
KHAZAR UNIVERSITY

Faculty: Graduate School of Science, Art and Technology

Department: Computer Department

Major: Informatics

MASTER’S THESIS

Title: Hybrid Multi-Objective Genetic Algorithm for Emergency Response

Student: Ulkar Ahmadova

Supervisor: Dr. Saeed Saeedvand

June – 2022

1

Fövqəladə Hallar üçün Hibrid Çox Məqsədli Genetik Alqoritm

Ülkər Əhmədova

İnsan həyatından daha vacib heç nə yoxdur. Hər gün təcili yardım mərkəzlərinə

müxtəlif vəziyyətlərlə bağlı çoxlu zənglər daxil olur. Bu vəziyyətlərin bəziləri

risklidir, bəziləri isə yox. Tələbat yüksəkdir, lakin xilasetmə qruplarının sayı

məhduddur. Tez və effektiv kömək göstərmək üçün cədvəl sürətli və dəqiq şəkildə

yaradılmalıdır. Zamanın məhdud olduğunu nəzərə alsaq, ən yaxşı tənzimləməni

tapmaq çox vaxt apara bilər. Bu problem əvəzində ən optimal yolu tapmaqla həll

etmək olar.

İllər ərzində planetdəki bütün canlılar kəskin şəkildə dəyişdi. Bu dəyişikliklərə

uyğunlaşmaq üçün insanlar, heyvanlar və hətta bitkilər hər nəsil təkamül etməyə

davam etməlidirlər. Təbiətin mürəkkəbliyi neyron şəbəkələri, süni intellekt və s.

kimi çoxsaylı alqoritm və texnikaları ilhamlandırıb. Təkamül alqoritmləri də

onlardan biridir və optimallaşdırma üsullarına görə dəyişir. Genetik alqoritmlər

insanların və heyvanların daim dəyişən mühitə uyğunlaşmasının təsirinə məruz

qalmış ilk təkamül alqoritmlərindən biridir. Bioloji cəhətdən mükəmməl insan

olmadığı kimi, bütün problemlərin mükəmməl həlli yoxdur, lakin genetik alqoritm

ən optimalı tapmağa kömək edə bilər.

Genetik alqoritmin yaradılmasında ilk addım valideyn seçimidir. Ən yaxşı

xüsusiyyətlərə malik ən uyğun olanları əldə etmək üçün seçilmiş genomların

müxtəlif olması çox vacibdir. Seçim təsadüfi olaraq həyata keçirilir, bunun da öz

üstünlükləri və mənfi cəhətləri var. Təqdim olunan alqoritm bir şəkildə seçim

prosesini idarə etmək üçün Genetik Alqoritmlə birlikdə KNN alqoritmindən

istifadə edir. Valideynlərdən biri təsadüfi seçildikdən sonra digər valideyn də

təsadüfi, lakin fərqli sinifdən seçiləcək ki, bu da daha müxtəlif həllərin

qoşalaşmasına səbəb olacaq. Həlllər məhlulun yaşına və onların uyğunluq

funksiyasına əsasən qruplaşdırılır. Bu tədqiqat Fövqəladə Xilasetmə Qrupunun

2

Marşrutlaşdırma problemini həll etmək üçün edilir. Nəzərə alınacaq əsas məqsədlər

xəstələrə çatmaq üçün vaxt, onların həyatını təhdid edən risk və xilas ola biləcək

insanların sayıdır. Təklif olunan alqoritm 10 fərqli ssenari ilə sınaqdan keçirilib və

daha sonra oxşar məsələ ilə bağlı mövcud araşdırma ilə müqayisə edilib. Hər iki

alqoritmin müqayisəsinin nəticələri də müqayisə edilib və onlar göstərir ki, Hibrid

Çoxməqsədli Genetik alqoritm yanaşması tələb olunan iterasiyaların sayını 12,28%

azaltmışdır.

Hybrid Multi-Objective Genetic Algorithm for Emergency Response

Ulkar Ahmadova

 There is nothing more important than a human’s life. Every day, emergency

centres receive lots of calls for various situations. Some of these situations are

risky, some are not. The demand is high, but the number of rescue teams is limited.

To provide help fast and effectively, the schedule should be created quickly and

precisely. Finding the best arrangement may be very time-consuming, given the

fact that the time is limited. This can be solved by finding the most optimal.

Throughout years all of the living creatures on the planet changed drastically. To

adjust to these changes people, animals and even plants have to keep evolving each

generation. The complexity of the nature has inspired numerous algorithms and

techniques, such as neural networks, artificial intelligence, etc. Evolutionary

algorithms are also one of them and vary by methods of optimization. Genetic

algorithms are one of the first introduced evolutionary algorithms, which have been

influenced by the adaptation of humans and animals to the ever-changing

environment. Just like there is no biologically perfect human, not all problems have

perfect solutions, but genetic algorithm can help finding the most optimal.

3

The first step in creating a genetic algorithm is parent selection. It is crucial for the

selected genomes to be diverse in order to get the best fitting ones with the best

features. The selection is performed randomly, which has its own advantages and

disadvantages. The presented algorithm uses KNN algorithm along with Genetic

Algorithm in a hybrid way to control the selection process in a way. After one of

the parents is randomly selected, the other parent will also be randomly selected but

from a different class, which will cause more diverse solutions to be paired. The

solutions will be grouped based on the age of the solution and their fitness function.

This research is made to solve the Emergency Rescue Team Routing problem. The

key objectives which will be considered are time to get to the patients, the risk that

threatens their lives and the number of the people that can be saved. The proposed

algorithm was tested with 10 different scenarios, and later will be compared to an

existing research done regarding the similar issue. The results of the comparison of

both of the algorithms were also compared and they demonstrate that the Hybrid

Multi-Objective Genetic algorithm approach has decreased the number of required

iterations to converge fitness value by 12.28%.

4

Table of Contents

1. Introduction ... 5

1.1. Genetic Algorithms ... 6
1.1.1. Population Initialization .. 7

1.1.2. Selection .. 7

1.1.3. Crossover ... 9

1.2.3. Mutation ... 13

1.3. KNN Algorithm .. 15
1.3.1. Regression task: ... 15

1.3.2. Classification task: ... 16

2. Literature Review .. 20
3. Implementation ... 30

3.1. Methodology ... 30
3.1.1. Data storage .. 33

3.2. Simulation and experimental results ... 39
3.2.1. Scenario 1 ... 42

3.2.2. Scenario 2 ... 43

3.2.3. Scenario 3 ... 45

3.2.4. Scenario 4 ... 46

3.2.5. Scenario 5 ... 48

3.2.6. Scenario 6 ... 50

3.2.7. Scenario 7 ... 52

3.2.8. Scenario 8 ... 54

3.2.9. Scenario 9 ... 56

3.2.10. Scenario 10 ... 58

3.2.11. Final Result .. 59

3.3. Comparison ... 60

4. Conclusion .. 68

References .. 69

5

1. Introduction

The purpose of the research is to find an optimal approach to provide emergency

help to as many people as possible in the shortest time possible. When people’s life

is at stake, every second counts. This includes time for the arrangement of the tasks

and locations between the rescue teams. The distance between the centre and the

accident location, and the time it takes to reach there is one of the main objectives

for the emergency service routing problem. Another aspect of the importance of

effective team allocation is the cost of the operation. Sometimes, the teams are not

equipped equally; some may have more devices which are needed to specific cases,

while others have to utilize the basic equipment. The demand for emergency

services stays high even with the rapidly evolving technology. Finding the best

route considering all of the details of the situation can be very time consuming and

even in some cases counter-effective, given the fact that there is a high possibility

that the person needs to be immediately rescued. In some cases, when the number

of accidents is very high, evaluating all of the existing combinations can take hours.

This defeats the purpose of the emergency service, because this can cause serious

delays.

Other important aspect of Emergency Service Routing problem is the seriousness

of the accident. Needless to say, the more serious the situation is, the faster the

rescue teams should arrive to eliminate the risk for the person’s life or health.

The last aspect that will be mentioned is the number of people at the location.

Naturally, the teams should first head to the places where the number of people that

need urgent help is higher. This way, there will be more saved people without

wasting time on the road, and the rescuers can help several people simultaneously.

Instead of finding the best solution, with the disadvantage of time being spent on

the searches, in this paper, the optimal solution is found. Numerous studies have

6

shown that genetic algorithms can greatly help with the optimization of the solution

of the defined problem. Genetic algorithms produce solutions that can be very close

to the best solution and require less time.

The contributions of this paper consist of the following points:

• Creating a Genetic Algorithm with implementation of KNN algorithm in the

selection phase to regulate the chromosome selection to pair. This will insure

some more diversity of the picked chromosomes. This step will reduce some

randomness from the usual genetic algorithm.

• Creating a fitness function that will consider 4 objectives:

o Time needed to reach the accident location from the emergency centre

o Time needed to reach the accident location from another location

o The risk for the people’s life

o The number of people at site

• Comparison of the proposed algorithm with an existing study. The study is

related to Emergency Medical Service routing problem, and consists of 2

parts. For comparison only 1 part will be used, and it is the part where the

routing problem is being optimized.

1.1. Genetic Algorithms

In the recent decade, evolutionary algorithms have become a popular optimization

and search approach. Evolutionary Algorithms are a subcategory of Evolutionary

Computations and are part of a group of current heuristic-based search methods. It

becomes an effective way of problem solution for extensively used global

optimization issues because to its flexible character and resilient behaviour

acquired from Evolutionary Computation. It works well in a variety of high-

complexity situations.

7

Evolutionary algorithms use iteration through generations with individuals

evolving each iteration. In genetic algorithms the individuals are represented in a

form of chromosomes. Each of the chromosomes consists of several genes which

contain a piece of information within themselves [12]. These genes will be mixed

and altered throughout the evolution process which will result in creating new

chromosomes that will be named “offspring chromosomes”. Depending on the

selection method chosen, the population consisting of parent chromosomes can

either be fully or partially replaced by the newly created child chromosomes.

The main operations performed on the chromosomes each iteration are [9]:

1. Selection – the parent chromosomes are chosen

2. Crossover – result of pairing of the parent chromosomes

3. Mutation – altering a gene in the resulted chromosomes

1.1.1. Population Initialization

The first step in genetic algorithm is population initialization. The population will

be the space of search of the defined problem. In that research, the initial

population is randomly generated, limited by the following conditions:

1. All of the emergency locations will be included in the chromosomes as genes

2. None of the genes (locations) should be repeated in the chromosome

3. Each of the teams should have at least 1 location which they will be headed

to

1.1.2. Selection

There are various selection methods, the main being Roulette wheel selection:

• Roulette wheel selection – going by the name of Fitness proportionate

selection. All of the individuals for the next generation are chosen using the

roulette wheel technique. In a genetic algorithm, it is a common selection

8

strategy. Each individual's relative fitness (ratio of individual fitness to

overall fitness) is used to create a roulette wheel.

• Tournament selection - In a Genetic Algorithm, Tournament Selection is a

Selection Strategy for picking the candidates the best fitting values out of the

most recent generation. After that, the selected candidates are moved on to

the next generation.

• Rank selection first rates the existing chromosomes, and then each

chromosome's fitness is set on by that ranking. The worst will have fitness

number one, the 2nd worst will have fitness number two, and so on, while the

best will have fitness N which is the amount of chromosomes in population.

Following that, all chromosomes have a possibility to be selected.

