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Fövqəladə Hallar üçün Hibrid Çox Məqsədli Genetik Alqoritm 

Ülkər Əhmədova 

İnsan həyatından daha vacib heç nə yoxdur. Hər gün təcili yardım mərkəzlərinə 

müxtəlif vəziyyətlərlə bağlı çoxlu zənglər daxil olur. Bu vəziyyətlərin bəziləri 

risklidir, bəziləri isə yox. Tələbat yüksəkdir, lakin xilasetmə qruplarının sayı 

məhduddur. Tez və effektiv kömək göstərmək üçün cədvəl sürətli və dəqiq şəkildə 

yaradılmalıdır. Zamanın məhdud olduğunu nəzərə alsaq, ən yaxşı tənzimləməni 

tapmaq çox vaxt apara bilər. Bu problem əvəzində ən optimal yolu tapmaqla həll 

etmək olar.  

İllər ərzində planetdəki bütün canlılar kəskin şəkildə dəyişdi. Bu dəyişikliklərə 

uyğunlaşmaq üçün insanlar, heyvanlar və hətta bitkilər hər nəsil təkamül etməyə 

davam etməlidirlər. Təbiətin mürəkkəbliyi neyron şəbəkələri, süni intellekt və s. 

kimi çoxsaylı alqoritm və texnikaları ilhamlandırıb. Təkamül alqoritmləri də 

onlardan biridir və optimallaşdırma üsullarına görə dəyişir. Genetik alqoritmlər 

insanların və heyvanların daim dəyişən mühitə uyğunlaşmasının təsirinə məruz 

qalmış ilk təkamül alqoritmlərindən biridir. Bioloji cəhətdən mükəmməl insan 

olmadığı kimi, bütün problemlərin mükəmməl həlli yoxdur, lakin genetik alqoritm 

ən optimalı tapmağa kömək edə bilər. 

Genetik alqoritmin yaradılmasında ilk addım valideyn seçimidir. Ən yaxşı 

xüsusiyyətlərə malik ən uyğun olanları əldə etmək üçün seçilmiş genomların 

müxtəlif olması çox vacibdir. Seçim təsadüfi olaraq həyata keçirilir, bunun da öz 

üstünlükləri və mənfi cəhətləri var. Təqdim olunan alqoritm bir şəkildə seçim 

prosesini idarə etmək üçün Genetik Alqoritmlə birlikdə KNN alqoritmindən 

istifadə edir. Valideynlərdən biri təsadüfi seçildikdən sonra digər valideyn də 

təsadüfi, lakin fərqli sinifdən seçiləcək ki, bu da daha müxtəlif həllərin 

qoşalaşmasına səbəb olacaq. Həlllər məhlulun yaşına və onların uyğunluq 

funksiyasına əsasən qruplaşdırılır. Bu tədqiqat Fövqəladə Xilasetmə Qrupunun 
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Marşrutlaşdırma problemini həll etmək üçün edilir. Nəzərə alınacaq əsas məqsədlər 

xəstələrə çatmaq üçün vaxt, onların həyatını təhdid edən risk və xilas ola biləcək 

insanların sayıdır. Təklif olunan alqoritm 10 fərqli ssenari ilə sınaqdan keçirilib və 

daha sonra oxşar məsələ ilə bağlı mövcud araşdırma ilə müqayisə edilib. Hər iki 

alqoritmin müqayisəsinin nəticələri də müqayisə edilib və onlar göstərir ki, Hibrid 

Çoxməqsədli Genetik alqoritm yanaşması tələb olunan iterasiyaların sayını 12,28% 

azaltmışdır. 

 

 

Hybrid Multi-Objective Genetic Algorithm for Emergency Response 

Ulkar Ahmadova 

 There is nothing more important than a human’s life. Every day, emergency 

centres receive lots of calls for various situations. Some of these situations are 

risky, some are not. The demand is high, but the number of rescue teams is limited. 

To provide help fast and effectively, the schedule should be created quickly and 

precisely. Finding the best arrangement may be very time-consuming, given the 

fact that the time is limited. This can be solved by finding the most optimal. 

Throughout years all of the living creatures on the planet changed drastically. To 

adjust to these changes people, animals and even plants have to keep evolving each 

generation. The complexity of the nature has inspired numerous algorithms and 

techniques, such as neural networks, artificial intelligence, etc. Evolutionary 

algorithms are also one of them and vary by methods of optimization. Genetic 

algorithms are one of the first introduced evolutionary algorithms, which have been 

influenced by the adaptation of humans and animals to the ever-changing 

environment. Just like there is no biologically perfect human, not all problems have 

perfect solutions, but genetic algorithm can help finding the most optimal.  
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The first step in creating a genetic algorithm is parent selection. It is crucial for the 

selected genomes to be diverse in order to get the best fitting ones with the best 

features. The selection is performed randomly, which has its own advantages and 

disadvantages. The presented algorithm uses KNN algorithm along with Genetic 

Algorithm in a hybrid way to control the selection process in a way. After one of 

the parents is randomly selected, the other parent will also be randomly selected but 

from a different class, which will cause more diverse solutions to be paired. The 

solutions will be grouped based on the age of the solution and their fitness function. 

This research is made to solve the Emergency Rescue Team Routing problem. The 

key objectives which will be considered are time to get to the patients, the risk that 

threatens their lives and the number of the people that can be saved. The proposed 

algorithm was tested with 10 different scenarios, and later will be compared to an 

existing research done regarding the similar issue. The results of the comparison of 

both of the algorithms were also compared and they demonstrate that the Hybrid 

Multi-Objective Genetic algorithm approach has decreased the number of required 

iterations to converge fitness value by 12.28%. 
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1. Introduction  

The purpose of the research is to find an optimal approach to provide emergency 

help to as many people as possible in the shortest time possible. When people’s life 

is at stake, every second counts. This includes time for the arrangement of the tasks 

and locations between the rescue teams. The distance between the centre and the 

accident location, and the time it takes to reach there is one of the main objectives 

for the emergency service routing problem. Another aspect of the importance of 

effective team allocation is the cost of the operation. Sometimes, the teams are not 

equipped equally; some may have more devices which are needed to specific cases, 

while others have to utilize the basic equipment. The demand for emergency 

services stays high even with the rapidly evolving technology. Finding the best 

route considering all of the details of the situation can be very time consuming and 

even in some cases counter-effective, given the fact that there is a high possibility 

that the person needs to be immediately rescued. In some cases, when the number 

of accidents is very high, evaluating all of the existing combinations can take hours. 

This defeats the purpose of the emergency service, because this can cause serious 

delays.  

Other important aspect of Emergency Service Routing problem is the seriousness 

of the accident. Needless to say, the more serious the situation is, the faster the 

rescue teams should arrive to eliminate the risk for the person’s life or health. 

The last aspect that will be mentioned is the number of people at the location. 

Naturally, the teams should first head to the places where the number of people that 

need urgent help is higher. This way, there will be more saved people without 

wasting time on the road, and the rescuers can help several people simultaneously. 

Instead of finding the best solution, with the disadvantage of time being spent on 

the searches, in this paper, the optimal solution is found. Numerous studies have 
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shown that genetic algorithms can greatly help with the optimization of the solution 

of the defined problem. Genetic algorithms produce solutions that can be very close 

to the best solution and require less time. 

The contributions of this paper consist of the following points: 

• Creating a Genetic Algorithm with implementation of KNN algorithm in the 

selection phase to regulate the chromosome selection to pair. This will insure 

some more diversity of the picked chromosomes. This step will reduce some 

randomness from the usual genetic algorithm. 

• Creating a fitness function that will consider 4 objectives:  

o Time needed to reach the accident location from the emergency centre 

o Time needed to reach the accident location from another location 

o The risk for the people’s life 

o The number of people at site 

• Comparison of the proposed algorithm with an existing study. The study is 

related to Emergency Medical Service routing problem, and consists of 2 

parts. For comparison only 1 part will be used, and it is the part where the 

routing problem is being optimized.  

1.1. Genetic Algorithms 

In the recent decade, evolutionary algorithms have become a popular optimization 

and search approach. Evolutionary Algorithms are a subcategory of Evolutionary 

Computations and are part of a group of current heuristic-based search methods. It 

becomes an effective way of problem solution for extensively used global 

optimization issues because to its flexible character and resilient behaviour 

acquired from Evolutionary Computation. It works well in a variety of high-

complexity situations.  
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Evolutionary algorithms use iteration through generations with individuals 

evolving each iteration. In genetic algorithms the individuals are represented in a 

form of chromosomes. Each of the chromosomes consists of several genes which 

contain a piece of information within themselves [12]. These genes will be mixed 

and altered throughout the evolution process which will result in creating new 

chromosomes that will be named “offspring chromosomes”. Depending on the 

selection method chosen, the population consisting of parent chromosomes can 

either be fully or partially replaced by the newly created child chromosomes.  

The main operations performed on the chromosomes each iteration are [9]: 

1. Selection – the parent chromosomes are chosen  

2. Crossover – result of pairing of the parent chromosomes 

3. Mutation – altering a gene in the resulted chromosomes 

1.1.1. Population Initialization 

The first step in genetic algorithm is population initialization. The population will 

be the space of search of the defined problem. In that research, the initial 

population is randomly generated, limited by the following conditions: 

1. All of the emergency locations will be included in the chromosomes as genes 

2. None of the genes (locations) should be repeated in the chromosome 

3. Each of the teams should have at least 1 location which they will be headed 

to 

1.1.2. Selection 

There are various selection methods, the main being Roulette wheel selection:  

• Roulette wheel selection – going by the name of Fitness proportionate 

selection. All of the individuals for the next generation are chosen using the 

roulette wheel technique. In a genetic algorithm, it is a common selection 
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strategy. Each individual's relative fitness (ratio of individual fitness to 

overall fitness) is used to create a roulette wheel. 

• Tournament selection - In a Genetic Algorithm, Tournament Selection is a 

Selection Strategy for picking the candidates the best fitting values out of the 

most recent generation. After that, the selected candidates are moved on to 

the next generation.  

• Rank selection first rates the existing chromosomes, and then each 

chromosome's fitness is set on by that ranking. The worst will have fitness 

number one, the 2nd worst will have fitness number two, and so on, while the 

best will have fitness N which is the amount of chromosomes in population. 

Following that, all chromosomes have a possibility to be selected.  

• Elitism selection – The goal is to sort the chromosomes in decreasing order 

of fitness. Afterwards perform the selection to each of the arranged set's two 

chromosomes. The Genetic Algorithm will then be used between weak and 

strong chromosomes in this manner. This indicates that no Genetic 

Algorithm can be used to distinguish between weak and strong 

chromosomes.  

