1260ms to 4367ms, or a 247% percentage increase. There

was a 31% rise from edge level to service group, an 85% increase from edge level to

service level, and lastly a 42% increase from service group to service level when

comparing the percentage increases of the 2000 threads load across the three security

models. All percentages were rounded to the nearest integer, as you will see.

Table 1. Median response times for the security patterns

Threads Edge level gateway

response time (ms)

Service group gateway

response time (ms)

Service level gateway

response time (ms)

1 1225 1244 1260

100 1243 1284 1315

200 1248 1306 1332

300 1272 1323 1371

400 1370 1487 1473

500 1516 1719 2013

600 1555 1687 2049

700 1644 1815 2094

800 1697 1765 2536

Security Analysis While Transitioning from Monolithic Applications to Microservices 83

900 1715 2007 2639

1000 1752 2115 2687

1100 1854 2274 2740

1200 1937 2201 3065

1300 2006 2124 3292

1400 2026 2526 3447

1500 2047 2595 3388

1600 2067 2625 3750

1700 2207 2374 3892

1800 2181 2901 4017

1900 2292 2925 4145

2000 2362 3086 4367

Conclusion

It is necessary to establish what is considered a favorable outcome before

recommending a security pattern. The natural logic would be to seek a balance

between strong security and fast reaction times. However, even if a security pattern

has longer reaction times than the other patterns, it may still be considered to be

doing well in comparison to a fair benchmark. When seeking to secure a system, it

is frequently preferable to utilize technology that has been shown to be capable of

delivering the desired security. This concept guided the selection of technologies for

the security patterns, which resulted in the use of JWT, role-based authorization, and

API gateways.

In terms of performance against security, the service group gateway pattern is the

best option. There is no reason not to propose the security pattern with the highest

level of protection, as the findings indicate that the impact on performance will be

almost equivalent to that of the design with the lowest level of securityAs a result,

the service level gateway design is the preferred security pattern for the project's

microservice.

Acknowledgments

The load tests in this thesis were inspired by the performance testing in Akhan

Akbulut and Harry G. Perros's work (2019). Also The recommended solution in the

paper was one of the key sources of inspiration for what would become the most

basic layer of security: the edge level gateway design. Finally, great thanks to the

Google, which provided free 3 month trial to use all services that Gcloud offers.

84 Tural Sadigov

References

Akbulut, A., Harry G. (2019). Performance Analysis of Microservice Design Patterns,

IEEE Internet Computing. Vol. 23, pp. 25, 69.

Hardt, D. (2012). The OAuth 2.0 Authorization Framework. Available: http://www.rfc-

editor.org/rfc/ rfc6749.txt.

OAuth Core 1.0 Revision A. (2022). Available: https://oauth.net/core/1.0a/.

Richardson, S. (2019). Microservice Patterns: With Examples in Java. Manning

Publications, pp. 2, 10, 12, 13, 18, 2019.

Xu, W. J. (2019). Microservice Security Agent Based On API Gateway in Edge Computing.

Sensors, 19 (22)

Zimmermann, O. (2017). Microservices tenets. Computer Science-Research and

Development. vol. 32, no. 3, p. 10

https://oauth.net/core/1.0a/