• Elitism selection – The goal is to sort the chromosomes in decreasing order

of fitness. Afterwards perform the selection to each of the arranged set's two

chromosomes. The Genetic Algorithm will then be used between weak and

strong chromosomes in this manner. This indicates that no Genetic

Algorithm can be used to distinguish between weak and strong

chromosomes.

• Steady State Genetic Algorithm – or simply SSGA, is the type of selection in

genetic algorithms where 2 randomly parents are selected and the resulting

chromosomes take the place of the 2 chromosomes with the lowest fitness

values. The key principle behind SSGA is that a significant proportion of

chromosomes would be passed along to the following generation. Each

generation, a few the ones with high fitness, chromosomes are chosen to

create new offspring. Then certain chromosomes, with lowest fitness

function, are withdrawn, and the new child gene is inserted instead. The rest

of the population is passed on to future generations [7].

9

1.1.3. Crossover

After the parent chromosomes are chosen, the next operation is performed,

which is crossover. The crossover operator, also called the crossover, is the

main genetic operator by which genetic material is exchanged between

individuals. It simulates the process of crossing individuals. A point within a

chromosome is randomly determined at which both chromosomes divide into

two parts and exchange them. This point is called the crossover point. There are

3 main classes of crossover [25]:

1.1.3.1. Standard crossover

• 1-Point crossover – In this type or crossover operation, 1 point is randomly

selected which will divide both of the parent to later combine them to create

2 new chromosomes. After the chromosomes are divided, the first fragment

of the first parent is merged with the second fragment of the second parent

and vice versa. The image below shows how the parent chromosomes divide

and merge, where the yellow genes belong to the first parent and the green

genes belong to the second parent.

• K-Point crossover – This type of crossover is similar to 1-point crossover.

Here, instead of select 1 random point for the chromosomes to divide, there

are k points. Similarly to 1-point crossover, there are 2 parent chromosomes

that interchange their genes, but in k point crossover, 1 offspring can contain

10

more than one segment of each of the parent chromosomes. In the image

below the yellow genes belong to the first parent and the green genes belong

to the second parent.

• Shuffle crossover – This method is one of the fundamental crossover

methods. Just like in 1-point crossover, a single crossover point is randomly

chosen. However, before conducting the crossover, the genes in the parent

chromosomes are randomly shuffled, and the switch is then made based on

the new locations. The shuffle is the same for each of the parents. The

positions are all reshuffled after the crossover. As a consequence, any

positional bias is eliminated since the variables are shuffled randomly every

time the crossover is performed. In practice, this strategy is comparable to

the uniform crossover technique.

The steps are listed as follows:

1. Choose Shuffle points

2. Shuffle the genes as defined by shuffle points

3. Choose and perform 1-point crossover point

4. Choose unshuffled points same as shuffled points

5. Unshuffle the genes in the offspring chromosomes

• Uniform crossover - This type of crossing is radically different from the

previous types. Here, each gene of the offspring is generated by copying the

11

corresponding gene from the first or second parent, that is, each position is

potentially a crossover point.

To do this, a binary crossover mask of the same length (with the same

number of bits) as the chromosomes of the parents is randomly generated.

The parity of the mask bit indicates the parent from which the child's gene is

copied. For clarification, let's say that 1 corresponds to the first parent, and 0

to the second. For a mask [1 0 0 1 0 1 0], the uniform crossover will be done

in the following way:

• Average crossover – this type of crossover is based on the value of the genes

of the parent chromosomes. Here 2 parent chromosomes create only 1

offspring. The values of the genes from each of the parent are taken and the

averages of these values are calculated. Later these calculated averages form

the new offspring chromosome.

1.1.3.2. Binary Crossovers:

Random Respectful Crossover – Takes two parent chromosomes for crossover,

and creates new offspring chromosomes using the parents' similarity vectors. It

12

first produces a similarity vector which includes the values of the parent if both

genes of the parent chromosomes have the exact same value, else the

similarity vector includes null value for that gene. Following the generation of

the similarity vector, two offspring chromosomes are formed deriving from the

similarity vector's values. If the similarity vector includes one, both children's

genes are set to one, and if it contains nine, both children's genes are set to

zero. Aside from that, if any gene in the similarity vector has a null value, the

child gene is chosen using a uniform random real number.

• Masked crossover: To decide which bits of each parent chromosome are

inherited by the child chromosome, the Masked Crossover operator uses a

mask vector. The duplication of the parent chromosomes' bits is the initial

phase. The first parent chromosome's bits are copied to the first offspring,

and the second parent chromosome's bits are copied to the second offspring.

In the next phase, the child chromosomes exchange bits at points where the

parent's mask vectors are equal to 1, indicating domination of that parent at

that position, and the other parent's mask vectors are equal to 0.

• Elitist crossover: The crossover process always comes before the selection

process in a normal genetic algorithm. Both techniques are combined in the

EX approach. The entire population is randomized at random in the first

stage. Then, by crossover, two new vectors are formed from each

consecutive pair of parental vectors. Two best vectors are selected from a

'family' and deployed as offspring in the following population. The

traditional method of elitist selection, which is applied to the entire

population, is often the cause of the algorithm's premature convergence.

Applying elitist selection on a "family" level reduces this risk.

13

1.1.3.3. Application dependant crossovers

• Crossover for Traveling Salesman’s Problems

One of the main conditions of Traveling Salesman’s Problem is that the

cities should not be repeated and all of the cities should be visited. When

performing Standard crossovers on these problems, in most cases the genes

will be repeated. This problem can be solved by using crossover operators,

specifically designed for TSP problems. There are a number of these

crossovers: Order-Based Crossover (OBX), Modified-Order Crossover

(MOC), etc.

• Other crossover application [25]:

Some other problems that require special crossover operators are: Object

classification problems, Crossover for Sudoku problem, Crossover for Graph

Colouring Problem (for Parallel GA), etc.

1.2.3. Mutation

Mutation is a genetic operator which is used to keep genetic variety in a population

of genetic algorithm chromosomes from one generation to the following. Without

mutation, the Genetic algorithm may be stuck with the same set of solutions due to

it simply exchanging some parts. Changing one of the genes may affect the fitness

value greatly. There are several types of Mutation operators:

• Bit flip [22]: Bit-flip mutation is performed on binary represented genes. In

this type of mutation, 1 or more genes are selected and the values are flipped,

if the value of the gene was originally 1, then it will be changed to 0, and

vice versa. The example of the bit-flip mutation operation is presented

below:

1 0 1 1 0 1 0 1 1 → 1 0 0 1 0 0 1 1 1

14

In this example, the red ones are the selected genes for bit flip mutation

operation.

• Boundary – this mutation operator is used with genes with float values. The

boundary mutation randomly chooses one gene and then replaces the value

with either upper or lower value.

• Uniform – uniform mutation operation is used with both integer and float

type genes. First a random gene is selected and then it is replaced by a

random number from the range defined by the user.

• Swap – swap mutation is especially useful with problems like TSP. As

mentioned before, the cities in TSP problem cannot be repeated in one

solution. In this case one of the best solutions will be swap mutation. The

principle of this mutation operator is choosing 2 random genes and swapping

them. So, if the original solution is 1, 2, 3, 4, 5, the mutation result can be: 1,

5, 3, 4, 2.

• Scramble Mutation – Scramble mutation is also one of the possible mutation

types for TSP problem. A portion of the chromosome is selected and then

displaced. It is very similar to Swap mutation described above, but there are

2 key differences: First one is the number of genes affected. Swap mutation

takes 2 genes, whereas scramble mutation can take more than 2. The second

difference is that in Scramble mutation, the genes which are being affected

are consecutive.

• Inversion mutation – Inversion mutation operator also makes changes in a

portion of the chromosome, but in this case, the genes are being inverted. For

example, if the original chromosome is represented as [1, 2, 3, 4, 5], the

Inversion mutation result can be [1, 2, 5, 4, 3], where the last 3 genes were

selected for the mutation to be performed.

15

1.3. KNN Algorithm

 Machine learning (ML) is the science of computer systems which is able to learn

from data and experience to upgrade themselves automatically. It is closely related

to Artificial Intelligence. Machine learning algorithms generate a training data-

based model to create predictions or decisions without forcing to be specifically

programmed to do so. ML algorithms are implemented in a broad variety of fields,

some of them being email filtering, fraud detection, medicine, marketing, targeted

advertisement, etc.

ML is tightly linked to computational statistics that concentrates on generating

predictions with computers; nevertheless, statistical learning is not all about

machine learning. The science of ML aids from the studies of mathematical

optimization due to the fact that it provides techniques, concept, and fields of

application. There are 3 learning methods in ML: Supervised Learning,

Unsupervised learning and Reinforced Learning.

Supervised learning is the most used and researched kind of ML since it is easier to

train a device that has chosen data. This learning method uses labelled data, which

is called training data, to determine the labels of the test data, which is the part of

the data that needs to be classified or predicted. Based on what one wants to

forecast, supervised learning may be used to unravel 2 sorts of problems: a

regression problem and a classification problem.

1.3.1. Regression task:

Regression is a statistical method used in business, marketing, and other areas [14]

to determine the strength and type of a link concerning a dependent variable

(usually represented by Y) and a collection of other variables (well-known as

independent variables). Regression may be used by investment and financial

16

managers to evaluate assets and analyse relationships between elements such as

commodity prices and the stocks of firms that deal in those commodities. When

attempting to forecast continuous data, such as the cost of a house or the

temperature outdoors in degrees, regression should be used. Because the value can

be any number with no constraints, this task type does not have a defined value

limit.

Linear regression models, in particular, demonstrate how one or more explanatory

factors may explain a portion of the natural individual-to-individual variance in a

continuous response variable. In my research I found it more suitable to proceed

with classification task method.

1.3.2. Classification task:

The Classification method is a Supervised Learning strategy that determines the

category of new observations using training data. The process of system learning

from a data collection or observed data and then categorizing freshly submitted

observations into one of several groups or groupings is known as classification.

True or False, Spam or Not Spam, 1 or 0, and so forth. Classes are sometimes

known as labels, or categories. Different from regression, this method generates a

class in contrast of a value, like "Digit or Letter," "White or Black", “Normal or

Suspicious”. Since the Classification approach is a supervised learning method, it

makes a use of labelled input data, that suggests that it contains both input and

output. There are several kinds of classification algorithms, such as:

• Logistic Regression

Logistic Regression is a ML classification algorithm which employs 1 or more

independent variables in order to produce an output [11]. A binary variable is

needed to assess the result, and that leads to a conclusion that there are only 2

potential results. The resolution of logistic regression is to determine the most

17

suitable fit between a dependent variable and a collection of independent

variables. Logistic regression is used to describe the way a group of independent

aspects has an effect on the outcome of the dependent variable.

• Stochastic Gradient Descent

Stochastic Gradient Descent is an extremely effective and straightforward

method for fitting linear models. When the sample data is vast, Stochastic

Gradient Descent is especially beneficial. Various loss functions and penalties

are supported for categorization. Computing the result from every training data

point and computing the update instantly is referred to as stochastic gradient

descent.

• Naive Bayes Classifier

Naive Bayes Classifier is a classification method founded on Bayes' theorem

[26], that presumes the predictors are independent. Even though the qualities are

dependent on each other, every one adds to the prospect individually. This

model is easy to build and is particularly good for big datasets. The classifier

uses just a little amount of training data to compute the needed parameters.

• K-nearest Neighbours Classifier

KNN is one of the essential Supervised Learning techniques. It is based on the

fact that data points, which are located close to each other, should share enough

characteristics to be considered being related to the same class [6]. In the image

below, we can see a graph, with the train data, that is used to train the machine.