• Steady State Genetic Algorithm – or simply SSGA, is the type of selection in 

genetic algorithms where 2 randomly parents are selected and the resulting 

chromosomes take the place of the 2 chromosomes with the lowest fitness 

values. The key principle behind SSGA is that a significant proportion of 

chromosomes would be passed along to the following generation. Each 

generation, a few the ones with high fitness, chromosomes are chosen to 

create new offspring. Then certain chromosomes, with lowest fitness 

function, are withdrawn, and the new child gene is inserted instead. The rest 

of the population is passed on to future generations [7]. 
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1.1.3. Crossover 

After the parent chromosomes are chosen, the next operation is performed, 

which is crossover. The crossover operator, also called the crossover, is the 

main genetic operator by which genetic material is exchanged between 

individuals.  It simulates the process of crossing individuals.  A point within a 

chromosome is randomly determined at which both chromosomes divide into 

two parts and exchange them. This point is called the crossover point. There are 

3 main classes of crossover [25]:  

1.1.3.1. Standard crossover 

• 1-Point crossover – In this type or crossover operation, 1 point is randomly 

selected which will divide both of the parent to later combine them to create 

2 new chromosomes. After the chromosomes are divided, the first fragment 

of the first parent is merged with the second fragment of the second parent 

and vice versa. The image below shows how the parent chromosomes divide 

and merge, where the yellow genes belong to the first parent and the green 

genes belong to the second parent.  

 

• K-Point crossover – This type of crossover is similar to 1-point crossover. 

Here, instead of select 1 random point for the chromosomes to divide, there 

are k points. Similarly to 1-point crossover, there are 2 parent chromosomes 

that interchange their genes, but in k point crossover, 1 offspring can contain 
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more than one segment of each of the parent chromosomes. In the image 

below the yellow genes belong to the first parent and the green genes belong 

to the second parent.  

 

• Shuffle crossover – This method is one of the fundamental crossover 

methods. Just like in 1-point crossover, a single crossover point is randomly 

chosen. However, before conducting the crossover, the genes in the parent 

chromosomes are randomly shuffled, and the switch is then made based on 

the new locations. The shuffle is the same for each of the parents. The 

positions are all reshuffled after the crossover. As a consequence, any 

positional bias is eliminated since the variables are shuffled randomly every 

time the crossover is performed. In practice, this strategy is comparable to 

the uniform crossover technique. 

The steps are listed as follows: 

1. Choose Shuffle points 

2. Shuffle the genes as defined by shuffle points 

3. Choose and perform 1-point crossover point 

4. Choose unshuffled points same as shuffled points 

5. Unshuffle the genes in the offspring chromosomes 

• Uniform crossover - This type of crossing is radically different from the 

previous types. Here, each gene of the offspring is generated by copying the 
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corresponding gene from the first or second parent, that is, each position is 

potentially a crossover point. 

To do this, a binary crossover mask of the same length (with the same 

number of bits) as the chromosomes of the parents is randomly generated. 

The parity of the mask bit indicates the parent from which the child's gene is 

copied. For clarification, let's say that 1 corresponds to the first parent, and 0 

to the second. For a mask [1 0 0 1 0 1 0], the uniform crossover will be done 

in the following way: 

 

 

• Average crossover – this type of crossover is based on the value of the genes 

of the parent chromosomes. Here 2 parent chromosomes create only 1 

offspring. The values of the genes from each of the parent are taken and the 

averages of these values are calculated. Later these calculated averages form 

the new offspring chromosome.  

 

1.1.3.2. Binary Crossovers: 

Random Respectful Crossover – Takes two parent chromosomes for crossover, 

and creates new offspring chromosomes using the parents' similarity vectors. It 
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first produces a similarity vector which includes the values of the parent if both 

genes of the parent chromosomes have the exact same value, else the 

similarity vector includes null value for that gene. Following the generation of 

the similarity vector, two offspring chromosomes are formed deriving from the 

similarity vector's values. If the similarity vector includes one, both children's 

genes are set to one, and if it contains nine, both children's genes are set to 

zero. Aside from that, if any gene in the similarity vector has a null value, the 

child gene is chosen using a uniform random real number.  

• Masked crossover: To decide which bits of each parent chromosome are 

inherited by the child chromosome, the Masked Crossover operator uses a 

mask vector. The duplication of the parent chromosomes' bits is the initial 

phase. The first parent chromosome's bits are copied to the first offspring, 

and the second parent chromosome's bits are copied to the second offspring. 

In the next phase, the child chromosomes exchange bits at points where the 

parent's mask vectors are equal to 1, indicating domination of that parent at 

that position, and the other parent's mask vectors are equal to 0.  

• Elitist crossover: The crossover process always comes before the selection 

process in a normal genetic algorithm. Both techniques are combined in the 

EX approach. The entire population is randomized at random in the first 

stage. Then, by crossover, two new vectors are formed from each 

consecutive pair of parental vectors. Two best vectors are selected from a 

'family' and deployed as offspring in the following population. The 

traditional method of elitist selection, which is applied to the entire 

population, is often the cause of the algorithm's premature convergence. 

Applying elitist selection on a "family" level reduces this risk.  



13 

 

1.1.3.3. Application dependant crossovers 

• Crossover for Traveling Salesman’s Problems 

One of the main conditions of Traveling Salesman’s Problem is that the 

cities should not be repeated and all of the cities should be visited. When 

performing Standard crossovers on these problems, in most cases the genes 

will be repeated. This problem can be solved by using crossover operators, 

specifically designed for TSP problems. There are a number of these 

crossovers: Order-Based Crossover (OBX), Modified-Order Crossover 

(MOC), etc. 

• Other crossover application [25]: 

Some other problems that require special crossover operators are: Object 

classification problems, Crossover for Sudoku problem, Crossover for Graph 

Colouring Problem (for Parallel GA), etc. 

1.2.3. Mutation 

Mutation is a genetic operator which is used to keep genetic variety in a population 

of genetic algorithm chromosomes from one generation to the following. Without 

mutation, the Genetic algorithm may be stuck with the same set of solutions due to 

it simply exchanging some parts. Changing one of the genes may affect the fitness 

value greatly. There are several types of Mutation operators:  

• Bit flip [22]: Bit-flip mutation is performed on binary represented genes. In 

this type of mutation, 1 or more genes are selected and the values are flipped, 

if the value of the gene was originally 1, then it will be changed to 0, and 

vice versa. The example of the bit-flip mutation operation is presented 

below: 

1 0 1 1 0 1 0 1 1   →   1 0 0 1 0 0 1 1 1  
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In this example, the red ones are the selected genes for bit flip mutation 

operation.  

• Boundary – this mutation operator is used with genes with float values. The 

boundary mutation randomly chooses one gene and then replaces the value 

with either upper or lower value.  

• Uniform – uniform mutation operation is used with both integer and float 

type genes. First a random gene is selected and then it is replaced by a 

random number from the range defined by the user.  

• Swap – swap mutation is especially useful with problems like TSP. As 

mentioned before, the cities in TSP problem cannot be repeated in one 

solution. In this case one of the best solutions will be swap mutation. The 

principle of this mutation operator is choosing 2 random genes and swapping 

them. So, if the original solution is 1, 2, 3, 4, 5, the mutation result can be: 1, 

5, 3, 4, 2. 

• Scramble Mutation – Scramble mutation is also one of the possible mutation 

types for TSP problem. A portion of the chromosome is selected and then 

displaced. It is very similar to Swap mutation described above, but there are 

2 key differences: First one is the number of genes affected. Swap mutation 

takes 2 genes, whereas scramble mutation can take more than 2. The second 

difference is that in Scramble mutation, the genes which are being affected 

are consecutive.  

• Inversion mutation – Inversion mutation operator also makes changes in a 

portion of the chromosome, but in this case, the genes are being inverted. For 

example, if the original chromosome is represented as [1, 2, 3, 4, 5], the 

Inversion mutation result can be [1, 2, 5, 4, 3], where the last 3 genes were 

selected for the mutation to be performed.  
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1.3. KNN Algorithm 

 Machine learning (ML) is the science of computer systems which is able to learn 

from data and experience to upgrade themselves automatically. It is closely related 

to Artificial Intelligence. Machine learning algorithms generate a training data-

based model to create predictions or decisions without forcing to be specifically 

programmed to do so. ML algorithms are implemented in a broad variety of fields, 

some of them being email filtering, fraud detection, medicine, marketing, targeted 

advertisement, etc.  

ML is tightly linked to computational statistics that concentrates on generating 

predictions with computers; nevertheless, statistical learning is not all about 

machine learning. The science of ML aids from the studies of mathematical 

optimization due to the fact that it provides techniques, concept, and fields of 

application. There are 3 learning methods in ML: Supervised Learning, 

Unsupervised learning and Reinforced Learning.  

Supervised learning is the most used and researched kind of ML since it is easier to 

train a device that has chosen data. This learning method uses labelled data, which 

is called training data, to determine the labels of the test data, which is the part of 

the data that needs to be classified or predicted. Based on what one wants to 

forecast, supervised learning may be used to unravel 2 sorts of problems: a 

regression problem and a classification problem.  

1.3.1. Regression task: 

Regression is a statistical method used in business, marketing, and other areas [14] 

to determine the strength and type of a link concerning a dependent variable 

(usually represented by Y) and a collection of other variables (well-known as 

independent variables). Regression may be used by investment and financial 
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managers to evaluate assets and analyse relationships between elements such as 

commodity prices and the stocks of firms that deal in those commodities. When 

attempting to forecast continuous data, such as the cost of a house or the 

temperature outdoors in degrees, regression should be used. Because the value can 

be any number with no constraints, this task type does not have a defined value 

limit.  

Linear regression models, in particular, demonstrate how one or more explanatory 

factors may explain a portion of the natural individual-to-individual variance in a 

continuous response variable. In my research I found it more suitable to proceed 

with classification task method. 

1.3.2. Classification task: 

The Classification method is a Supervised Learning strategy that determines the 

category of new observations using training data. The process of system learning 

from a data collection or observed data and then categorizing freshly submitted 

observations into one of several groups or groupings is known as classification. 

True or False, Spam or Not Spam, 1 or 0, and so forth. Classes are sometimes 

known as labels, or categories. Different from regression, this method generates a 

class in contrast of a value, like "Digit or Letter," "White or Black", “Normal or 

Suspicious”. Since the Classification approach is a supervised learning method, it 

makes a use of labelled input data, that suggests that it contains both input and 

output. There are several kinds of classification algorithms, such as: 

• Logistic Regression  

Logistic Regression is a ML classification algorithm which employs 1 or more 

independent variables in order to produce an output [11]. A binary variable is 

needed to assess the result, and that leads to a conclusion that there are only 2 

potential results. The resolution of logistic regression is to determine the most 
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suitable fit between a dependent variable and a collection of independent 

variables. Logistic regression is used to describe the way a group of independent 

aspects has an effect on the outcome of the dependent variable.  

• Stochastic Gradient Descent 

Stochastic Gradient Descent is an extremely effective and straightforward 

method for fitting linear models. When the sample data is vast, Stochastic 

Gradient Descent is especially beneficial. Various loss functions and penalties 

are supported for categorization. Computing the result from every training data 

point and computing the update instantly is referred to as stochastic gradient 

descent.  

• Naive Bayes Classifier 

Naive Bayes Classifier is a classification method founded on Bayes' theorem 

[26], that presumes the predictors are independent. Even though the qualities are 

dependent on each other, every one adds to the prospect individually. This 

model is easy to build and is particularly good for big datasets. The classifier 

uses just a little amount of training data to compute the needed parameters.   

 

• K-nearest Neighbours Classifier 

KNN is one of the essential Supervised Learning techniques. It is based on the 

fact that data points, which are located close to each other, should share enough 

characteristics to be considered being related to the same class [6]. In the image 

below, we can see a graph, with the train data, that is used to train the machine. 

Each of the colours represents one of the available classes. For example, let’s 

assume that the green dots are representing the birds’ category in animal 

distinction algorithm, the red ones represent mammals and the blue ones 

represent fish. The data points are illustrated in Figure 1. In the graph we can 

see that the dots related to each of the classes are located closely to each other.  
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Figure 1. Train data for the classification problem 

Let’s assume new data was added, that needs to be categorized. There are 5 new 

points. The points are added to the previous graph as black dots, and are illustrated 

in Figure 2. 

 

 

Figure 2. Train data and Test data (black) 

To classify each of these points using KNN algorithm, we need to find the distance 

between each of the new points and the old points. The newly added data is called 
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test data. First, we need to find the distance between the points from test data and 

every point of train data. To find the distance, Euclidean distance formula is being 

used. The formula is shown in Eq.1: 

d = √(𝑥1 − 𝑦1)
2 + (𝑥2 − 𝑦2)

2 

Eq 1.  Euclidean distance 

After finding the distance between each of the points, we need to determine the 

number of the nearest neighbours, based on which the point from test data will be 

classified. For this example, let’s assume the k number, the number of closest 

neighbours will be 3. The closest train data points to the first point are 1, 2, and 4. 

Their classes are red, red, red, so the class of the 1st point is red. Similarly, the 

closest train data points to the second point are 2, 5, and 7. Their classes are red, 

green and green, so the class of the 2nd point is green. The closest train data points 

to the third point are 7, 8, and 10. Their classes are green, green and blue, so the 

class of the 3rd point is blue. The closest train data points to the fourth point are 5, 

6, and 8. Their classes are green, green and green, so the class of the 4th point is 

green. The closest train data points to the fifth point are 8, 9 and 10. Their classes 

are green, blue and blue, so the class of the 5th point is blue. To clearly see the 

principle of the algorithm, the train data is now updated and includes the recently 

added test points. All of the points are shown below in Figure 3, with the colours 

being distributed respectively. As we can see, the newly added data points are close 

to their classes. 
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Figure 3. Test data is classified 

2. Literature Review  

In this section we discuss the existing solutions to emergency and rescue optimal 

route problems: 

The first papers trying to solve this problem is presented by Bo Ai, Benshuai 

Li, Song Gao, Jiangling Xu, Hengshuai Shang [3].The most crucial aspect of 

maritime search and rescue (SAR) operations is making resolutions. The way to 

swiftly react to incidents and build an emergency response plan is a significant 

aspect determining efficiency and success rate while making maritime SAR 

decisions. The majority of marine SAR emergency response plans are created using 

an amalgamation of drift prediction models and SAR expertise. SAR resource 

scheduling and task assignment are both lacking. The main goal of this research is 

to investigate the feasibility of formulating maritime SAR emergency response 

plans utilizing an intelligent decision-making algorithm in order to achieve more 

scientific outcomes. The key technologies involved in developing marine SAR 

emergency response plans are discussed in depth in this study, and the maritime 

SAR decision problem is broken down into three sub-problems: SAR area 

determination, SAR resource scheduling, and SAR task assignment. 
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The following are the paper's main contributions: 

1. The optimal sea search hypothesis has been enhanced. 

By introducing the POR, the notion of POSSAR is proposed and employed 

as the purposeful function of the resource scheduling model. That model 

prioritizes life-saving assistance, which is more reconcilable with actual SAR 

operations, and the resulting resource allocation plan is more logical. 

2. GSAA solves the resource scheduling model, that can discover the global 

optimal solution while maintaining search efficiency and avoiding falling 

into the local optimal solution. 

3. A novel regional job assignment method is being developed based on space-

time properties. The algorithm generates a plan that covers the whole search 

region while taking task priority into account and avoiding overlapping task 

areas. This not only minimizes the likelihood of missing targets and 

enhances SAR efficiency, but it also cuts down on redundant searches, 

saving time and money in the process. Furthermore, the system executes 

phased search job planning, which increases the synergy between the SAR 

units. 

4. The key difficulties in every section of the maritime SAR decision are 

puzzled out using various intelligence algorithms, and a full and optimal 

decision-making scheme is obtained quickly and intelligently, which not 

only reduces accident response time but increases SAR efficiency, too. 

The decision algorithm for the SAR emergency response plan suggested in this 

research displays evident optimization through example verification, and can serve 

as a model for future marine SAR emergency response plans. 

It will be looked upon into some of the unsolved decision-making difficulties in the 

future (for example, dynamic adjustment of decision-making programs, 

collaborative SAR of aircraft and ships, and so on). There are two key ideas at the 
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moment: using Adversarial Networks to optimize SAR decisions by imitating 

effective SAR operations; using Reinforcement Learning to improve SAR 

decisions. Adapting to realize interaction between agents (SAR units) and their 

surroundings (SAR environment), resulting in improved agent behaviour. 

The second study was proposed by Ritu Pal, Manu Srivastava, Sudha Rani, 

Neeraj Kumar [19]. Reporting a flood disaster is crucial for potential victims and 

rescuers alike. Android applications are assisting flood survivors and rescuers in 

determining the exact location of the flood. Genetic algorithms may play an 

essential role in route optimization by providing precision in localization and route 

selection. MyDisasterDroid is a smartphone application that uses the same type of 

concept for disaster reporting (MDD). This application assists in providing accurate 

disaster location information to relief workers and rescuers; however it can be 

improved by correcting its methods. After pointing out certain typical flaws, this 

paper offers suggestions for improving it. This research also suggests that a 

parameter be included for a better route optimization approach. Slop has been 

treated as a parameter with distance to discover an initial solution in the path to the 

closest reservoir. Researchers employ geolocation as an initial input, with the best 

path being the intended outcome.  

This application uses a genetic algorithm with a specific formula to discover the 

best path between two points. Researchers have used the concept of the travelling 

salesman problem to determine a course for water flow in order to avoid floods or 

large amounts of stored water at a location. In the event of a flood, the water does 

not return to its original location. The travelling salesman problem, in which 

geographic locations exhibit city coordinates and water represents the travelling 

salesman, is analogous to determining the optimal way to change the flow of water 

along distinct geographic locations. In this scenario, the TSP provides the shortest 

path to the city's empty pond or reservoir as a destination. With the use of GA, 
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these different paths can be used to select the best ones. After receiving location as 

an input, this algorithm generates the initial solution. MDD is based on the concept 

of geo-location for providing inputs to the genetic algorithm. It locates points of 

interest utilizing an MDD-installed application that sends the location to MDD 

through text or SMS. Distances between sites are computed using TSP. MDD 

employs a flow diagram but lacks the ability to detect a inefficacious route in a 

disaster, which is a real possibility. Failed disaster initialization routes are a major 

issue for every disaster. MDD for Android uses Google Maps to display its 

MapView feature. MapView offers a variety of map views, including satellite, 

street, and traffic views. Because Google Maps is unable to give real-time photos 

due to various delays, MDD has a longer delay, which is significant in disaster 

management. MDD allows for non – static recalculation of routes based on TSP 

calculations based on the Euclidean distance formula. However, using the 

Euclidean formula for a catastrophic situation has significant drawbacks. When 

combined with the sea height and slope of the place, the Euclidean distance 

formula may yield the most suitable distance between two coordinates. The concept 

of identifying a water flow route is similar to finding a route for survivors or 

rescuers in MDD. The researchers created a novel metric called slope from the 

water point to the nearby reservoirs that is adequate for water flow. To determine 

the starting solution, this slope will be combined with the distance. As a slope from 

one place to another, the utility of slope has been evaluated from negative to 

positive. Three variables are used as inputs to GA for a solution: coordinates of two 

points, distance, and slope. GA examines fitness to discover the best route, and then 

delivers a solution following crossover and mutation. Each iteration attempts to 

identify the minimal fitness after being applied to an individual, which is frequently 

referred to as a gene in genetic algorithms. In the case of flood management by 

moving water to the closest reservoir, the goal is to determine the shortest route, 
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which implies that all routes and slopes are unique. In that case, solutions will be 

chosen based on their ability to produce offspring, or new solutions.  

On the basis if this paper it is fair to say, that after improving some features of the 

algorithm of MDD, it can be safe to be used in disaster management systems for 

flood avoidance purposes.   

The third approach regarding the problem was offered by Mazin Abed 

Mohammed, Mohd  Khanapi Abd Ghani, Raed Ibraheem Hamed, Salama A. 

Mostafa, Dheyaa Ahmed Ibrahim, Humam Khaled Jameel, Ahmed Hamed Alallah 

[17]. The vehicle routing problem (VRP) is one of several complex challenges for 

which no perfect solution exists. Many researchers have conducted countless 

studies over the previous few decades, employing a variety of methods and 

strategies. However, obtaining the lowest cost in any research is quite difficult. 

They have, however, developed approximation solutions which vary in efficiency 

based on the search space. The difficulty in this research is the following: there are 

a lot of trucks that are utilized to transfer applications to a specific location. Every 

day, each van departs from a central place at a separate time. The truck collects 

applications from initial coordinates and transports them to the instance site via a 

variety of routes, returning to the initial location at precise times each day, 

beginning early in the morning and ending at the conclusion of official working 

hours, under the following conditions: Each route will visit each place once, and 

each vehicle's capacity is sufficient for all applications covered in each route.  