Each of the colours represents one of the available classes. For example, let’s

assume that the green dots are representing the birds’ category in animal

distinction algorithm, the red ones represent mammals and the blue ones

represent fish. The data points are illustrated in Figure 1. In the graph we can

see that the dots related to each of the classes are located closely to each other.

18

Figure 1. Train data for the classification problem

Let’s assume new data was added, that needs to be categorized. There are 5 new

points. The points are added to the previous graph as black dots, and are illustrated

in Figure 2.

Figure 2. Train data and Test data (black)

To classify each of these points using KNN algorithm, we need to find the distance

between each of the new points and the old points. The newly added data is called

19

test data. First, we need to find the distance between the points from test data and

every point of train data. To find the distance, Euclidean distance formula is being

used. The formula is shown in Eq.1:

d = √(𝑥1 − 𝑦1)
2 + (𝑥2 − 𝑦2)

2

Eq 1. Euclidean distance

After finding the distance between each of the points, we need to determine the

number of the nearest neighbours, based on which the point from test data will be

classified. For this example, let’s assume the k number, the number of closest

neighbours will be 3. The closest train data points to the first point are 1, 2, and 4.

Their classes are red, red, red, so the class of the 1st point is red. Similarly, the

closest train data points to the second point are 2, 5, and 7. Their classes are red,

green and green, so the class of the 2nd point is green. The closest train data points

to the third point are 7, 8, and 10. Their classes are green, green and blue, so the

class of the 3rd point is blue. The closest train data points to the fourth point are 5,

6, and 8. Their classes are green, green and green, so the class of the 4th point is

green. The closest train data points to the fifth point are 8, 9 and 10. Their classes

are green, blue and blue, so the class of the 5th point is blue. To clearly see the

principle of the algorithm, the train data is now updated and includes the recently

added test points. All of the points are shown below in Figure 3, with the colours

being distributed respectively. As we can see, the newly added data points are close

to their classes.

20

Figure 3. Test data is classified

2. Literature Review

In this section we discuss the existing solutions to emergency and rescue optimal

route problems:

The first papers trying to solve this problem is presented by Bo Ai, Benshuai

Li, Song Gao, Jiangling Xu, Hengshuai Shang [3].The most crucial aspect of

maritime search and rescue (SAR) operations is making resolutions. The way to

swiftly react to incidents and build an emergency response plan is a significant

aspect determining efficiency and success rate while making maritime SAR

decisions. The majority of marine SAR emergency response plans are created using

an amalgamation of drift prediction models and SAR expertise. SAR resource

scheduling and task assignment are both lacking. The main goal of this research is

to investigate the feasibility of formulating maritime SAR emergency response

plans utilizing an intelligent decision-making algorithm in order to achieve more

scientific outcomes. The key technologies involved in developing marine SAR

emergency response plans are discussed in depth in this study, and the maritime

SAR decision problem is broken down into three sub-problems: SAR area

determination, SAR resource scheduling, and SAR task assignment.

21

The following are the paper's main contributions:

1. The optimal sea search hypothesis has been enhanced.

By introducing the POR, the notion of POSSAR is proposed and employed

as the purposeful function of the resource scheduling model. That model

prioritizes life-saving assistance, which is more reconcilable with actual SAR

operations, and the resulting resource allocation plan is more logical.

2. GSAA solves the resource scheduling model, that can discover the global

optimal solution while maintaining search efficiency and avoiding falling

into the local optimal solution.

3. A novel regional job assignment method is being developed based on space-

time properties. The algorithm generates a plan that covers the whole search

region while taking task priority into account and avoiding overlapping task

areas. This not only minimizes the likelihood of missing targets and

enhances SAR efficiency, but it also cuts down on redundant searches,

saving time and money in the process. Furthermore, the system executes

phased search job planning, which increases the synergy between the SAR

units.

4. The key difficulties in every section of the maritime SAR decision are

puzzled out using various intelligence algorithms, and a full and optimal

decision-making scheme is obtained quickly and intelligently, which not

only reduces accident response time but increases SAR efficiency, too.

The decision algorithm for the SAR emergency response plan suggested in this

research displays evident optimization through example verification, and can serve

as a model for future marine SAR emergency response plans.

It will be looked upon into some of the unsolved decision-making difficulties in the

future (for example, dynamic adjustment of decision-making programs,

collaborative SAR of aircraft and ships, and so on). There are two key ideas at the

22

moment: using Adversarial Networks to optimize SAR decisions by imitating

effective SAR operations; using Reinforcement Learning to improve SAR

decisions. Adapting to realize interaction between agents (SAR units) and their

surroundings (SAR environment), resulting in improved agent behaviour.

The second study was proposed by Ritu Pal, Manu Srivastava, Sudha Rani,

Neeraj Kumar [19]. Reporting a flood disaster is crucial for potential victims and

rescuers alike. Android applications are assisting flood survivors and rescuers in

determining the exact location of the flood. Genetic algorithms may play an

essential role in route optimization by providing precision in localization and route

selection. MyDisasterDroid is a smartphone application that uses the same type of

concept for disaster reporting (MDD). This application assists in providing accurate

disaster location information to relief workers and rescuers; however it can be

improved by correcting its methods. After pointing out certain typical flaws, this

paper offers suggestions for improving it. This research also suggests that a

parameter be included for a better route optimization approach. Slop has been

treated as a parameter with distance to discover an initial solution in the path to the

closest reservoir. Researchers employ geolocation as an initial input, with the best

path being the intended outcome.

This application uses a genetic algorithm with a specific formula to discover the

best path between two points. Researchers have used the concept of the travelling

salesman problem to determine a course for water flow in order to avoid floods or

large amounts of stored water at a location. In the event of a flood, the water does

not return to its original location. The travelling salesman problem, in which

geographic locations exhibit city coordinates and water represents the travelling

salesman, is analogous to determining the optimal way to change the flow of water

along distinct geographic locations. In this scenario, the TSP provides the shortest

path to the city's empty pond or reservoir as a destination. With the use of GA,

23

these different paths can be used to select the best ones. After receiving location as

an input, this algorithm generates the initial solution. MDD is based on the concept

of geo-location for providing inputs to the genetic algorithm. It locates points of

interest utilizing an MDD-installed application that sends the location to MDD

through text or SMS. Distances between sites are computed using TSP. MDD

employs a flow diagram but lacks the ability to detect a inefficacious route in a

disaster, which is a real possibility. Failed disaster initialization routes are a major

issue for every disaster. MDD for Android uses Google Maps to display its

MapView feature. MapView offers a variety of map views, including satellite,

street, and traffic views. Because Google Maps is unable to give real-time photos

due to various delays, MDD has a longer delay, which is significant in disaster

management. MDD allows for non – static recalculation of routes based on TSP

calculations based on the Euclidean distance formula. However, using the

Euclidean formula for a catastrophic situation has significant drawbacks. When

combined with the sea height and slope of the place, the Euclidean distance

formula may yield the most suitable distance between two coordinates. The concept

of identifying a water flow route is similar to finding a route for survivors or

rescuers in MDD. The researchers created a novel metric called slope from the

water point to the nearby reservoirs that is adequate for water flow. To determine

the starting solution, this slope will be combined with the distance. As a slope from

one place to another, the utility of slope has been evaluated from negative to

positive. Three variables are used as inputs to GA for a solution: coordinates of two

points, distance, and slope. GA examines fitness to discover the best route, and then

delivers a solution following crossover and mutation. Each iteration attempts to

identify the minimal fitness after being applied to an individual, which is frequently

referred to as a gene in genetic algorithms. In the case of flood management by

moving water to the closest reservoir, the goal is to determine the shortest route,

24

which implies that all routes and slopes are unique. In that case, solutions will be

chosen based on their ability to produce offspring, or new solutions.

On the basis if this paper it is fair to say, that after improving some features of the

algorithm of MDD, it can be safe to be used in disaster management systems for

flood avoidance purposes.

The third approach regarding the problem was offered by Mazin Abed

Mohammed, Mohd Khanapi Abd Ghani, Raed Ibraheem Hamed, Salama A.

Mostafa, Dheyaa Ahmed Ibrahim, Humam Khaled Jameel, Ahmed Hamed Alallah

[17]. The vehicle routing problem (VRP) is one of several complex challenges for

which no perfect solution exists. Many researchers have conducted countless

studies over the previous few decades, employing a variety of methods and

strategies. However, obtaining the lowest cost in any research is quite difficult.

They have, however, developed approximation solutions which vary in efficiency

based on the search space. The difficulty in this research is the following: there are

a lot of trucks that are utilized to transfer applications to a specific location. Every

day, each van departs from a central place at a separate time. The truck collects

applications from initial coordinates and transports them to the instance site via a

variety of routes, returning to the initial location at precise times each day,

beginning early in the morning and ending at the conclusion of official working

hours, under the following conditions: Each route will visit each place once, and

each vehicle's capacity is sufficient for all applications covered in each route.

Using the K-Nearest Neighbor Algorithm, this study attempts to determine an ideal

route outcome for VRP (KNNA). To acquire an ideal VRP resolution with the

objectives as follows: to decrease the distance and time for all routes, resulting in

faster client transportation to their destinations; to use the capacitated vehicle

routing problem (CVRP) model to optimize the solutions. The method was

provided in two stages: first, the algorithms were changed to address the research

25

topic, which had a different procedure than the standard algorithm. The method's

structure is such that it does not call a need for a huge database to keep the

population, that speeds up the program's execution to achieve the solution; second,

the algorithm has demonstrated its ability to solve the issue and identify the

quickest route. The findings of this research revealed the following: A dynamic

KNNACVRP universal list; KNNACVRP's assessment measure was identified and

developed. The CVRP model is used to optimize VRP services in this study. The

K-Nearest Neighbor Algorithm (KNNA) is used to address this issue since it is

capable of tackling a wide range of real-world problems. All of the KNNA

procedures are performed by the algorithms. The fitness value is computed in a

straightforward fashion as a distance’s function because the smallest cost of the

study issue is dependent on lowering the distance. The KNNA is structured in such

a form that the search process is sped up. Despite the problem limits, the algorithm

meets the purpose of the study by enhancing the distance of transportation paths.

The method was put in application to the issue online to evaluate its validity and

reliability, and it was successful in resolving the issue and providing the quickest

path in very little amount of time. The availability of a sole variable in the study

topic (distance), as well as the small and finite number of station stops, makes

finding a solution relatively simple, and does not highlight the KNNA's strength in

dealing with complicated and confusing situations. There is a single physical route

that connects the various locations for gathering together kids, preventing the

option of identifying additional physical routes and weighing them up to find the

lowest distance path. Another variable, such as a heuristic function to be regarded

as the road's slope or any other factors such as traffic jams, road smoothness, etc, is

recommended. The slope will be compounded by the distance between two

subsequent bus stops to create a weight. This will assist in determining the precise

route time. The goal of the study was to find the optimum solution to the VRP

26

problem. The purpose was to lower the cost of transportation, which is a service

that is supplied to the problem for free. In conclusion, it is proved that the KNNA is

effective in solving the VRP and producing estimated results because it is eligible

for a wide range of difficulties. The KNNA's strength stems from its ability to be

altered to solve any issue by combining multiple ways or adjusting its methods as

indicated by the situation, as this study has done.

Another approach I have reviewed was proposed by Gloria Cerasela Crişan,

Camelia-M. Pintea and Vasile Palade [8]. The successful management of

emergency circumstances requires the strategic design of logistic networks such as

highways, trains, and mobile phone networks. Geographic coordinate systems

could be utilized to create new traveling salesman problem (TSP) cases

incorporating GIS elements. In this paper the researcher writes about a framework

for creating a systematic succession of instances. The current research presents a

recurring framework for creating a systematic succession of instances using the

Lin–Kernighan heuristic. The system aims to simulate real-life random

unpropitious events that affect vast areas, such as heavy rains or the entrance of a

polar front, as well as focused relief provision in the early stages of a reaction.

They utilization of the first Romanian TSP instance containing the main human

settlements as a proof of concept for this framework, and generate numerous

sequences of instances from it. The goal of this study is to create new approaches

for assessing hazards in large-scale, complicated networks. The two primary

benefactions of this research (the Romanian GIS-TSP instance and the ALTER-

FTSP structure) work together to achieve this goal: the former provides real-world

support for the latter. The instance is a complex network of spatial points, and the

framework is a flexible and broad description of the network evolution, as the real

world operates in Space+Time dimensions. As a result, they are complementary. A

situation is described that includes uncertainty. This technique might be employed

27

in transportation safety: after an earthquake, a swarm of drones would investigate

the randomly shattered sensors from a wide territorial road network.

There’s another study by Siba Prasada Tripathy, Samarjit Kar and Tandra Pa,

who suggested a CSP algorithm. The rescue or relief team tries to service each of

the areas in the impacted area during a humanitarian relief operation and mass

fatality management [24]. It is impossible for the crew to reach every node in a

single effort due to a lack of time or resources. As a result, traveling some of the

locations and inviting locals to the visited location is a better strategy to complete

the assignment. On a given completely connected graph, the Traveling Salesman

Problem (TSP) aims to determine the least cost Hamiltonian path. There are

multiple TSP versions that consider various aspects and are solved using various

approaches. TSP is a generalization of the Covering Salesman Problem. J. R.

Current and D. A. Schilling first developed CSP in Transportation Science, vol. 23,

where the goal is to discover a Hamiltonian tour with a minimum length that visits

a subset of nodes while maximizing the covering nodes residing within a

predetermined distance but not in the tour [13]. The authors created a modified

Metameric Genetic Algorithm (MGA) [22] for CSP that includes a new crossover

operator called the Global Parent Crossover operator (GPX).

The suggested MGA is then applied to 16 normal TSP instances using the GPX

operator. Each customer covers its 7, 9, and 11 closest customers in the usual

instances, resulting in 48 instances. The new MGA's findings were then compared

to two existing methods: Current and Schilling, as well as Memetic Algorithm. The

results show that the suggested MGA GPX heuristic outperforms the Current and

Schilling heuristics for covering salesman problems with all customers covered.

The suggested technique outperforms the Memetic algorithm by 25% in terms of

execution time, but it increases the length of the tour by 14%. The suggested CSP

algorithm's purpose is to cover all consumers in a devastated area by traversing a

28

subset of facilities, where a node can be either a customer or a facility, and it can be

used in real-world settings such as after natural or man-made disasters. The results

demonstrate that the suggested metaheuristic algorithm outperforms two other

algorithms. This challenge can be extended in the future for uncertain environments

where the cost of the edges or the tour demand are not represented by clear

quantities.

Among the papers I reviewed, in B Fernandez’s study of “Travelling

salesman problem: Greedy single point crossover in ordinal representation”, the

author compares GSPC, TPC and SPC [11]. Genetic Algorithms (GA), Simulated

Annealing (SA), and Tabu Search (TS) are the most well-known metaheuristic

algorithms [1]. The choice of genetic operators, particularly selection, crossover,

and mutation, has an impact on GA performance [2]. In GA, the crossover operator

is crucial since it is utilized to transmit information during the solution search [5].

One of the most basic crossover operators is single point crossover (SPC). The path

form is the most used representation for solving TSP problems with Genetic

Algorithms, due to its intuitive representation and positive performances.

Unfortunately, this representation cannot be used with traditional crossover

operators since the ensuing children may have redundant alleles, resulting in the

loss of another point, which is incompatible with the TSP notion. Ordinal

representation coding can be used with traditional crossover and mutation

operators; however the experimental results are mixed. A greedy algorithm is one

that, when addressing a problem, always chooses the option that appears to be the

best at the time; the option is optimal locally in the hopes of leading to a globally

optimal solution [21]. The efficiency of GA in the ordinal representation coding

scheme has to be enhanced when applying the greedy algorithm on the SPC

operator to obtain the global optimal solution. The results of this study's tests

demonstrate that the GSPC operator has the best fitness, however it takes longer to

29

compute. TPC provides the quickest computation time. Because the testing of

candidate two alleles from parents is done before allele exchange, GSPC prevails in

best fitness. This results in a long computation time. TPC has a short computation

time because the allele exchange between the two parents occurs from the first to

the second point, while the second point is not invariably the site of the last gene,

as is the case with SPC.

In final paper I reviewed, by M. Pallin, J. Rashid and P. Ögren, covering "A

Decentralized Asynchronous Collaborative Genetic Algorithm for Heterogeneous

Multi-agent Search and Rescue Problems," [20], the researchers propose a highly

decentralized version of the Genetic Algorithm (GA) for combined task assignment

and path planning, in which each agent only knows its own capabilities and data, as

well as a set of so-called handover values communicated to it from other agents

over an unreliable low bandwidth communication channel. These handover values

are used with a local GA with no other agents to choose which tasks to perform and

which to delegate to others. They compare our technique to a centralized version of

GA and a partially decentralized version of GA in which calculations are local but

all agents require comprehensive information about all other agents, such as

position, range, battery, and local obstacle maps. We analyze the three algorithms'

solution performance as well as the messages transmitted, and find that the

suggested algorithms have a slight performance loss but a large reduction in

necessary communication.

As one of the main goals of the emergency rescue team is fast response, in this

study I decided to implement genetic algorithm in order to achieve the optimal task

arrangement between the teams. To try to decrease the calculation time, instead of

the randomly choosing the parent chromosomes for pairing, KNN algorithm will be

30

used. This will provide the crossover with more diverse chromosome pairs, which

will lead to creation of more diverse offsprings.

3. Implementation

3.1. Methodology

The code was implemented on Jupyter Notebook. The chosen programming

language was Python version 3. At first, to simulate the emergency situation we

need to create an environment for the said situation. Suppose there are 2 emergency

centres in the town. The main office that receives calls for the mentioned centres

receives 5 calls in total. For simplicity, let’s assume that the centres are equipped

equally and the knowledge, experience and the ability of the rescuers are the same.

To assign the tasks between these teams and the locations that the rescuers will go

first, the Hybrid Multi-Objective Genetic Algorithm was implemented. The risks

that will be considered in the algorithm are calculated as described in the situations

below. There are 10 locations the rescuers teams should go to and the situations

include:

1. 1 person. 60 years old, male. Has a heart attack. Had previous issues with

regard to his heart condition. Is still conscious. The life threatening risk from

heart attack is very high, but considering the patient is still conscious, the

risk rate will be considered as 8 for this case.

2. 1 person. 34 years old, male. Has deep cut in his arm leg. The injury was

received at a construction site. This increases the level of infection, which

may spread out from the open wound, which increases the risk rate. The

person is half-conscious and lost 400ml of blood. The cut didn’t injure the

artery, but the vein was damaged severely. Considering the conditions

mentioned previously, the risk rate will be put up as 7.

31

3. 2 people. First one is 52 years old woman. No previous health related

conditions. Symptoms of stroke were described. The woman is already

unconscious for 5 minutes. The average time the help should be provided to

the patient is 3 hours. For some cases, the patient can be saved even after 4.5

hours. This time is considered for only saving the life of the patient. For the

patient to have as little consequences from the stroke as possible, the help

should be provided within 1 hour. Since the risk for the life of the person

with a stroke is already very high, and for the reason that the patient is

already unconscious, which could mean that the person might have the

medical condition for approximately somewhere between 20 minutes to 40

minutes, which leads us to the fact that the help should be provided in range

between 20 minutes to 40 minutes. This lead us to the result that the risk for

this person’s life is as high as 9.

The other person at the same location is the first patient’s daughter, 20 years

old, who got accidentally cut while trying to catch the first patient from

falling. The cut didn’t damage the artery but was very deep regardless. The

patient lost a relatively dangerous amount of blood. Considering the

situation, the risk for this patient is calculated to be 7.

4. In the fourth location, the patient is a 7 years old child, who accidentally

swallowed a cap of a pen and is having difficulties breathing. Because the

caps have holes on the tops of them to prevent suffocation, the patient can

still breathe, but regardless, the cap of the pen blocks a big portion of the

airway. On top of that, the panic that comes with the inability to take a deep

breath, which leads the adrenaline in the child’s blood to rise, causing higher

heart beats per minute, which as a result causes quick and short breaths. Due

32

to the situation being not seriously damaging and life threatening, the risk of

the life of the person will be average, and in number it will be 6.

5. The fifth location has 3 people needing immediate help. A group of friends

just returned from a vacation from a country that had some type of infection.

The ages of these people are 25, 26, and 26, and are male, female, and male

respectively. The youngest of them all has a seizure, and the other 2 have

high fever of 38.7 and 39.5 C respectively. The person with a seizure, has the

grand mal seizure, with is one of the type that can lead to unconsciousness

and causes violent muscle contractions. The patient is still conscious, but has

had seizure for 10 minutes already. Typically, seizures will cause damage to

the brain after 30 minutes from the start of the seizure, which means that to

prevent it, the help to the patient should be provided in not more than 20

minutes.

On the other hand, there are 2 more people that need help. The body

temperature of these people is high but because it is not higher than 40o,

there is no life threatening risk to the moment, their bodies are just trying to

get rid of the infection they caught, so the risk will be considered 3.

6. The next location has 2 people, one of them is 29 years old, the other one is

39 years old. Both of these people have broken bone. The wound is closed,

no blood loss, and both are conscious. The risk for this case is low, and for

both will be considered as 2.

7. This site has only 1 person who has mild headache. Because there are no

other symptoms, the risk for this case will be 1.

8. The 8th location also has 1 person. The patient who suffers from allergies has

gotten an anaphylactic shock. The symptoms include suffocation, purple

skin. The patient is still conscious, but can barely breathe. This means that

the risk for this case will be 8.

33

9. In the 9th location, a teenager got a high fever of 41o C. This temperature is

considered life threatening, and needs immediate intervention, so this case

will have the risk of 8.

10. The last location has 1 person and she is having a seizure. She has been

unconscious for 2 minutes by the time of the call. This leads to the result of

risk being 9.

3.1.1. Data storage

To store and later use the input values the data will be stored in DataFrames. There

will be 6 tables in total:

1. Table with all of the solutions that are being processed. The tables will

include columns 1st center, 2nd center, generation, fitness value, Solution

number and Class

1st center will contain the list of location in order of the help provided by the

first rescue team.

2nd center will contain the list of locations in order of help provided by the

second rescue team.

Generation – is the age of the chromosome. This information is needed in the

selection phase where the KNN will be implemented.

Fitness value – the fitness value will be calculated by Equation 2.:

Min ∑ 𝑤0𝑡𝑖𝑗
𝑛
𝑖=1 +𝑤1𝑟𝑖 +

𝑤2

𝑛𝑖
+𝑤3𝑣𝑖

Eq. 2, Fitness Function.

where 𝑤 is the weight of each variable, 𝑡𝑖𝑗 is the time it takes to move from

the rescue center to the accident location or from one accident location to

another one, 𝑟𝑖 is the level of risk of people’s lives, 𝑛𝑖 is the number of people

in the location 𝑖 and 𝑣𝑖 is the amount of time that will be spent during the

operation.