Using the K-Nearest Neighbor Algorithm, this study attempts to determine an ideal 

route outcome for VRP (KNNA). To acquire an ideal VRP resolution with the 

objectives as follows: to decrease the distance and time for all routes, resulting in 

faster client transportation to their destinations; to use the capacitated vehicle 

routing problem (CVRP) model to optimize the solutions. The method was 

provided in two stages: first, the algorithms were changed to address the research 
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topic, which had a different procedure than the standard algorithm. The method's 

structure is such that it does not call a need for a huge database to keep the 

population, that speeds up the program's execution to achieve the solution; second, 

the algorithm has demonstrated its ability to solve the issue and identify the 

quickest route. The findings of this research revealed the following: A dynamic 

KNNACVRP universal list; KNNACVRP's assessment measure was identified and 

developed. The CVRP model is used to optimize VRP services in this study. The 

K-Nearest Neighbor Algorithm (KNNA) is used to address this issue since it is 

capable of tackling a wide range of real-world problems. All of the KNNA 

procedures are performed by the algorithms. The fitness value is computed in a 

straightforward fashion as a distance’s function because the smallest cost of the 

study issue is dependent on lowering the distance. The KNNA is structured in such 

a form that the search process is sped up. Despite the problem limits, the algorithm 

meets the purpose of the study by enhancing the distance of transportation paths. 

The method was put in application to the issue online to evaluate its validity and 

reliability, and it was successful in resolving the issue and providing the quickest 

path in very little amount of time. The availability of a sole variable in the study 

topic (distance), as well as the small and finite number of station stops, makes 

finding a solution relatively simple, and does not highlight the KNNA's strength in 

dealing with complicated and confusing situations. There is a single physical route 

that connects the various locations for gathering together kids, preventing the 

option of identifying additional physical routes and weighing them up to find the 

lowest distance path. Another variable, such as a heuristic function to be regarded 

as the road's slope or any other factors such as traffic jams, road smoothness, etc, is 

recommended. The slope will be compounded by the distance between two 

subsequent bus stops to create a weight. This will assist in determining the precise 

route time. The goal of the study was to find the optimum solution to the VRP 
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problem. The purpose was to lower the cost of transportation, which is a service 

that is supplied to the problem for free. In conclusion, it is proved that the KNNA is 

effective in solving the VRP and producing estimated results because it is eligible 

for a wide range of difficulties. The KNNA's strength stems from its ability to be 

altered to solve any issue by combining multiple ways or adjusting its methods as 

indicated by the situation, as this study has done. 

Another approach I have reviewed was proposed by Gloria Cerasela Crişan, 

Camelia-M. Pintea and Vasile Palade [8]. The successful management of 

emergency circumstances requires the strategic design of logistic networks such as 

highways, trains, and mobile phone networks. Geographic coordinate systems 

could be utilized to create new traveling salesman problem (TSP) cases 

incorporating GIS elements. In this paper the researcher writes about a framework 

for creating a systematic succession of instances. The current research presents a 

recurring framework for creating a systematic succession of instances using the 

Lin–Kernighan heuristic. The system aims to simulate real-life random 

unpropitious events that affect vast areas, such as heavy rains or the entrance of a 

polar front, as well as focused relief provision in the early stages of a reaction. 

They utilization of the first Romanian TSP instance containing the main human 

settlements as a proof of concept for this framework, and generate numerous 

sequences of instances from it. The goal of this study is to create new approaches 

for assessing hazards in large-scale, complicated networks. The two primary 

benefactions of this research (the Romanian GIS-TSP instance and the ALTER-

FTSP structure) work together to achieve this goal: the former provides real-world 

support for the latter. The instance is a complex network of spatial points, and the 

framework is a flexible and broad description of the network evolution, as the real 

world operates in Space+Time dimensions. As a result, they are complementary. A 

situation is described that includes uncertainty. This technique might be employed 
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in transportation safety: after an earthquake, a swarm of drones would investigate 

the randomly shattered sensors from a wide territorial road network. 

There’s another study by Siba Prasada Tripathy, Samarjit Kar and Tandra Pa, 

who suggested a CSP algorithm. The rescue or relief team tries to service each of 

the areas in the impacted area during a humanitarian relief operation and mass 

fatality management [24]. It is impossible for the crew to reach every node in a 

single effort due to a lack of time or resources. As a result, traveling some of the 

locations and inviting locals to the visited location is a better strategy to complete 

the assignment. On a given completely connected graph, the Traveling Salesman 

Problem (TSP) aims to determine the least cost Hamiltonian path. There are 

multiple TSP versions that consider various aspects and are solved using various 

approaches. TSP is a generalization of the Covering Salesman Problem. J. R. 

Current and D. A. Schilling first developed CSP in Transportation Science, vol. 23, 

where the goal is to discover a Hamiltonian tour with a minimum length that visits 

a subset of nodes while maximizing the covering nodes residing within a 

predetermined distance but not in the tour [13]. The authors created a modified 

Metameric Genetic Algorithm (MGA) [22] for CSP that includes a new crossover 

operator called the Global Parent Crossover operator (GPX). 

The suggested MGA is then applied to 16 normal TSP instances using the GPX 

operator. Each customer covers its 7, 9, and 11 closest customers in the usual 

instances, resulting in 48 instances. The new MGA's findings were then compared 

to two existing methods: Current and Schilling, as well as Memetic Algorithm. The 

results show that the suggested MGA GPX heuristic outperforms the Current and 

Schilling heuristics for covering salesman problems with all customers covered. 

The suggested technique outperforms the Memetic algorithm by 25% in terms of 

execution time, but it increases the length of the tour by 14%. The suggested CSP 

algorithm's purpose is to cover all consumers in a devastated area by traversing a 
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subset of facilities, where a node can be either a customer or a facility, and it can be 

used in real-world settings such as after natural or man-made disasters. The results 

demonstrate that the suggested metaheuristic algorithm outperforms two other 

algorithms. This challenge can be extended in the future for uncertain environments 

where the cost of the edges or the tour demand are not represented by clear 

quantities. 

Among the papers I reviewed, in B Fernandez’s study of “Travelling 

salesman problem: Greedy single point crossover in ordinal representation”, the 

author compares GSPC, TPC and SPC [11].  Genetic Algorithms (GA), Simulated 

Annealing (SA), and Tabu Search (TS) are the most well-known metaheuristic 

algorithms [1]. The choice of genetic operators, particularly selection, crossover, 

and mutation, has an impact on GA performance [2]. In GA, the crossover operator 

is crucial since it is utilized to transmit information during the solution search [5]. 

One of the most basic crossover operators is single point crossover (SPC). The path 

form is the most used representation for solving TSP problems with Genetic 

Algorithms, due to its intuitive representation and positive performances. 

Unfortunately, this representation cannot be used with traditional crossover 

operators since the ensuing children may have redundant alleles, resulting in the 

loss of another point, which is incompatible with the TSP notion. Ordinal 

representation coding can be used with traditional crossover and mutation 

operators; however the experimental results are mixed. A greedy algorithm is one 

that, when addressing a problem, always chooses the option that appears to be the 

best at the time; the option is optimal locally in the hopes of leading to a globally 

optimal solution [21]. The efficiency of GA in the ordinal representation coding 

scheme has to be enhanced when applying the greedy algorithm on the SPC 

operator to obtain the global optimal solution. The results of this study's tests 

demonstrate that the GSPC operator has the best fitness, however it takes longer to 
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compute. TPC provides the quickest computation time. Because the testing of 

candidate two alleles from parents is done before allele exchange, GSPC prevails in 

best fitness. This results in a long computation time. TPC has a short computation 

time because the allele exchange between the two parents occurs from the first to 

the second point, while the second point is not invariably the site of the last gene, 

as is the case with SPC. 

In final paper I reviewed, by M. Pallin, J. Rashid and P. Ögren, covering  "A 

Decentralized Asynchronous Collaborative Genetic Algorithm for Heterogeneous 

Multi-agent Search and Rescue Problems," [20], the researchers propose a highly 

decentralized version of the Genetic Algorithm (GA) for combined task assignment 

and path planning, in which each agent only knows its own capabilities and data, as 

well as a set of so-called handover values communicated to it from other agents 

over an unreliable low bandwidth communication channel. These handover values 

are used with a local GA with no other agents to choose which tasks to perform and 

which to delegate to others. They compare our technique to a centralized version of 

GA and a partially decentralized version of GA in which calculations are local but 

all agents require comprehensive information about all other agents, such as 

position, range, battery, and local obstacle maps. We analyze the three algorithms' 

solution performance as well as the messages transmitted, and find that the 

suggested algorithms have a slight performance loss but a large reduction in 

necessary communication. 

 

 

As one of the main goals of the emergency rescue team is fast response, in this 

study I decided to implement genetic algorithm in order to achieve the optimal task 

arrangement between the teams. To try to decrease the calculation time, instead of 

the randomly choosing the parent chromosomes for pairing, KNN algorithm will be 
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used. This will provide the crossover with more diverse chromosome pairs, which 

will lead to creation of more diverse offsprings.  

 

3. Implementation 

3.1. Methodology 

The code was implemented on Jupyter Notebook. The chosen programming 

language was Python version 3. At first, to simulate the emergency situation we 

need to create an environment for the said situation. Suppose there are 2 emergency 

centres in the town. The main office that receives calls for the mentioned centres 

receives 5 calls in total. For simplicity, let’s assume that the centres are equipped 

equally and the knowledge, experience and the ability of the rescuers are the same. 

To assign the tasks between these teams and the locations that the rescuers will go 

first, the Hybrid Multi-Objective Genetic Algorithm was implemented. The risks 

that will be considered in the algorithm are calculated as described in the situations 

below.  There are 10 locations the rescuers teams should go to and the situations 

include: 

1. 1 person. 60 years old, male. Has a heart attack. Had previous issues with 

regard to his heart condition. Is still conscious. The life threatening risk from 

heart attack is very high, but considering the patient is still conscious, the 

risk rate will be considered as 8 for this case.  

2. 1 person. 34 years old, male. Has deep cut in his arm leg. The injury was 

received at a construction site. This increases the level of infection, which 

may spread out from the open wound, which increases the risk rate. The 

person is half-conscious and lost 400ml of blood. The cut didn’t injure the 

artery, but the vein was damaged severely. Considering the conditions 

mentioned previously, the risk rate will be put up as 7.  
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3. 2 people. First one is 52 years old woman. No previous health related 

conditions. Symptoms of stroke were described. The woman is already 

unconscious for 5 minutes. The average time the help should be provided to 

the patient is 3 hours. For some cases, the patient can be saved even after 4.5 

hours. This time is considered for only saving the life of the patient. For the 

patient to have as little consequences from the stroke as possible, the help 

should be provided within 1 hour. Since the risk for the life of the person 

with a stroke is already very high, and for the reason that the patient is 

already unconscious, which could mean that the person might have the 

medical condition for approximately somewhere between 20 minutes to 40 

minutes, which leads us to the fact that the help should be provided in range 

between 20 minutes to 40 minutes. This lead us to the result that the risk for 

this person’s life is as high as 9.  