34

The weights in the function are given in Table 1.:

Table 1. The weighs used in the

Weight Value

w1 0.7

w2 0.82

w3 0.78

w1 shows the importance of time it took to reach to the location from the

center or to the other location. The time it took to reach the patient will affect

the future condition of the person a lot.

w2 shows the importance of the risk that threatens the patient’s life. The time

spent on the road is, of course, very crucial, but if the patient with headache

located in 10 minutes ride and a patient with heart attack is 30 minutes away,

the rescue team should first head to the patient with the heart attack.

w3 shows the importance of the number of people at the site. It is obvious,

that the number of people, the help will be provided to and who will be saved

is very important.

2. Another DataFrame table will contain the information about all of the

possible injuries and situations. The columns will consist of ID, Name, Risk,

and Time.

ID – the id of the injury or situation. This will be used to link the information

about the injuries with other tables during the calculations.

Name – the name of the injury or the situation. The name can be used to

identify the injury by the user.

Risk – all of the injuries will have risks defined beforehand. This column

will be used to calculate the risk for each of the solutions afterwards. The

more the risk, the higher the number will be.

Time – this variable shows the time needed to spend to treat each of the

injuries or situations. This number will also be included in the Risk

calculation of the solution.

35

3. A separate table contains the location of the situations that need help. The

table columns will contain id, Number, Injuries

Id – the id number of the location. This will be used to link the information

about the situations with other tables during calculations.

Number – number column will show the number of the people at site.

Injuries – The ID’s of the injuries in this table will be presented in this

column. Due to the fact that some of the situations may have more than one

person who needs immediate help, all of the injuries will be included in a

form of a list.

4. One more table will contain the information about the time needed to get

from one location to another one. There will be 10 locations in total, so there

will also be 10 columns and 10 rows.

5. Another table will contain the information about the time needed to get from

the centres to the emergency situation locations. Since there will be 10

locations and 2 centres, the number of rows will be 2 and the number of

columns will be 10.

6. The last DataFrame table will consist of the variables needed to be used to

calculate the fitness value. The columns are solution, Time_center,

Time_location, Risk and Number.

Solution – solution will show the id of the solution, the variables of which

are being calculated.

Time_center – The time it will take to get from the centres to the locations

for the defined solutions.

Time_location – The time needed to get to the location from the previous

location. This variable will include time between the locations and the time

needed for treatment of the previous patient or patients.

Risk – The variable identifies the total amount of risk for each of the

situations. As the time passes, the risk of each of the injured person’s life

36

increases. For this reason, each next location will have the risk added the

multiplied by 1.3.

Number – the number of people in the site that need help.

First, 100 random solutions were generated. Then their fitness values were

calculated. Now the Selection phase of the genetic algorithm should begin.

There are two classes the solutions will be divided into. These classes will be used

to select the random solutions for crossover. To train the model, the train data was

constructed. The train model consists of 4 columns. The first two columns are used

to show the generation, which is the age of the solution, and the fitness values of

the solutions. In the code, they will be considered as the X_train part. X_train part

are the variables that determine the label of the class. 100 rows of train data were

provided to initialize the training data’s target. The Target column will contain the

class of the solution, based on the X_train data. The Target column will be the

y_train in this case. Based on this training data, and the fitness function calculated

before, the solutions, which were randomly generated before, will be assigned to a

class.

Solutions in the training data will be used to link the table used for KNN and the

solutions table. To find the class of the solutions, the generation, fitness value, class

and the solution id will be added to the train data table. The code will divide the

test data and the train data based on the Class column. By default, the class of the

solutions created is NaN, which is the equivalent of null in numpy library of

python. The algorithm will check the values for the solutions in the column, and if

the value of the class of the solution is NaN, the solution will be treated as test data,

which needs to be classified, if there is some value, the solution will be treated as

train data, and the class will not be changed. To merge the table with the solutions

table that will have the main information needed to preform Genetic Algorithm

37

techniques, the Solution of the data in the train data will be considered by default as

-1, so these rows will not be transferred to the solutions table.

The number of the nearest neighbours in the algorithm will be taken as 3, so the

class of the solution will be decided based on 3 of the points in train data.

Now that we have our solutions classified, the data will be divided into 2 parts, 1

part will contain solutions of class 1, and the other will contain the solutions of

class 0. This is the most important part of the algorithm that makes it different from

previously proposed ones. It is biologically proven that close relatives’ children can

inherit more diseases that are common to the parents, and also, they can inherit

their negative genetic traits. This means, that statistically, the probability of

children with more diverse background is higher that of those, who are related. This

statement was the inspiration of the proposed algorithm. After the solutions were

divided into 2 classes, the algorithm takes random solutions from different classes

and performs crossover operation. Because the locations are stored in 2 different

lists, which helped with identification of the boundary between the lists that are

related to each of the centres, I combined them into 1 list. So, for example, if the

lists were [1, 5, 2, 6, 8] and [0, 3, 7, 9, 4] for the first centre and [4, 2, 5, 1, 0] and

[6, 7, 3, 9, 8] for the second one, to perform crossover, the lists will be presented as

[1, 5, 2, 6, 8, 0, 3, 7, 9, 4] as the first parent and [4, 2, 5, 1, 0, 6, 7, 3, 9, 8] as the

second parent. The crossover method used in the proposed algorithm is going to be

one point crossover. In this case, since I combine the lists of the rescue centres, the

crossover point is also going to be the boundary for determining the split border for

the lists of the rescue teams’ arrangement. So, as an example, for the parent

chromosomes mentioned above, the crossover operation will be performed in the

following way:

[1, 5, 2, 6, 9, 0, 3, 7, 8, 4]

[6, 2, 5, 1, 0, 4, 7, 3, 9, 8]

38

Randomly generated crossover point will be 5

This means that the newly generated chromosomes will be

[1, 5, 2, 6, 9, 4, 7, 3, 9, 8]

and

[6, 2, 5, 1, 0, 0, 3, 7, 8, 4]

And the division between the rescue teams will be [1, 5, 2, 6, 9] for the first teams

and [4, 7, 3, 9, 8] for the second team for the first solution and [6, 2, 5, 1, 0] for the

first team and [0, 3, 7, 8, 4] for the second rescue team. As we can see in this

example, the results don’t include all of the locations. This part could be changed

during the mutation algorithm. The mutation operation as described in the

introduction part helps to add some diversity in the results. In the case describes

above, the mutation operation can also help eliminate the problem of the repeating

locations in the list. The mutation method in the proposed algorithm will take a

random location from the solution and replace it with a random number in the

range of the locations, which in this case is a digit between 0 and 9. When applied

to the example mentioned above, the result of the mutation can change the solution

from a non-valid one to a valid one:

The first solution is [1, 5, 2, 6, 9], [4, 7, 3, 9, 8]. As we can see, the location number

9 repeats here twice. Let’s suppose that the mutation randomly took the 4th location

of the 2nd centre and changed it to 0. In this case, the solution after going through

mutation problem will give us the result of [1, 5, 2, 6, 9], [4, 7, 3, 0, 8]. As we can

see, the operation turned the solution that couldn’t be used in real situation, to a

valid one, where all of the locations will be visited.

The second solution is also not a valid solution yet. In the second solution

[6, 2, 5, 1, 0], [0, 3, 7, 8, 4] we also see that the location number 0 is repeating

itself. The mutation operation is again performed in to the solution. The algorithm

takes a random location, which let’s assume is the 3rd location of the 1st rescue

39

teams’ tasks, and picks a random value from 0 to 9 that will be 8. When applied to

the solution, we get the result [6, 2, 8, 1, 0], [0, 3, 7, 8, 4]. In this case, the solution

is still not valid, because not only after the mutation phase we still have repeating

0’s, but now we also have repeating 8. This, and the fact that the locations number

5 and 9 are not assigned to any of the rescue teams, means that the solution is not

valid and therefore, cannot be included to the population. To check whether the

solution is valid or not, the valid_solution function was created. The solution

consisting of 2 lists, is combined into 1 list first. Then, a counter is implemented for

each of the location numbers. If any of the locations have a count more than 1, the

function will return False as a result. After the crossover operation and the mutation

operation will be implemented to the available solutions, the valid_solution

function will be used.

The Genetic Algorithm method used for the proposed algorithm is Steady State

Genetic Algorithm, or simply SSGA. As mentioned in the beginning of the thesis

paper, in this type of Genetic Algorithm, two parent chromosomes will be taken

first. Then after the crossover and mutation operations will be applies, the solutions

will be added to the initial population by replacing the ones with the least fitness

function. In addition to the genetic algorithms operators mentioned, the

valid_solution function will also be used. It will be used when the algorithm will

try to replace the solution with the least fitness function, to the newly generated

ones, but first it will check if the solution is valid for the problem. It is possible that

one of the solutions will be valid, but the other will not, as shown in the example

above. In this case, the first solution, that is valid, will be included to the new

population, but the second one, which doesn’t meet the criteria, will not be

included.

3.2. Simulation and experimental results

40

In the 10 locations described above, the initial solutions will be randomly generated

to be digits from 0 to 9. The locations will be distributed between 2 centers in a

form of a list. By default, the initial solutions will have the fitness value of 0 and

the classes will be NaN from numpy.

The scenario described above, with the locations ids, the risks for the life of the

patients will be manually included in the DataFrame in a form of a multi-

dimensional list like:

Loc_data = [[0, 1, [1]],

[1, 1, [3]]

…

]

where the each of the lists in the list will describe 1 of the location situation. For

example, 0 will be the id of the location, 1 is the number of people that have

injuries or medical conditions and the last list is going to be the injury ID’s.

The injury ID’s are required to find the risk of the injuries and conditions and the

time that needs to be spent for saving the patient, or provide help.

The risks for the people’s lives will be taken from the prepared table. This table

will be the same for all of the scenarios, and contain all of the possible injuries and

medical conditions. The example of the table with all of the injuries, their names,

ID’s, and the time needed is shown in Table 2.:

Table 2. Example of the injuries and situation tables

id Name Risk Time for treatment

1 Heart Attack 8 40

2 Stroke 9 30

3 Deep cut 7 60

4 Suffocation 6 20

5 Fever 3 10

41

The distance between the locations and the centres will be measured in time

required to get from the start point to the destination point. For the simulation, the

values will be inserted manually, but in the future, when the algorithm will be used,

the times can be calculated from the maps predictions, for example Google Maps.

The times between locations for this example will be as shown in Table 3:

Table 3. Example of the locations distance table

Locations 0 1 2 3 4 5 6 7 8 9

0 0 2 2 4 3 4 2 3 5 1

1 1 0 4 5 1 5 2 5 2 4

2 2 3 0 4 2 3 2 3 4 1

3 5 4 4 0 2 4 2 5 4 4

4 3 1 2 2 0 3 5 2 1 2

5 4 1 2 4 3 0 2 3 5 1

6 1 2 4 5 1 5 0 5 2 4

7 2 3 1 4 2 3 2 0 4 1

8 5 4 2 3 2 4 2 5 0 4

9 3 5 2 2 6 3 5 2 1 0

The next step is defining the table, which will contain information about the time

required to travel from the rescue centres to the locations of the situations. An

example for the scenario mention above will be shown in Table 4:

Table 4. Example of the centres to locations distance table

location

centre

0 1 2 3 4 5 6 7 8 9

1st 2 2 4 1 3 4 2 4 1 2

2nd 4 3 1 6 2 3 4 5 1 4

42

3.2.1. Scenario 1

After filling all of the tables, the algorithm can now be run according to the specific

scenario. The example below is related to the scenario described above.

The total number of runs done for of the scenarios will be 10. The number of

iterations of the Genetic Algorithms main loop for each of the runs will be 5000.

The weights for all of the scenarios are mentioned in Table 1. For these 10 runs, the

lowest number of generations needed to get the highest fitness value was 927, the

maximum was 1219. The average for the 10 runs was 1034. The comparison can

be seen in Figure 4.

Figure 4. Generations with the best fitness values in Scenario 1 for each execution

The best solution for this scenario was the chromosome [[2, 0, 7, 4, 1], [9, 3, 4, 8,

6]]. The average fitness value of the randomly generated chromosomes was

4.398219. The highest fitness value was 29.743926 and was reached in the 6th run

of the code. The generation needed to reach the value was 927.

0

200

400

600

800

1000

1200

1400

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Scenario 1

Scenario 1

43

3.2.2. Scenario 2

For the second scenario, the following situations have been taken into

consideration:

1. The 1st location has 1 person. The injury sustained is broken arm. The wound

is close; there is no blood loss, so the risk for this case is evaluated as 2.

2. The 2nd location has also 1 person. The patient is suffering from an allergic

reaction. The skin is starting to turn purple; the patient has serious

difficulties breathing, but is still conscious. The risk for the life in this case

will be evaluated as 8.

3. The 3rd case is the location with 1 person having a heart attack. The person is

still conscious but had several heart related conditions in the past. The risk

for this case will be considered as 8.

4. The 4th location will have a person with a relatively strong headache. No

other symptoms were detected, so the risk for this case will be evaluated as

2.

5. The 5th location has 2 people. They have been in a fight, 1 has broken rib,

and the other one has a deep cut. For the first injury, the damage from the

broken rib part was not life-threatening so the risk will be evaluated as 2.

The second patient with the deep knife was attacked with a knife. The cut

didn’t touch any of the vital organs, so the risk of this case will be evaluated

as 7.

6. The 6th location has 1 person, an elderly person, who is going through a

stroke. The person is conscious but all of the symptoms are highly defined.

The risk of the injury will be evaluated as 8.

7. In the 7th location, the person is having a stomach ache. The suspicions are

that the person has eaten rotten food. Since the only symptom is the pain, the

risk will be evaluated as 2.

44

8. The records from the 8th location show that there is a child, who is having a

seizure. The patient has been unconscious for 6 minutes. In this case, the risk

will be evaluated as high as 9.

9. The 9th location has a person with high fever. The value already reached

40.8o C. Since this temperature is considered as dangerous, the risk for the

person’s life will be as high as 8.

10. The last location has 2 people with fever. None of them reached 40o C, so the

risk will be evaluated as 3.

The scenario was again run 10 times. The results of these executions show that

the fastest the algorithm reached its highest fitness value is 873, the slowest is

1025 and the average number is 938.

The comparison can be seen in Figure 5.

Figure 5. Generations with the best fitness values in Scenario 2 for each execution

The best solution for this scenario was the chromosome [[7, 8, 9, 3, 0, 6], [5, 4, 1,

2]]. The average fitness value of the randomly generated chromosomes was

4.398219. The highest fitness value was 31. 426823 and was reached in the 2nd run

of the code. The generation needed to reach the value was 873.

750

800

850

900

950

1000

1050

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Scenario 2

Scenario 2

45

3.2.3. Scenario 3

The scenario number 3 has the following situations:

1. The person is having a heart attack. Unconscious. No previous heart related

conditions. The risk for this person’s life will be evaluated as 8.

2. The second person is also having a heart attack. She is conscious; no heart

related conditions were found before. The age is 23. The risk for this person

life will be evaluated as 7.5.

3. The third location has 4 people. 2 of them have deep cuts, and the other 2

have 2nd degree burns. The risk for the life of the people with the cuts is 7 for

both, since the cuts didn’t touch any vital organs. The risk for both of the

people with burns is evaluated as 5.

4. The 4th location has 1 person. He is going through an allergic reaction. The

patient is still conscious, had difficulties breathing, but the skin is in a

normal colour. The risk for this person’s life will be evaluated as 7.

5. The 5th location is at the beach. 2 people are drowning, 1 person tries to save

the other one. Both of the people’s lungs are filled with water. The risk of

both of these people’s lives is rated as high as 9.

6. The 6th location has a person with stroke. The patient is unconscious, and has

been in that state for 30 minutes. The risk for the life of this patient is 10.

7. The 7th location has 2 people. Both of them have high fever, more than 40.5o

C. The risk for both of this people will be evaluated as 8.

8. The 8th location has 1 person. The patient is having a mild seizure. The

symptoms are not life threatening so the risk for the person’s life will be 5.

9. The 9th location is a bank. There has been a mass shooting, and there are 3

injured people. The injuries include gunshot wounds and knife wounds. The

patients lost a lot of blood. The risk for this case will be 9

46

10. The last location has a person with a failed suicide attempt. The person tried

to take a dangerous amount of tablets. The patient is unconscious. The heart

rate is below 40 beats per minute. The risk for person’s life is 10.

The scenario was again run 10 times. The results of these executions show that the

fastest the algorithm reached its highest fitness value is 923, the slowest is 1113

and the average number is 998. The comparison can be seen in Figure 6.

Figure 6. Generations with the best fitness values in Scenario 3 for each execution

The best solution for this scenario was the chromosome [[5, 4, 2, 1, 0], [8, 9, 6, 3,

7]]. The average fitness value of the randomly generated chromosomes was

4.398219. The highest fitness value was 45.625383and was reached in the 4th run

of the code. The generation needed to reach the value was 923.

3.2.4. Scenario 4

The scenario number 4 has the following situations:

1. The 1st site has 1 person. The emergency situation is a heart attack. The

patient is an elderly person. The risk for the patient’s life is considered 8.

750

800

850

900

950

1000

1050

1100

1150

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Scenario 3

Scenario 3

47

2. The 2nd location also has 1 person. The injury is broken leg. The wound is

open, so the risk increases and will be evaluated as 6.

3. The 3rd location has a person with a stroke. He has been unconscious for 2

minutes. The risk for the life of the patient is as high as 9.5.

4. The 4th location has a teenager with a seizure. The patient is conscious and

has mild convulsions. The risk will be evaluated as 6.

5. The 5th location is a gas station. The explosion left 2nd degree burns on 2

people. The risk for both people will be 5.

6. The 6th location has a patient with dislocated shoulder. The pain is medium.

The risk will be taken as 2.

7. The 7th location has a person with a heart attack. The person is young, and

conscious. The risk will be 7.5.

8. The 8th location is the base of a mountain. An alpinist fell while climbing.

Several bones have been broken. The risk is considered to be 8.

9. The 9th location has 1 patient, which is going through a stroke. The patient is

an elderly person, so the risk increases to 9.

10. The last location has a person with a deep cut. The cut didn’t touch any of

the vital organs, but there is a lot of blood lost. The risk will be evaluated as

7.

The scenario was again run 10 times. The results of these executions show that the

fastest the algorithm reached its highest fitness value is 902, the slowest is 1157

and the average number is 1004. The comparison can be seen in Figure 7.

48

Figure 7. Generations with the best fitness values in Scenario 4 for each execution

The best solution for this scenario was the chromosome [[2, 6, 0, 3, 1, 5], [8, 9, 4,

7]]. The average fitness value of the randomly generated chromosomes was

4.398219. The highest fitness value was 37.945392 and was reached in the 2nd run

of the code. The generation needed to reach the value was 902.

3.2.5. Scenario 5

The scenario number 5 has the following situations:

1. The 1st location has a person with a headache, nausea and dizziness. The

condition has been continuing for 2 hours and is getting worse. The risk for

this case will be evaluated as 5.

2. The 2nd location has a person with a heart attack. The person is young, and

conscious. The risk will be 7.5.

3. The third location has 4 people. 2 of them have deep cuts, and the other 2

have 2nd degree burns. The risk for the life of the people with the cuts is 7 for

both, since the cuts didn’t touch any vital organs. The risk for both of the

people with burns is evaluated as 5.

750

800

850

900

950

1000

1050

1100

1150

1200

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Scenario 4

Scenario 4

49

4. In the 4th location, the person is having a stomach ache. The suspicions are

that the person has eaten rotten food. Since the only symptom is the pain, the

risk will be evaluated as 2.

5. The 5th location will have a person with a relatively strong headache. No

other symptoms were detected, so the risk for this case will be evaluated as

2.

6. The 6th location has 1 person. The injury sustained is broken arm. The wound

is close; there is no blood loss, so the risk for this case is evaluated as 2.

7. The 7th location has 1 person. The patient is having a mild seizure. The

symptoms are not life threatening so the risk for the person’s life will be 5.

8. The 8th location has 1 person, an elderly person, who is going through a

stroke. The person is conscious but all of the symptoms are highly defined.

The risk of the injury will be evaluated as 8.

9. The 9th location has a person with a deep cut. The cut didn’t touch any of the

vital organs, but there is a lot of blood lost. The risk will be evaluated as 7.

10. The last location is the main road. A person has been hit by a car. The injury

is not serious, no bones were broken. The risk will be evaluated as 3.

The scenario was again run 10 times. The results of these executions show that the

fastest the algorithm reached its highest fitness value is 945, the slowest is 1253

and the average number is 1103. The comparison can be seen in Figure 8.

50

Figure 8. Generations with the best fitness values in Scenario 5 for each execution

The best solution for this scenario was the chromosome [[8, 1, 9, 4, 3, 5], [2, 7, 0,

6]]. The average fitness value of the randomly generated chromosomes was

4.398219. The highest fitness value was 48.943021and was reached in the 2nd run

of the code. The generation needed to reach the value was 945.

3.2.6. Scenario 6

The scenario number 6 has the following situations:

1. The 1st location will have a person with a relatively strong headache. No

other symptoms were detected, so the risk for this case will be evaluated as

2.

2. The 2nd location has 2 people. They have been in a fight, 1 has broken rib,

and the other one has a deep cut. For the first injury, the damage from the

broken rib part was not life-threatening so the risk will be evaluated as 2.

750

850

950

1050

1150

1250

1350

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Scenario 5

Scenario 5

51

The second patient with the deep knife was attacked with a knife. The cut

didn’t touch any of the vital organs, so the risk of this case will be evaluated

as 7.

3. The 3rd location has 1 person, an elderly person, who is going through a

stroke. The person is conscious but all of the symptoms are highly defined.

The risk of the injury will be evaluated as 8.

4. The 4th location has 1 person. The patient is having a mild seizure. The

symptoms are not life threatening so the risk for the person’s life will be 5.

5. The 5th location is a bank. There has been a mass shooting, and there are 3

injured people. The injuries include gunshot wounds and knife wounds. The

patients lost a lot of blood. The risk for this case will be 9

6. The 6th location has a person with a headache, nausea and dizziness. The

condition has been continuing for 2 hours and is getting worse. The risk for

this case will be evaluated as 5.

7. The 7th location has a person with a heart attack. The person is young, and

conscious. The risk will be 7.5.

8. The 8th location is a restaurant. 6 people have been poisoned. The risk for 4

of these people is 2, the risk for the remaining 2 is 4.

9. The 9th location has 1 person. The patient is having a panic attack. The risk is

1, because of the little damage to the patient’s health.