 

The other person at the same location is the first patient’s daughter, 20 years 

old, who got accidentally cut while trying to catch the first patient from 

falling. The cut didn’t damage the artery but was very deep regardless. The 

patient lost a relatively dangerous amount of blood. Considering the 

situation, the risk for this patient is calculated to be 7. 

4. In the fourth location, the patient is a 7 years old child, who accidentally 

swallowed a cap of a pen and is having difficulties breathing. Because the 

caps have holes on the tops of them to prevent suffocation, the patient can 

still breathe, but regardless, the cap of the pen blocks a big portion of the 

airway. On top of that, the panic that comes with the inability to take a deep 

breath, which leads the adrenaline in the child’s blood to rise, causing higher 

heart beats per minute, which as a result causes quick and short breaths. Due 
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to the situation being not seriously damaging and life threatening, the risk of 

the life of the person will be average, and in number it will be 6.  

5. The fifth location has 3 people needing immediate help. A group of friends 

just returned from a vacation from a country that had some type of infection. 

The ages of these people are 25, 26, and 26, and are male, female, and male 

respectively. The youngest of them all has a seizure, and the other 2 have 

high fever of 38.7 and 39.5 C respectively. The person with a seizure, has the 

grand mal seizure, with is one of the type that can lead to unconsciousness 

and causes violent muscle contractions. The patient is still conscious, but has 

had seizure for 10 minutes already. Typically, seizures will cause damage to 

the brain after 30 minutes from the start of the seizure, which means that to 

prevent it, the help to the patient should be provided in not more than 20 

minutes.  

On the other hand, there are 2 more people that need help. The body 

temperature of these people is high but because it is not higher than 40o, 

there is no life threatening risk to the moment, their bodies are just trying to 

get rid of the infection they caught, so the risk will be considered 3.  

6. The next location has 2 people, one of them is 29 years old, the other one is 

39 years old. Both of these people have broken bone. The wound is closed, 

no blood loss, and both are conscious. The risk for this case is low, and for 

both will be considered as 2.  

7. This site has only 1 person who has mild headache. Because there are no 

other symptoms, the risk for this case will be 1.  

8. The 8th location also has 1 person. The patient who suffers from allergies has 

gotten an anaphylactic shock. The symptoms include suffocation, purple 

skin. The patient is still conscious, but can barely breathe. This means that 

the risk for this case will be 8.  
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9. In the 9th location, a teenager got a high fever of 41o C. This temperature is 

considered life threatening, and needs immediate intervention, so this case 

will have the risk of 8.  

10. The last location has 1 person and she is having a seizure. She has been 

unconscious for 2 minutes by the time of the call. This leads to the result of 

risk being 9.  

3.1.1. Data storage 

To store and later use the input values the data will be stored in DataFrames. There 

will be 6 tables in total:  

1. Table with all of the solutions that are being processed. The tables will 

include columns 1st center, 2nd center,  generation, fitness value, Solution 

number and Class 

1st center will contain the list of location in order of the help provided by the 

first rescue team. 

2nd center will contain the list of locations in order of help provided by the 

second rescue team. 

Generation – is the age of the chromosome. This information is needed in the 

selection phase where the KNN will be implemented.  

Fitness value – the fitness value will be calculated by Equation 2.: 

Min ∑ 𝑤0𝑡𝑖𝑗
𝑛
𝑖=1 +𝑤1𝑟𝑖 +

𝑤2

𝑛𝑖
+𝑤3𝑣𝑖 

Eq. 2, Fitness Function.  

where 𝑤 is the weight of each variable, 𝑡𝑖𝑗 is the time it takes to move from 

the rescue center to the accident location or from one accident location to 

another one, 𝑟𝑖 is the level of risk of people’s lives, 𝑛𝑖 is the number of people 

in the location 𝑖 and 𝑣𝑖 is the amount of time that will be spent during the 

operation. 



34 

 

The weights in the function are given in Table 1.: 

Table 1. The weighs used in the  

Weight Value 

w1 0.7 

w2 0.82 

w3 0.78 

 

w1 shows the importance of time it took to reach to the location from the 

center or to the other location. The time it took to reach the patient will affect 

the future condition of the person a lot.  

w2 shows the importance of the risk that threatens the patient’s life. The time 

spent on the road is, of course, very crucial, but if the patient with headache 

located in 10 minutes ride and a patient with heart attack is 30 minutes away, 

the rescue team should first head to the patient with the heart attack.  

w3 shows the importance of the number of people at the site. It is obvious, 

that the number of people, the help will be provided to and who will be saved 

is very important.  

2. Another DataFrame table will contain the information about all of the 

possible injuries and situations. The columns will consist of ID, Name, Risk, 

and Time. 

ID – the id of the injury or situation. This will be used to link the information 

about the injuries with other tables during the calculations.  

Name – the name of the injury or the situation. The name can be used to 

identify the injury by the user.  

Risk – all of the injuries will have risks defined beforehand. This column 

will be used to calculate the risk for each of the solutions afterwards. The 

more the risk, the higher the number will be. 

Time – this variable shows the time needed to spend to treat each of the 

injuries or situations. This number will also be included in the Risk 

calculation of the solution. 
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3. A separate table contains the location of the situations that need help. The 

table columns will contain id, Number, Injuries 

Id – the id number of the location. This will be used to link the information 

about the situations with other tables during calculations.  

Number – number column will show the number of the people at site.  

Injuries – The ID’s of the injuries in this table will be presented in this 

column. Due to the fact that some of the situations may have more than one 

person who needs immediate help, all of the injuries will be included in a 

form of a list.  

4. One more table will contain the information about the time needed to get 

from one location to another one. There will be 10 locations in total, so there 

will also be 10 columns and 10 rows.  

5. Another table will contain the information about the time needed to get from 

the centres to the emergency situation locations. Since there will be 10 

locations and 2 centres, the number of rows will be 2 and the number of 

columns will be 10.  

6. The last DataFrame table will consist of the variables needed to be used to 

calculate the fitness value. The columns are solution, Time_center, 

Time_location, Risk and Number.  

Solution – solution will show the id of the solution, the variables of which 

are being calculated.  

Time_center – The time it will take to get from the centres to the locations 

for the defined solutions. 

Time_location – The time needed to get to the location from the previous 

location. This variable will include time between the locations and the time 

needed for treatment of the previous patient or patients.  

Risk – The variable identifies the total amount of risk for each of the 

situations. As the time passes, the risk of each of the injured person’s life 
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increases. For this reason, each next location will have the risk added the 

multiplied by 1.3.  

Number – the number of people in the site that need help.  

First, 100 random solutions were generated. Then their fitness values were 

calculated. Now the Selection phase of the genetic algorithm should begin.  

There are two classes the solutions will be divided into. These classes will be used 

to select the random solutions for crossover. To train the model, the train data was 

constructed. The train model consists of 4 columns. The first two columns are used 

to show the generation, which is the age of the solution, and the fitness values of 

the solutions. In the code, they will be considered as the X_train part. X_train part 

are the variables that determine the label of the class. 100 rows of train data were 

provided to initialize the training data’s target. The Target column will contain the 

class of the solution, based on the X_train data. The Target column will be the 

y_train in this case. Based on this training data, and the fitness function calculated 

before, the solutions, which were randomly generated before, will be assigned to a 

class. 

Solutions in the training data will be used to link the table used for KNN and the 

solutions table. To find the class of the solutions, the generation, fitness value, class 

and the solution id will be added to the train data table. The code will divide the 

test data and the train data based on the Class column. By default, the class of the 

solutions created is NaN, which is the equivalent of null in numpy library of 

python. The algorithm will check the values for the solutions in the column, and if 

the value of the class of the solution is NaN, the solution will be treated as test data, 

which needs to be classified, if there is some value, the solution will be treated as 

train data, and the class will not be changed. To merge the table with the solutions 

table that will have the main information needed to preform Genetic Algorithm 
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techniques, the Solution of the data in the train data will be considered by default as 

-1, so these rows will not be transferred to the solutions table. 

The number of the nearest neighbours in the algorithm will be taken as 3, so the 

class of the solution will be decided based on 3 of the points in train data.  

Now that we have our solutions classified, the data will be divided into 2 parts, 1 

part will contain solutions of class 1, and the other will contain the solutions of 

class 0. This is the most important part of the algorithm that makes it different from 

previously proposed ones. It is biologically proven that close relatives’ children can 

inherit more diseases that are common to the parents, and also, they can inherit 

their negative genetic traits. This means, that statistically, the probability of 

children with more diverse background is higher that of those, who are related. This 

statement was the inspiration of the proposed algorithm. After the solutions were 

divided into 2 classes, the algorithm takes random solutions from different classes 

and performs crossover operation. Because the locations are stored in 2 different 

lists, which helped with identification of the boundary between the lists that are 

related to each of the centres, I combined them into 1 list. So, for example, if the 

lists were [1, 5, 2, 6, 8] and [0, 3, 7, 9, 4] for the first centre and [4, 2, 5, 1, 0] and 

[6, 7, 3, 9, 8] for the second one, to perform crossover, the lists will be presented as 

[1, 5, 2, 6, 8, 0, 3, 7, 9, 4] as the first parent and [4, 2, 5, 1, 0, 6, 7, 3, 9, 8] as the 

second parent. The crossover method used in the proposed algorithm is going to be 

one point crossover. In this case, since I combine the lists of the rescue centres, the 

crossover point is also going to be the boundary for determining the split border for 

the lists of the rescue teams’ arrangement. So, as an example, for the parent 

chromosomes mentioned above, the crossover operation will be performed in the 

following way: 

[1, 5, 2, 6, 9, 0, 3, 7, 8, 4] 

[6, 2, 5, 1, 0, 4, 7, 3, 9, 8] 
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Randomly generated crossover point will be 5 

This means that the newly generated chromosomes will be  

[1, 5, 2, 6, 9, 4, 7, 3, 9, 8] 

and  

[6, 2, 5, 1, 0, 0, 3, 7, 8, 4] 

And the division between the rescue teams will be [1, 5, 2, 6, 9] for the first teams 

and [4, 7, 3, 9, 8] for the second team for the first solution and [6, 2, 5, 1, 0] for the 

first team and [0, 3, 7, 8, 4] for the second rescue team. As we can see in this 

example, the results don’t include all of the locations. This part could be changed 

during the mutation algorithm. The mutation operation as described in the 

introduction part helps to add some diversity in the results. In the case describes 

above, the mutation operation can also help eliminate the problem of the repeating 

locations in the list.  The mutation method in the proposed algorithm will take a 

random location from the solution and replace it with a random number in the 

range of the locations, which in this case is a digit between 0 and 9. When applied 

to the example mentioned above, the result of the mutation can change the solution 

from a non-valid one to a valid one: 

The first solution is [1, 5, 2, 6, 9], [4, 7, 3, 9, 8]. As we can see, the location number 

9 repeats here twice. Let’s suppose that the mutation randomly took the 4th location 

of the 2nd centre and changed it to 0. In this case, the solution after going through 

mutation problem will give us the result of [1, 5, 2, 6, 9], [4, 7, 3, 0, 8]. As we can 

see, the operation turned the solution that couldn’t be used in real situation, to a 

valid one, where all of the locations will be visited.  

The second solution is also not a valid solution yet. In the second solution             

[6, 2, 5, 1, 0], [0, 3, 7, 8, 4] we also see that the location number 0 is repeating 

itself. The mutation operation is again performed in to the solution. The algorithm 

takes a random location, which let’s assume is the 3rd location of the 1st rescue 
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teams’ tasks, and picks a random value from 0 to 9 that will be 8. When applied to 

the solution, we get the result [6, 2, 8, 1, 0], [0, 3, 7, 8, 4]. In this case, the solution 

is still not valid, because not only after the mutation phase we still have repeating 

0’s, but now we also have repeating 8. This, and the fact that the locations number 

5 and 9 are not assigned to any of the rescue teams, means that the solution is not 

valid and therefore, cannot be included to the population. To check whether the 

solution is valid or not, the valid_solution function was created. The solution 

consisting of 2 lists, is combined into 1 list first. Then, a counter is implemented for 

each of the location numbers. If any of the locations have a count more than 1, the 

function will return False as a result. After the crossover operation and the mutation 

operation will be implemented to the available solutions, the valid_solution 

function will be used.  

The Genetic Algorithm method used for the proposed algorithm is Steady State 

Genetic Algorithm, or simply SSGA. As mentioned in the beginning of the thesis 

paper, in this type of Genetic Algorithm, two parent chromosomes will be taken 

first. Then after the crossover and mutation operations will be applies, the solutions 

will be added to the initial population by replacing the ones with the least fitness 

function. In addition to the genetic algorithms operators mentioned, the 

valid_solution function will also be used. It will be used when the algorithm will 

try to replace the solution with the least fitness function, to the newly generated 

ones, but first it will check if the solution is valid for the problem. It is possible that 

one of the solutions will be valid, but the other will not, as shown in the example 

above. In this case, the first solution, that is valid, will be included to the new 

population, but the second one, which doesn’t meet the criteria, will not be 

included.  

3.2. Simulation and experimental results 
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In the 10 locations described above, the initial solutions will be randomly generated 

to be digits from 0 to 9. The locations will be distributed between 2 centers in a 

form of a list. By default, the initial solutions will have the fitness value of 0 and 

the classes will be NaN from numpy.  

The scenario described above, with the locations ids, the risks for the life of the 

patients will be manually included in the DataFrame in a form of a multi-

dimensional list like: 

Loc_data = [[0, 1, [1]], 

[1, 1, [3]] 

… 

] 

where the each of the lists in the list will describe 1 of the location situation. For 

example, 0 will be the id of the location, 1 is the number of people that have 

injuries or medical conditions and the last list is going to be the injury ID’s.  

The injury ID’s are required to find the risk of the injuries and conditions and the 

time that needs to be spent for saving the patient, or provide help.  

The risks for the people’s lives will be taken from the prepared table. This table 

will be the same for all of the scenarios, and contain all of the possible injuries and 

medical conditions. The example of the table with all of the injuries, their names, 

ID’s, and the time needed is shown in Table 2.: 

Table 2. Example of the injuries and situation tables 

id Name Risk Time for treatment 

1 Heart Attack 8 40 

2 Stroke 9 30 

3 Deep cut 7 60 

4 Suffocation 6 20 

5 Fever 3 10 
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The distance between the locations and the centres will be measured in time 

required to get from the start point to the destination point. For the simulation, the 

values will be inserted manually, but in the future, when the algorithm will be used, 

the times can be calculated from the maps predictions, for example Google Maps. 

The times between locations for this example will be as shown in Table 3:  

Table 3. Example of the locations distance table 

Locations 0 1 2 3 4 5 6 7 8 9 

0 0 2 2 4 3 4 2 3 5 1 

1 1  0 4 5 1 5 2 5 2 4 

2 2 3 0 4 2 3 2 3 4 1 

3 5 4 4 0 2 4 2 5 4 4 

4 3 1 2 2 0 3 5 2 1 2 

5 4 1 2 4 3 0 2 3 5 1 

6 1 2 4 5 1 5 0 5 2 4 

7 2 3 1 4 2 3 2 0 4 1 

8 5 4 2 3 2 4 2 5 0 4 

9 3 5 2 2 6 3 5 2 1 0 

 

The next step is defining the table, which will contain information about the time 

required to travel from the rescue centres to the locations of the situations. An 

example for the scenario mention above will be shown in Table 4: 

Table 4. Example of the centres to locations distance table 

location 

centre 

0 1 2 3 4 5 6 7 8 9 

1st 2 2 4 1 3 4 2 4 1 2 

2nd 4 3 1 6 2 3 4 5 1 4 
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3.2.1. Scenario 1 

After filling all of the tables, the algorithm can now be run according to the specific 

scenario. The example below is related to the scenario described above.  

The total number of runs done for of the scenarios will be 10. The number of 

iterations of the Genetic Algorithms main loop for each of the runs will be 5000. 

The weights for all of the scenarios are mentioned in Table 1. For these 10 runs, the 

lowest number of generations needed to get the highest fitness value was 927, the 

maximum was 1219. The average for the 10 runs was 1034.  The comparison can 

be seen in Figure 4. 

 

Figure 4. Generations with the best fitness values in Scenario 1 for each execution 

The best solution for this scenario was the chromosome [[2, 0, 7, 4, 1], [9, 3, 4, 8, 

6]]. The average fitness value of the randomly generated chromosomes was 

4.398219.  The highest fitness value was 29.743926 and was reached in the 6th run 

of the code. The generation needed to reach the value was 927.  
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3.2.2. Scenario 2 

For the second scenario, the following situations have been taken into 

consideration: 

1. The 1st location has 1 person. The injury sustained is broken arm. The wound 

is close; there is no blood loss, so the risk for this case is evaluated as 2.  

2. The 2nd location has also 1 person. The patient is suffering from an allergic 

reaction. The skin is starting to turn purple; the patient has serious 

difficulties breathing, but is still conscious. The risk for the life in this case 

will be evaluated as 8. 

3. The 3rd case is the location with 1 person having a heart attack. The person is 

still conscious but had several heart related conditions in the past. The risk 

for this case will be considered as 8. 

4. The 4th location will have a person with a relatively strong headache. No 

other symptoms were detected, so the risk for this case will be evaluated as 

2.  

5. The 5th location has 2 people. They have been in a fight, 1 has broken rib, 

and the other one has a deep cut. For the first injury, the damage from the 

broken rib part was not life-threatening so the risk will be evaluated as 2. 

The second patient with the deep knife was attacked with a knife. The cut 

didn’t touch any of the vital organs, so the risk of this case will be evaluated 

as 7. 

6. The 6th location has 1 person, an elderly person, who is going through a 

stroke. The person is conscious but all of the symptoms are highly defined. 

The risk of the injury will be evaluated as 8.  

7. In the 7th location, the person is having a stomach ache. The suspicions are 

that the person has eaten rotten food. Since the only symptom is the pain, the 

risk will be evaluated as 2. 
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8. The records from the 8th location show that there is a child, who is having a 

seizure. The patient has been unconscious for 6 minutes. In this case, the risk 

will be evaluated as high as 9. 

9. The 9th location has a person with high fever. The value already reached 

40.8o C. Since this temperature is considered as dangerous, the risk for the 

person’s life will be as high as 8. 

10. The last location has 2 people with fever. None of them reached 40o C, so the 

risk will be evaluated as 3.  

The scenario was again run 10 times. The results of these executions show that 

the fastest the algorithm reached its highest fitness value is 873, the slowest is 

1025 and the average number is 938.  

The comparison can be seen in Figure 5. 

 

Figure 5. Generations with the best fitness values in Scenario 2 for each execution 

The best solution for this scenario was the chromosome [[7, 8, 9, 3, 0, 6], [5, 4, 1, 

2]]. The average fitness value of the randomly generated chromosomes was 

4.398219.  The highest fitness value was 31. 426823 and was reached in the 2nd run 

of the code. The generation needed to reach the value was 873.  
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3.2.3. Scenario 3 

The scenario number 3 has the following situations: 

1. The person is having a heart attack. Unconscious. No previous heart related 

conditions. The risk for this person’s life will be evaluated as 8.  

2. The second person is also having a heart attack. She is conscious; no heart 

related conditions were found before. The age is 23. The risk for this person 

life will be evaluated as 7.5. 

3. The third location has 4 people. 2 of them have deep cuts, and the other 2 

have 2nd degree burns. The risk for the life of the people with the cuts is 7 for 

both, since the cuts didn’t touch any vital organs. The risk for both of the 

people with burns is evaluated as 5. 

4. The 4th location has 1 person. He is going through an allergic reaction. The 

patient is still conscious, had difficulties breathing, but the skin is in a 

normal colour. The risk for this person’s life will be evaluated as 7. 

5. The 5th location is at the beach. 2 people are drowning, 1 person tries to save 

the other one. Both of the people’s lungs are filled with water. The risk of 

both of these people’s lives is rated as high as 9. 

6. The 6th location has a person with stroke. The patient is unconscious, and has 

been in that state for 30 minutes. The risk for the life of this patient is 10.  

7. The 7th location has 2 people. Both of them have high fever, more than 40.5o 

C. The risk for both of this people will be evaluated as 8. 

8. The 8th location has 1 person. The patient is having a mild seizure. The 

symptoms are not life threatening so the risk for the person’s life will be 5. 

9. The 9th location is a bank. There has been a mass shooting, and there are 3 

injured people. The injuries include gunshot wounds and knife wounds. The 

patients lost a lot of blood. The risk for this case will be 9 
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10. The last location has a person with a failed suicide attempt. The person tried 

to take a dangerous amount of tablets. The patient is unconscious. The heart 

rate is below 40 beats per minute. The risk for person’s life is 10. 

The scenario was again run 10 times. The results of these executions show that the 

fastest the algorithm reached its highest fitness value is 923, the slowest is 1113 

and the average number is 998. The comparison can be seen in Figure 6.  

 

Figure 6. Generations with the best fitness values in Scenario 3 for each execution 

The best solution for this scenario was the chromosome [[5, 4, 2, 1, 0], [8, 9, 6, 3, 

7]]. The average fitness value of the randomly generated chromosomes was 

4.398219.  The highest fitness value was 45.625383and was reached in the 4th run 

of the code. The generation needed to reach the value was 923.  