10. The last location has a patient with dislocated shoulder. The pain is medium.

The risk will be taken as 2.

The scenario was again run 10 times. The results of these executions show that the

fastest the algorithm reached its highest fitness value is 934, the slowest is 1044

and the average number is 993. The comparison can be seen in Figure 9.

52

Figure 9. Generations with the best fitness values in Scenario 6 for each execution

The best solution for this scenario was the chromosome [[4, 6, 1, 5], [2, 7, 3, 0, 9,

8]]. The average fitness value of the randomly generated chromosomes was

4.398219. The highest fitness value was 37.563781 and was reached in the 8th run

of the code. The generation needed to reach the value was 934.

3.2.7. Scenario 7

The scenario number 7 has the following situations:

1. The 1st case is the location with 1 person having a heart attack. The person is

still conscious but had several heart related conditions in the past. The risk

for this case will be considered as 8.

2. The 2nd location has 1 person. The injury sustained is broken arm. The

wound is close; there is no blood loss, so the risk for this case is evaluated as

2.

3. The 3rd location has 4 people. 2 of them have deep cuts, and the other 2 have

2nd degree burns. The risk for the life of the people with the cuts is 7 for both,

750

800

850

900

950

1000

1050

1100

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Scenario 6

Scenario 6

53

since the cuts didn’t touch any vital organs. The risk for both of the people

with burns is evaluated as 5.

4. The 4th location has 1 person. He is going through an allergic reaction. The

patient is still conscious, had difficulties breathing, but the skin is in a

normal colour. The risk for this person’s life will be evaluated as 7.

5. The 5th site has 1 person. The emergency situation is a heart attack. The

patient is an elderly person. The risk for the patient’s life is considered 8.

6. The 6th location also has 1 person. The injury is broken leg. The wound is

open, so the risk increases and will be evaluated as 6.

7. The 7th location has a person with a deep cut. The cut didn’t touch any of the

vital organs, but there is a lot of blood lost. The risk will be evaluated as 7.

8. The 8th location has a person with a heart attack. The person is young, and

conscious. The risk will be 7.5.

9. The 9th location has 2 people. They have been in a fight, 1 has broken rib,

and the other one has a deep cut. For the first injury, the damage from the

broken rib part was not life-threatening so the risk will be evaluated as 2.

The second patient with the deep knife was attacked with a knife. The cut

didn’t touch any of the vital organs, so the risk of this case will be evaluated

as 7.

10. The 10th location has 1 person. The patient is having a panic attack. The risk

is 1, because of the little damage to the patient’s health.

The scenario was again run 10 times. The results of these executions show that the

fastest the algorithm reached its highest fitness value is 917, the slowest is 1147

and the average number is 1032. The comparison can be seen in Figure 10.

54

Figure 10. Generations with the best fitness values in Scenario 7 for each execution

The best solution for this scenario was the chromosome [[4, 2, 3, 6, 1], [0, 5, 7, 8,

9]]. The average fitness value of the randomly generated chromosomes was

4.398219. The highest fitness value was 23.468319 and was reached in the 7th run

of the code. The generation needed to reach the value was 917.

3.2.8. Scenario 8

The scenario number 8 has the following situations:

1. In the 1st location, the person has a 3rd degree burn. The pain is unbearable.

The risk for life is considered to be 10.

2. In the 2nd location, a person has fallen out of the window from the 4th floor.

Some bones are broken. The patient is unconscious. The risk is 7.

3. The 3rd location has a person with a deep cut. The cut didn’t touch any of the

vital organs, but there is a lot of blood lost. The risk will be evaluated as 7.

4. The 4th location has a person with a heart attack. The person is young, and

conscious. The risk will be 7.5.

750

800

850

900

950

1000

1050

1100

1150

1200

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Scenario 7

Scenario 7

55

5. The 5th location has 1 person. He is going through an allergic reaction. The

patient is still conscious. The risk for this person’s life will be evaluated as 7.

6. The 6th location will have a person with a relatively strong headache. No

other symptoms were detected, so the risk for this case will be 2.

7. The 7th location is a restaurant. 6 people have been poisoned. The risk for 4

of these people is 2, the risk for the remaining 2 is 4.

8. The 9th location has 1 person. The patient is having a mild seizure. The

symptoms are not life threatening so the risk for the person’s life will be 5.

9. The 9th location also has 1 person. The injury is broken leg. The wound is

open, so the risk increases and will be evaluated as 6.

10. The last location has 2 people. Both got hit by a car. Some of their bones are

broken. The risk for this case is 5 for both people,

The scenario was again run 10 times. The results of these executions show that the

fastest the algorithm reached its highest fitness value is 958, the slowest is 1191

and the average number is 1023.The comparison can be seen in Figure 11.

Figure 11. Generations with the best fitness values in Scenario 8 for each execution

750

800

850

900

950

1000

1050

1100

1150

1200

1250

Scenario 8

Scenario 8

56

The best solution for this scenario was the chromosome [[0, 3, 2, 9, 5], [2, 1,

6, 4, 8]]. The average fitness value of the randomly generated chromosomes

was 4.398219. The highest fitness value was 40. 937427 and was reached in

the 7th run of the code. The generation needed to reach the value was 958.

3.2.9. Scenario 9

The scenario number 9 has the following situations:

1. The 1st location has a person with a headache, nausea and dizziness. The

condition has been continuing for 2 hours and is getting worse. The risk for

this case will be evaluated as 5.

2. The 2nd location has a person with a heart attack. The person is young, and

conscious. The risk will be 7.5.

3. The 3rd location has 1 person, an elderly person, who is going through a

stroke. The person is conscious but all of the symptoms are highly defined.

The risk of the injury will be evaluated as 8.

4. The 4th location has 1 person. The patient is having a panic attack. The risk is

1, because of the little damage to the patient’s health.

5. In the 5th location, the person has a 3rd degree burn. The pain is unbearable.

The risk for life is considered to be 10.

6. The 6th location has 1 person. The injury sustained is broken arm. The wound

is close; there is no blood loss, so the risk for this case is evaluated as 2.

7. The 7th location has 1 person. She got hit by a car. Some of her bones are

broken. The risk for this case is 5.

8. The 8th location has a patient with dislocated shoulder. The pain is medium.

The risk will be taken as 2.

57

9. The 9th location will have a person with a relatively strong headache. No

other symptoms were detected, so the risk for this case will be evaluated as

2.

10. In the 10th location, the person is having a stomach ache. The suspicions are

that the person has eaten rotten food. Since the only symptom is the pain, the

risk will be evaluated as 2.

The scenario was again run 10 times. The results of these executions show that the

fastest the algorithm reached its highest fitness value is 903, the slowest is 1103

and the average number is 977. The comparison can be seen in Figure 12.

Figure 12. Generations with the best fitness values in Scenario 9 for each execution

The best solution for this scenario was the chromosome [[2, 1, 7, 8, 3], [4, 6, 0, 9,

5]]. The average fitness value of the randomly generated chromosomes was

4.398219. The highest fitness value was 19.672183 and was reached in the 7th run

of the code. The generation needed to reach the value was 903.

750

800

850

900

950

1000

1050

1100

1150

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Scenario 9

Scenario 9

58

3.2.10. Scenario 10

The scenario number 10 has the following situations:

1. The 1st location has 1 person, an elderly person, who is going through a

stroke. The person is conscious but all of the symptoms are highly defined.

The risk of the injury will be evaluated as 8.

2. The 2nd location has 1 person. The injury sustained is broken arm. The

wound is close; there is no blood loss, so the risk for this case is evaluated as

2.

3. The 3rd location has 1 person. She got hit by a car. Some of her bones are

broken. The risk for this case is 5.

4. The 4th location has 1 person. The patient is having a panic attack. The risk is

1, because of the little damage to the patient’s health.

5. The 5th location has a person with a heart attack. The person is young, and

conscious. The risk will be 7.5.

6. The 6th location will have a person with a relatively strong headache. No

other symptoms were detected, so the risk for this case will be evaluated as

2.

7. The 7th location has 1 person. The injury sustained is broken arm. The wound

is close; there is no blood loss, so the risk for this case is evaluated as 2.

8. The 8th location has a person with a headache, nausea and dizziness. The

condition has been continuing for 2 hours and is getting worse. The risk for

this case will be evaluated as 5.

9. The 9th location has 4 people. 2 of them have deep cuts, and the other 2 have

2nd degree burns. The risk for the life of the people with the cuts is 7 for both,

since the cuts didn’t touch any vital organs. The risk for both of the people

with burns is evaluated as 5.

59

10. The 10th location has a person with a deep cut. The cut didn’t touch any of

the vital organs, but there is a lot of blood lost. The risk will be evaluated as

7.

The scenario was again run 10 times. The results of these executions show that the

fastest the algorithm reached its highest fitness value is 967, the slowest is 1208

and the average number is 1056. The comparison can be seen in Figure 13.

Figure 13. Generations with the best fitness values in Scenario 10 for each execution

The best solution for this scenario was the chromosome [[8, 0, 7, 6], [4, 9, 5, 2, 1,

3]]. The average fitness value of the randomly generated chromosomes was

4.398219. The highest fitness value was 29.874029 and was reached in the 8th run

of the code. The generation needed to reach the value was 967.

3.2.11. Final Result

The algorithm was run 10 times for each of the scenarios. Each of the executions

used 5000 generations. The result of these 10 executions for each of the Scenarios

shows that the average generation, needed to get to the bestfinal fitness value in

750

800

850

900

950

1000

1050

1100

1150

1200

1250

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Scenario 10

Scenario 10

60

each of the tests is 1015.8. The average for least generation for all of the scenarios

was 924.9, with 873 being the smallest number and 967 being the largest.

The average for highest number of generations for all of the scenarios was 1146

with 1025 being the smallest number and 1253 being the largest.

The results are illustrated in Figure 14:

Figure 14. The lowest, average and highest generations of the executions in all of the scenarios

3.3. Comparison

The proposed algorithm was compared to the study of Ruijiu Mao, Bin Du,

Dengfeng Sun, and Nan Kong [16]. The authors offered model for location-

allocation optimization with mean waiting time as the aim. The study consisted of 2

parts: Estimation of mean waiting time, and using Genetic Algorithm to optimize

the UAV allocation for Emergency Medical Service (EMS) purposes. For the

purpose of comparing this approach to the HMOGA algorithm, the comparison was

done between the HMOGA and the genetic algorithm part of the authors’ research.

The authors’ algorithms details are described below:

0

200

400

600

800

1000

1200

1400

Lowest

Highest

Average

61

The selection method was chosen to be Roulette Wheel. The main difference

between the algorithms is in this phase. In this phase, the authors’ study will select

mostly chromosomes with higher fitness values. Even though this method is one of

the most popular ones, choosing chromosomes which have higher fitness

chromosomes does not guarantee that the child will also have high fitness value.

The HMOGA on the other hand, chooses chromosomes with varying fitness values.

Although this also does not guarantee child chromosomes with high fitness values,

this method enables more chromosomes to be involved into the process.

The next step is crossover. The crossover method chosen for the authors’ study is

uniform crossover. The method was described in the previous chapters.

After performing crossover, mutation was performed. This phase is the same for

both of the algorithms.

The previously described 10 scenarios were tested on the authors’ genetic

algorithm method. The results are listed below:

The average iterations needed to get to the highest fitness function for the first

scenario was 1202. The lowest number was 1014, and the highest one was 1377.

The results are illustrated in Figure 15, along with the results of HMOGA from

Figure 4.