3.2.4. Scenario 4 

The scenario number 4 has the following situations: 

1. The 1st site has 1 person. The emergency situation is a heart attack. The 

patient is an elderly person. The risk for the patient’s life is considered 8.  
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2. The 2nd location also has 1 person. The injury is broken leg. The wound is 

open, so the risk increases and will be evaluated as 6. 

3. The 3rd location has a person with a stroke. He has been unconscious for 2 

minutes. The risk for the life of the patient is as high as 9.5. 

4. The 4th location has a teenager with a seizure. The patient is conscious and 

has mild convulsions. The risk will be evaluated as 6. 

5. The 5th location is a gas station. The explosion left 2nd degree burns on 2 

people. The risk for both people will be 5. 

6. The 6th location has a patient with dislocated shoulder. The pain is medium. 

The risk will be taken as 2.  

7. The 7th location has a person with a heart attack. The person is young, and 

conscious. The risk will be 7.5. 

8. The 8th location is the base of a mountain. An alpinist fell while climbing. 

Several bones have been broken. The risk is considered to be 8. 

9. The 9th location has 1 patient, which is going through a stroke. The patient is 

an elderly person, so the risk increases to 9. 

10. The last location has a person with a deep cut. The cut didn’t touch any of 

the vital organs, but there is a lot of blood lost. The risk will be evaluated as 

7. 

The scenario was again run 10 times. The results of these executions show that the 

fastest the algorithm reached its highest fitness value is 902, the slowest is 1157 

and the average number is 1004. The comparison can be seen in Figure 7. 
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Figure 7. Generations with the best fitness values in Scenario 4 for each execution 

The best solution for this scenario was the chromosome [[2, 6, 0, 3, 1, 5], [8, 9, 4, 

7]]. The average fitness value of the randomly generated chromosomes was 

4.398219.  The highest fitness value was 37.945392 and was reached in the 2nd run 

of the code. The generation needed to reach the value was 902. 

3.2.5. Scenario 5 

The scenario number 5 has the following situations: 

1. The 1st location has a person with a headache, nausea and dizziness. The 

condition has been continuing for 2 hours and is getting worse. The risk for 

this case will be evaluated as 5. 

2. The 2nd location has a person with a heart attack. The person is young, and 

conscious. The risk will be 7.5. 

3. The third location has 4 people. 2 of them have deep cuts, and the other 2 

have 2nd degree burns. The risk for the life of the people with the cuts is 7 for 

both, since the cuts didn’t touch any vital organs. The risk for both of the 

people with burns is evaluated as 5. 
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4. In the 4th location, the person is having a stomach ache. The suspicions are 

that the person has eaten rotten food. Since the only symptom is the pain, the 

risk will be evaluated as 2. 

5. The 5th location will have a person with a relatively strong headache. No 

other symptoms were detected, so the risk for this case will be evaluated as 

2.  

6. The 6th location has 1 person. The injury sustained is broken arm. The wound 

is close; there is no blood loss, so the risk for this case is evaluated as 2. 

7. The 7th location has 1 person. The patient is having a mild seizure. The 

symptoms are not life threatening so the risk for the person’s life will be 5. 

8. The 8th location has 1 person, an elderly person, who is going through a 

stroke. The person is conscious but all of the symptoms are highly defined. 

The risk of the injury will be evaluated as 8.  

9. The 9th location has a person with a deep cut. The cut didn’t touch any of the 

vital organs, but there is a lot of blood lost. The risk will be evaluated as 7. 

10. The last location is the main road. A person has been hit by a car. The injury 

is not serious, no bones were broken. The risk will be evaluated as 3.  

The scenario was again run 10 times. The results of these executions show that the 

fastest the algorithm reached its highest fitness value is 945, the slowest is 1253 

and the average number is 1103. The comparison can be seen in Figure 8.  
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Figure 8. Generations with the best fitness values in Scenario 5 for each execution 

The best solution for this scenario was the chromosome [[8, 1, 9, 4, 3, 5], [2, 7, 0, 

6]]. The average fitness value of the randomly generated chromosomes was 

4.398219.  The highest fitness value was 48.943021and was reached in the 2nd run 

of the code. The generation needed to reach the value was 945. 

 

3.2.6. Scenario 6 

The scenario number 6 has the following situations: 

1. The 1st location will have a person with a relatively strong headache. No 

other symptoms were detected, so the risk for this case will be evaluated as 

2.  

2. The 2nd location has 2 people. They have been in a fight, 1 has broken rib, 

and the other one has a deep cut. For the first injury, the damage from the 

broken rib part was not life-threatening so the risk will be evaluated as 2. 
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The second patient with the deep knife was attacked with a knife. The cut 

didn’t touch any of the vital organs, so the risk of this case will be evaluated 

as 7. 

3. The 3rd location has 1 person, an elderly person, who is going through a 

stroke. The person is conscious but all of the symptoms are highly defined. 

The risk of the injury will be evaluated as 8.  

4. The 4th location has 1 person. The patient is having a mild seizure. The 

symptoms are not life threatening so the risk for the person’s life will be 5. 

5. The 5th location is a bank. There has been a mass shooting, and there are 3 

injured people. The injuries include gunshot wounds and knife wounds. The 

patients lost a lot of blood. The risk for this case will be 9 

6. The 6th location has a person with a headache, nausea and dizziness. The 

condition has been continuing for 2 hours and is getting worse. The risk for 

this case will be evaluated as 5. 

7. The 7th location has a person with a heart attack. The person is young, and 

conscious. The risk will be 7.5. 

8. The 8th location is a restaurant. 6 people have been poisoned. The risk for 4 

of these people is 2, the risk for the remaining 2 is 4.  

9. The 9th location has 1 person. The patient is having a panic attack. The risk is 

1, because of the little damage to the patient’s health.  

10. The last location has a patient with dislocated shoulder. The pain is medium. 

The risk will be taken as 2.  

The scenario was again run 10 times. The results of these executions show that the 

fastest the algorithm reached its highest fitness value is 934, the slowest is 1044 

and the average number is 993. The comparison can be seen in Figure 9. 
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Figure 9. Generations with the best fitness values in Scenario 6 for each execution 

The best solution for this scenario was the chromosome [[4, 6, 1, 5], [2, 7, 3, 0, 9, 

8]]. The average fitness value of the randomly generated chromosomes was 

4.398219.  The highest fitness value was 37.563781 and was reached in the 8th run 

of the code. The generation needed to reach the value was 934. 

3.2.7. Scenario 7 

The scenario number 7 has the following situations: 

1. The 1st case is the location with 1 person having a heart attack. The person is 

still conscious but had several heart related conditions in the past. The risk 

for this case will be considered as 8. 

2. The 2nd location has 1 person. The injury sustained is broken arm. The 

wound is close; there is no blood loss, so the risk for this case is evaluated as 

2.  

3. The 3rd location has 4 people. 2 of them have deep cuts, and the other 2 have 

2nd degree burns. The risk for the life of the people with the cuts is 7 for both, 
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since the cuts didn’t touch any vital organs. The risk for both of the people 

with burns is evaluated as 5. 

4. The 4th location has 1 person. He is going through an allergic reaction. The 

patient is still conscious, had difficulties breathing, but the skin is in a 

normal colour. The risk for this person’s life will be evaluated as 7. 

5. The 5th site has 1 person. The emergency situation is a heart attack. The 

patient is an elderly person. The risk for the patient’s life is considered 8.  

6. The 6th location also has 1 person. The injury is broken leg. The wound is 

open, so the risk increases and will be evaluated as 6. 

7. The 7th location has a person with a deep cut. The cut didn’t touch any of the 

vital organs, but there is a lot of blood lost. The risk will be evaluated as 7. 

8. The 8th location has a person with a heart attack. The person is young, and 

conscious. The risk will be 7.5. 

9. The 9th location has 2 people. They have been in a fight, 1 has broken rib, 

and the other one has a deep cut. For the first injury, the damage from the 

broken rib part was not life-threatening so the risk will be evaluated as 2. 

The second patient with the deep knife was attacked with a knife. The cut 

didn’t touch any of the vital organs, so the risk of this case will be evaluated 

as 7. 

10. The 10th location has 1 person. The patient is having a panic attack. The risk 

is 1, because of the little damage to the patient’s health.  

The scenario was again run 10 times. The results of these executions show that the 

fastest the algorithm reached its highest fitness value is 917, the slowest is 1147 

and the average number is 1032. The comparison can be seen in Figure 10.  
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Figure 10.  Generations with the best fitness values in Scenario 7 for each execution 

The best solution for this scenario was the chromosome [[4, 2, 3, 6, 1], [0, 5, 7, 8, 

9]]. The average fitness value of the randomly generated chromosomes was 

4.398219.  The highest fitness value was 23.468319 and was reached in the 7th run 

of the code. The generation needed to reach the value was 917. 

3.2.8. Scenario 8 

The scenario number 8 has the following situations: 

1. In the 1st location, the person has a 3rd degree burn. The pain is unbearable. 

The risk for life is considered to be 10.  

2. In the 2nd location, a person has fallen out of the window from the 4th floor. 

Some bones are broken. The patient is unconscious. The risk is 7.  

3. The 3rd location has a person with a deep cut. The cut didn’t touch any of the 

vital organs, but there is a lot of blood lost. The risk will be evaluated as 7. 

4. The 4th location has a person with a heart attack. The person is young, and 

conscious. The risk will be 7.5. 
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5. The 5th location has 1 person. He is going through an allergic reaction. The 

patient is still conscious. The risk for this person’s life will be evaluated as 7. 

6. The 6th location will have a person with a relatively strong headache. No 

other symptoms were detected, so the risk for this case will be 2.  

7. The 7th location is a restaurant. 6 people have been poisoned. The risk for 4 

of these people is 2, the risk for the remaining 2 is 4.  

8. The 9th location has 1 person. The patient is having a mild seizure. The 

symptoms are not life threatening so the risk for the person’s life will be 5. 

9. The 9th location also has 1 person. The injury is broken leg. The wound is 

open, so the risk increases and will be evaluated as 6. 

10. The last location has 2 people. Both got hit by a car. Some of their bones are 

broken. The risk for this case is 5 for both people, 

The scenario was again run 10 times. The results of these executions show that the 

fastest the algorithm reached its highest fitness value is 958, the slowest is 1191 

and the average number is 1023.The comparison can be seen in Figure 11. 

 
Figure 11. Generations with the best fitness values in Scenario 8 for each execution 
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The best solution for this scenario was the chromosome [[0, 3, 2, 9, 5], [2, 1, 

6, 4, 8]]. The average fitness value of the randomly generated chromosomes 

was 4.398219.  The highest fitness value was 40. 937427 and was reached in 

the 7th run of the code. The generation needed to reach the value was 958. 