0

200

400

600

800

1000

1200

1400

1600

Run
1

Run
2

Run
3

Run
4

Run
5

Run
6

Run
7

Run
8

Run
9

Run
10

HMOGA

UAV EMS

62

Figure 15. Comparison of average generation with the best fitness function in Scenario 1 of

HMOGA and UAV EMS approach

The average for the second scenario was 1190, the lowest – 983, the highest –

1306. The results are illustrated in Figure 16, along with the results of HMOGA

from Figure 5.

Figure 16. Comparison of average generation with the best fitness function in Scenario 2 of

HMOGA and UAV EMS approach

The average for the third scenario was 1308, the lowest – 1105, the highest – 1485.

The results are illustrated in Figure 17, along with the results of HMOGA from

Figure 6.

0

200

400

600

800

1000

1200

1400

Run
1

Run
2

Run
3

Run
4

Run
5

Run
6

Run
7

Run
8

Run
9

Run
10

HMOGA

UAV EMS

750

850

950

1050

1150

1250

1350

1450

1550

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run
10

HMOGA

UAV EMS

63

Figure 17. Comparison of average generation with the best fitness function in Scenario 3 of

HMOGA and UAV EMS approach

The average for the fourth scenario was 1107, the lowest – 1002, the highest –

1296. The results are illustrated in Figure 18, along with the results of HMOGA

from Figure 7.

Figure 18. Comparison of average generation with the best fitness function in Scenario 4 of

HMOGA and UAV EMS approach

The average for the fifth scenario was 1093, the lowest – 996, the highest – 1254.

The results are illustrated in Figure 19, along with the results of HMOGA from

Figure 8.

750

850

950

1050

1150

1250

1350

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run
10

HMOGA

UAV EMS

64

Figure 19. Comparison of average generation with the best fitness function in Scenario 5 of

HMOGA and UAV EMS approach

The average for the sixth scenario was 1031, the lowest – 1008, the highest – 1194.

The results are illustrated in Figure 20, along with the results of HMOGA from

Figure 9.

Figure 20. Comparison of average generation with the best fitness function in Scenario 6 of

HMOGA and UAV EMS approach

750

850

950

1050

1150

1250

1350

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run
10

HMOGA

UAV EMS

750

800

850

900

950

1000

1050

1100

1150

1200

1250

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run
10

HMOGA

UAV EMS

65

The average for the seventh scenario was 1007, the lowest – 961, the highest –

1295. The results are illustrated in Figure 21, along with the results of HMOGA

from Figure 10.

Figure 21. Comparison of average generation with the best fitness function in Scenario 7 of

HMOGA and UAV EMS approach

The average for the eighth scenario was 1324, the lowest – 1097, the highest –

1474. The results are illustrated in Figure 22, along with the results of HMOGA

from Figure 11.

Figure 22. Comparison of average generation with the best fitness function in Scenario 8 of

HMOGA and UAV EMS approach

750

800

850

900

950

1000

1050

1100

1150

1200

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run
10

HMOGA

UAV EMS

750

850

950

1050

1150

1250

1350

1450

1550

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run
10

HMOGA

UAV EMS

66

The average for the ninth scenario was 1109, the lowest – 1015, the highest – 1378.

The results are illustrated in Figure 23.

Figure 23. Comparison of average generation with the best fitness function in Scenario 9 of

HMOGA and UAV EMS approach

The average for the last scenario was 1034, the lowest – 979, the highest – 1172.

The results are illustrated in Figure 23, along with the results of HMOGA from

Figure 12.

Figure 24. Comparison of average generation with the best fitness function in Scenario 10 of

HMOGA and UAV EMS approach

750

850

950

1050

1150

1250

1350

1450

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run
10

HMOGA

UAV EMS

750

800

850

900

950

1000

1050

1100

1150

1200

1250

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run
10

HMOGA

UAV EMS

67

The total average for this approach is 1140.5, the lowest is 961, and the highest is

1485. The results are illustrated in Figure 25.

Figure 25. The lowest, average and highest generation counts of the executions in all of the

scenarios in UAV EMS approach

When comparing these results to the results of the proposed HMOGA algorithm,

we can see that out of 10 different scenarios, 7 reached their best solution faster

with the Genetic Algorithm with KNN used to select the parent chromosomes. The

average generation for HMOGA to reach the best fitness value is 1015.9, whereas

for UAV EMS approach it is 1140.5. This shows that the HMOGA finds in 12.28%

less generations, and due to that, faster. Also, the HMOGA considers more

variables, like number of saved people and the risk of each injury. Figure 26

demonstrates the average number of iterations for each scenario by HMOGA and

the UAV-based EMS system:

0

200

400

600

800

1000

1200

1400

1600

Lowest

Highest

Average

68

Figure 26. Generations where the fitness value reached it’s highest

4. Conclusion

In this study I proposed an algorithm that combines two techniques: Genetic

algorithm and K-nearest neighbors algorithm. The latter was used in the selection

phase of genetic algorithm to cause a diversion of the selected parent chromosomes

based on their classifications. After applying KNN to the randomly generated

solutions, basic genetic algorithm operations were performed, such as crossover

and mutation. The HMOGA algorithm was then compared to a previously

presented approach and in 70% of the cases was proven to be a faster method to

reach the optimal solution. By the average time of generations, the Hybrid Multi-

Objective Genetic Algorithm was 12.28% faster. In the future, the changes can

include different types of crossover and mutation operations, which will be more

suitable for the problem, given the relativeness to the Traveling Salesman Problem.

0

200

400

600

800

1000

1200

1400

HMOGA

GA

69

5. References

1. Abd, G., Mahmoud, A. & El-Horbarty, El. (2014). A Comparative Study of

Meta-heuristic Algorithms for Solving Quadratic Assignment Problem.

International Journal of Advanced Computer Science and Applications. 5.

10.14569/IJACSA.2014.050101.

2. Abdoun, O., Abouchabaka, J., & Tajani, C. (2012). Analyzing the

performance of mutation operators to solve the travelling salesman problem.

arXiv preprint arXiv:1203.3099.

3. Ai, B., Li, B., Gao, S., Xu, J., & Shang, H. (2019). An intelligent decision

algorithm for the generation of maritime search and rescue emergency

response plans. IEEE Access, 7, 155835-155850.

4. Alabsi, F., & Naoum, R. (2012). Comparison of selection methods and

crossover operations using steady state genetic based intrusion detection

system. Journal of Emerging Trends in Computing and Information

Sciences, 3(7), 1053-1058.

5. Alzyadat, T., Yamin, M., & Chetty, G. (2020). Genetic algorithms for the

travelling salesman problem: a crossover comparison. International Journal

of Information Technology, 12(1), 209-213.

6. Arowolo, M. O., Adebiyi, M., Adebiyi, A., & Okesola, O. (2020, March).

PCA model for RNA-Seq malaria vector data classification using KNN and

decision tree algorithm. In 2020 international conference in mathematics,

computer engineering and computer science (ICMCECS) (pp. 1-8). IEEE.

7. Chicano, F., Sutton, A. M., Whitley, L. D., & Alba, E. (2015). Fitness

probability distribution of bit-flip mutation. Evolutionary Computation,

23(2), 217-248.

8. Crişan, G. C., Pintea, C. M., & Palade, V. (2017). Emergency management

using geographic information systems: application to the first romanian

70

traveling salesman problem instance. Knowledge and Information Systems,

50(1), 265-285.

9. Dong, H., Li, T., Ding, R., & Sun, J. (2018). A novel hybrid genetic

algorithm with granular information for feature selection and optimization.

Applied Soft Computing, 65, 33-46.

10. Fan, Y., Bai, J., Lei, X., Zhang, Y., Zhang, B., Li, K. C., & Tan, G. (2020).

Privacy preserving based logistic regression on big data. Journal of Network

and Computer Applications, 171, 102769.

11. Fernandez, B., Fanggidae, A., Pandie, E. S. Y., & Mauko, A. Y. (2021,

September). Travelling salesman problem: Greedy single point crossover in

ordinal representation. In Journal of Physics: Conference Series (Vol. 2017,

No. 1, p. 012012). IOP Publishing.

12. Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic

algorithm: past, present, and future. Multimedia Tools and Applications,

80(5), 8091-8126.

13. Yadav, S. L., & Sohal, A. (2017). Comparative study of different selection

techniques in genetic algorithm. International Journal of Engineering,

Science and Mathematics, 6(3), 174-180.

14. Lathuilière, S., Mesejo, P., Alameda-Pineda, X., & Horaud, R. (2019). A

comprehensive analysis of deep regression. IEEE transactions on pattern

analysis and machine intelligence, 42(9), 2065-2081.

15. Leite, R., Brazdil, P., & Vanschoren, J. (2012, July). Selecting classification

algorithms with active testing. In International workshop on machine

learning and data mining in pattern recognition (pp. 117-131). Springer,

Berlin, Heidelberg.

16. Mao, R., Du, B., Sun, D., & Kong, N. (2019, August). Optimizing a UAV-

based emergency medical service network for trauma injury patients. In

71

2019 IEEE 15th International Conference on Automation Science and

Engineering (CASE) (pp. 721-726). IEEE.

17. Mirjalili, S. (2018). Genetic Algorithm. Evolutionary Algorithms and

Neural Networks, 43–55.

18. Mohammed, M. A., Abd Ghani, M. K., Hamed, R. I., Mostafa, S. A.,

Ibrahim, D. A., Jameel, H. K., & Alallah, A. H. (2017). Solving vehicle

routing problem by using improved K-nearest neighbor algorithm for best

solution. Journal of Computational Science, 21, 232-240.

19. Pal, R., Srivastava, M., Rani, S., & Kumar, N. (2019, April). Genetic

Algorithm towards Flood Avoidance in Android Application. In 2019

International Conference on Automation, Computational and Technology

Management (ICACTM) (pp. 357-360). IEEE.

20. Pallin, M., Rashid, J., & Ögren, P. (2021, October). A decentralized

asynchronous collaborative genetic algorithm for heterogeneous multi-agent

search and rescue problems. In 2021 IEEE International Symposium on

Safety, Security, and Rescue Robotics (SSRR) (pp. 1-8). IEEE.

21. Rashid, M. H., & Mosteiro, M. A. (2017, December). A Greedy-Genetic

Local-Search Heuristic for the Traveling Salesman Problem. In 2017 IEEE

International Symposium on Parallel and Distributed Processing with

Applications and 2017 IEEE International Conference on Ubiquitous

Computing and Communications (ISPA/IUCC) (pp. 868-872). IEEE.

22. Ryerkerk, M. L., Averill, R. C., Deb, K., & Goodman, E. D. (2017). Solving

metameric variable-length optimization problems using genetic algorithms.

Genetic Programming and Evolvable Machines, 18(2), 247-277.

23. Santafe, G., Inza, I., & Lozano, J. A. (2015). Dealing with the evaluation of

supervised classification algorithms. Artificial Intelligence Review, 44(4),

467–508.

72

24. Tripathy, S. P., Tulshyan, A., Kar, S., & Pal, T. (2017). A metameric genetic

algorithm with new operator for covering salesman problem with full

coverage. Int J Control Theory Appl, 10(7), 245-252.

25. Umbarkar, A. J., & Sheth, P. D. (2015). Crossover operators in genetic

algorithms: a review. ICTACT journal on soft computing, 6(1).

26. Yang, F. J. (2018, December). An implementation of naive bayes classifier.

In 2018 International conference on computational science and

computational intelligence (CSCI) (pp. 301-306). IEEE.