 

3.2.9. Scenario 9 

The scenario number 9 has the following situations: 

1. The 1st location has a person with a headache, nausea and dizziness. The 

condition has been continuing for 2 hours and is getting worse. The risk for 

this case will be evaluated as 5. 

2. The 2nd location has a person with a heart attack. The person is young, and 

conscious. The risk will be 7.5. 

3. The 3rd location has 1 person, an elderly person, who is going through a 

stroke. The person is conscious but all of the symptoms are highly defined. 

The risk of the injury will be evaluated as 8.  

4. The 4th location has 1 person. The patient is having a panic attack. The risk is 

1, because of the little damage to the patient’s health.  

5. In the 5th location, the person has a 3rd degree burn. The pain is unbearable. 

The risk for life is considered to be 10.  

6. The 6th location has 1 person. The injury sustained is broken arm. The wound 

is close; there is no blood loss, so the risk for this case is evaluated as 2.  

7. The 7th location has 1 person. She got hit by a car. Some of her bones are 

broken. The risk for this case is 5. 

8. The 8th location has a patient with dislocated shoulder. The pain is medium. 

The risk will be taken as 2.  
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9. The 9th location will have a person with a relatively strong headache. No 

other symptoms were detected, so the risk for this case will be evaluated as 

2.  

10. In the 10th location, the person is having a stomach ache. The suspicions are 

that the person has eaten rotten food. Since the only symptom is the pain, the 

risk will be evaluated as 2. 

The scenario was again run 10 times. The results of these executions show that the 

fastest the algorithm reached its highest fitness value is 903, the slowest is 1103 

and the average number is 977. The comparison can be seen in Figure 12. 

 

 

Figure 12. Generations with the best fitness values in Scenario 9 for each execution 

The best solution for this scenario was the chromosome [[2, 1, 7, 8, 3], [4, 6, 0, 9, 

5]]. The average fitness value of the randomly generated chromosomes was 

4.398219.  The highest fitness value was 19.672183 and was reached in the 7th run 

of the code. The generation needed to reach the value was 903. 
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3.2.10. Scenario 10 

The scenario number 10 has the following situations: 

1. The 1st location has 1 person, an elderly person, who is going through a 

stroke. The person is conscious but all of the symptoms are highly defined. 

The risk of the injury will be evaluated as 8.  

2. The 2nd location has 1 person. The injury sustained is broken arm. The 

wound is close; there is no blood loss, so the risk for this case is evaluated as 

2.  

3. The 3rd location has 1 person. She got hit by a car. Some of her bones are 

broken. The risk for this case is 5. 

4. The 4th location has 1 person. The patient is having a panic attack. The risk is 

1, because of the little damage to the patient’s health.  

5. The 5th location has a person with a heart attack. The person is young, and 

conscious. The risk will be 7.5. 

6. The 6th location will have a person with a relatively strong headache. No 

other symptoms were detected, so the risk for this case will be evaluated as 

2. 

7. The 7th location has 1 person. The injury sustained is broken arm. The wound 

is close; there is no blood loss, so the risk for this case is evaluated as 2.  

8. The 8th location has a person with a headache, nausea and dizziness. The 

condition has been continuing for 2 hours and is getting worse. The risk for 

this case will be evaluated as 5. 

9. The 9th location has 4 people. 2 of them have deep cuts, and the other 2 have 

2nd degree burns. The risk for the life of the people with the cuts is 7 for both, 

since the cuts didn’t touch any vital organs. The risk for both of the people 

with burns is evaluated as 5. 
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10. The 10th location has a person with a deep cut. The cut didn’t touch any of 

the vital organs, but there is a lot of blood lost. The risk will be evaluated as 

7. 

The scenario was again run 10 times. The results of these executions show that the 

fastest the algorithm reached its highest fitness value is 967, the slowest is 1208 

and the average number is 1056. The comparison can be seen in Figure 13. 

 

Figure 13. Generations with the best fitness values in Scenario 10 for each execution 

The best solution for this scenario was the chromosome [[8, 0, 7, 6], [4, 9, 5, 2, 1, 

3]]. The average fitness value of the randomly generated chromosomes was 

4.398219.  The highest fitness value was 29.874029 and was reached in the 8th run 

of the code. The generation needed to reach the value was 967. 

3.2.11. Final Result 

The algorithm was run 10 times for each of the scenarios. Each of the executions 

used 5000 generations. The result of these 10 executions for each of the Scenarios 

shows that the average generation, needed to get to the bestfinal fitness value in 
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each of the tests is 1015.8. The average for least generation for all of the scenarios 

was 924.9, with 873 being the smallest number and 967 being the largest. 

The average for highest number of generations for all of the scenarios was 1146 

with 1025 being the smallest number and 1253 being the largest. 

The results are illustrated in Figure 14: 

 

Figure 14. The lowest, average and highest generations of the executions in all of the scenarios 

3.3. Comparison 

The proposed algorithm was compared to the study of Ruijiu Mao, Bin Du, 

Dengfeng Sun, and Nan Kong [16]. The authors offered model for location-

allocation optimization with mean waiting time as the aim. The study consisted of 2 

parts: Estimation of mean waiting time, and using Genetic Algorithm to optimize 

the UAV allocation for Emergency Medical Service (EMS) purposes. For the 

purpose of comparing this approach to the HMOGA algorithm, the comparison was 

done between the HMOGA and the genetic algorithm part of the authors’ research. 

The authors’ algorithms details are described below: 
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The selection method was chosen to be Roulette Wheel. The main difference 

between the algorithms is in this phase. In this phase, the authors’ study will select 

mostly chromosomes with higher fitness values. Even though this method is one of 

the most popular ones, choosing chromosomes which have higher fitness 

chromosomes does not guarantee that the child will also have high fitness value.  

The HMOGA on the other hand, chooses chromosomes with varying fitness values. 

Although this also does not guarantee child chromosomes with high fitness values, 

this method enables more chromosomes to be involved into the process.  

The next step is crossover. The crossover method chosen for the authors’ study is 

uniform crossover. The method was described in the previous chapters.  

After performing crossover, mutation was performed. This phase is the same for 

both of the algorithms.  

The previously described 10 scenarios were tested on the authors’ genetic 

algorithm method. The results are listed below: 

The average iterations needed to get to the highest fitness function for the first 

scenario was 1202. The lowest number was 1014, and the highest one was 1377. 

The results are illustrated in Figure 15, along with the results of HMOGA from 

Figure 4. 
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Figure 15. Comparison of average generation with the best fitness function in Scenario 1 of 

HMOGA and UAV EMS approach 

The average for the second scenario was 1190, the lowest – 983, the highest – 

1306. The results are illustrated in Figure 16, along with the results of HMOGA 

from Figure 5. 

 

Figure 16. Comparison of average generation with the best fitness function in Scenario 2 of 

HMOGA and UAV EMS approach 

The average for the third scenario was 1308, the lowest – 1105, the highest – 1485. 

The results are illustrated in Figure 17, along with the results of HMOGA from 

Figure 6. 
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Figure 17. Comparison of average generation with the best fitness function in Scenario 3 of 

HMOGA and UAV EMS approach 

The average for the fourth scenario was 1107, the lowest – 1002, the highest – 

1296. The results are illustrated in Figure 18, along with the results of HMOGA 

from Figure 7.  

 

Figure 18. Comparison of average generation with the best fitness function in Scenario 4 of 

HMOGA and UAV EMS approach 

The average for the fifth scenario was 1093, the lowest – 996, the highest – 1254. 

The results are illustrated in Figure 19, along with the results of HMOGA from 

Figure 8.  
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Figure 19. Comparison of average generation with the best fitness function in Scenario 5 of 

HMOGA and UAV EMS approach  

The average for the sixth scenario was 1031, the lowest – 1008, the highest – 1194. 

The results are illustrated in Figure 20, along with the results of HMOGA from 

Figure 9.  

 

Figure 20. Comparison of average generation with the best fitness function in Scenario 6 of 

HMOGA and UAV EMS approach  
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The average for the seventh scenario was 1007, the lowest – 961, the highest – 

1295. The results are illustrated in Figure 21, along with the results of HMOGA 

from Figure 10.  

 

Figure 21. Comparison of average generation with the best fitness function in Scenario 7 of 

HMOGA and UAV EMS approach  

The average for the eighth scenario was 1324, the lowest – 1097, the highest – 

1474. The results are illustrated in Figure 22, along with the results of HMOGA 

from Figure 11.  

 

Figure 22. Comparison of average generation with the best fitness function in Scenario 8 of 

HMOGA and UAV EMS approach 
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The average for the ninth scenario was 1109, the lowest – 1015, the highest – 1378.  

The results are illustrated in Figure 23.  

 

Figure 23. Comparison of average generation with the best fitness function in Scenario 9 of 

HMOGA and UAV EMS approach  

The average for the last scenario was 1034, the lowest – 979, the highest – 1172.  

The results are illustrated in Figure 23, along with the results of HMOGA from 

Figure 12.  

 

Figure 24. Comparison of average generation with the best fitness function in Scenario 10 of 

HMOGA and UAV EMS approach  
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The total average for this approach is 1140.5, the lowest is 961, and the highest is 

1485. The results are illustrated in Figure 25.  

 

Figure 25. The lowest, average and highest generation counts of the executions in all of the 

scenarios in UAV EMS approach 

When comparing these results to the results of the proposed HMOGA algorithm, 

we can see that out of 10 different scenarios, 7 reached their best solution faster 

with the Genetic Algorithm with KNN used to select the parent chromosomes. The 

average generation for HMOGA to reach the best fitness value is 1015.9, whereas 

for UAV EMS approach it is 1140.5. This shows that the HMOGA finds in 12.28% 

less generations, and due to that, faster. Also, the HMOGA considers more 

variables, like number of saved people and the risk of each injury. Figure 26 

demonstrates the average number of iterations for each scenario by HMOGA and 

the UAV-based EMS system: 
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Figure 26. Generations where the fitness value reached it’s highest 

4. Conclusion 

In this study I proposed an algorithm that combines two techniques: Genetic 

algorithm and K-nearest neighbors algorithm. The latter was used in the selection 

phase of genetic algorithm to cause a diversion of the selected parent chromosomes 

based on their classifications. After applying KNN to the randomly generated 

solutions, basic genetic algorithm operations were performed, such as crossover 

and mutation. The HMOGA algorithm was then compared to a previously 

presented approach and in 70% of the cases was proven to be a faster method to 

reach the optimal solution. By the average time of generations, the Hybrid Multi-

Objective Genetic Algorithm was 12.28% faster. In the future, the changes can 

include different types of crossover and mutation operations, which will be more 

suitable for the problem, given the relativeness to the Traveling Salesman Problem. 
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