РАСПРЕДЕЛЕНИЕ ЭНЕРГИИ В СПЕКТРАХ МОЛОДЫХ ЗВЕЗД В ОБЛАСТИ 0.36-100 *МКМ*

© 2008 г. Н.З.Исмаилов^{1,2}, Ф.Н.Алимерданова²

¹Бакинский Государственный Университет ²Шамахинская Астрофизическая Обсерватория НАН Азербайджана (e-mail: box1955n@yahoo.com)

Используя широкополосные наземные и внеатмосферные инфракрасные (ИК) фотометрические наблюдения изучено распределение энергии в спектрах (РЭС) 87 молодых звезд в интервале 0.36-100 *мкм*. Изученные объекты показали всего 5 типов кривых РЭС. Была расширена ранее предложенная схема классификации РЭС у молодых звезд по их ИК спектрам. У отдельных звезд наблюдается до 4 участков с избыточным излучением в спектре, что может быть объяснено существованием в системе дополнительных источников теплового излучения. Наиболее вероятные температуры дополнительных источников в системе соответствуют ~ 1500-2500 *К* и 90 - 120 *К*.

Ключевые слова: звезды типа Т Тельца, распределение энергии, ИК-излучение, околозвездные облака.

введение

Одной из важных особенностей молодых звезд является аномальное распределение энергии в спектрах (РЭС) по сравнению со спектрами звезд того же спектрального класса. У разных молодых звезд в РЭС часто ультрафиолетовый наблюдается сильный $(Y\Phi)$ И инфракрасный (ИК) избытки Анализ результатов излучения. разных авторов показывает, что к настоящему времени нет однозначного ответа 0 происхождении избытков излучения в РЭС у разных групп молодых звезд [1, 2].

Несколько лет тому назад Лада и коллеги [3-5] предложили простую схему классификации РЭС для молодых звезд. По их предположению, класс I – объекты с РЭС сходных с РЭС чернотельного излучения с температурой 50-100 %, максимум которой находится на длине волны 30-100 мкм. Эти невидимые в оптическом диапазоне объекты, характеризуются следующими особенностями: спектре имеются a) в признаки низкоскоростного коллимированмолекулярного ного истечения; **6**) расположены они в отражателной оптикоинфракрасной туманности; B) лежат В плотных молекулярных облаках. Типичные звезды типа Т Тельца из облаков Тельца-Возничего, видимые в оптическом диапазоне имеют РЭС поздних спектральных классов [6]. Лада [3] разделил их на II и III типы на основе

их РЭС в далекой ИК части спектра. Класс II имеет избытки излучения в спектре, в то время как класс III имеет малую, или вовсе не имеют избытки в далеком ИК спектре. Большинство звезд II класса - классические звезды типа Т Тельца (CTTS), которые имеют сильную На эмиссию, а также УФ избыток в РЭС. Некоторые исследователи пользуются $\alpha = d \log(\lambda \cdot F_{\lambda}) / (d \log \lambda),$ индексом выражающем наклон РЭС в ИК части спектра (см., например, [7]). Согласно этому определению, у класса I значения α находятся в пределах 0 - 2, у II класса - между -2 и 0, а у класса III – $\alpha \approx$ -3. Звезды до ГП с $\alpha \approx 0$ считаются звездами с плоским спектральным распределением.

Кеньон и Хартман [8] считают, что к IIIему классу молодых звезд относятся те звезды, цветовые показатели у которых в ИК области идентичны таковым у нормальных звезд того же спектрального класса. По их мнению, источники, у которых $\alpha < 0$ для $\lambda = 2-25$ *мкм*, относятся к классу II. Класс объектов I имеет $\alpha > 0$ и очень большой избыток в дальней ИК области.

Разделение объектов на такие три подкласса дает ясную эволюционную картину вещества вокруг центральной звезды. Путь эволюции класс I – класс II – класс III показывает степень убывания вещества вокруг центральной звезды. В течении этой эволюции сильное в далекой ИК части

избыточное излучение оболочки переходит в околозвездного затем излучение диска, вещество в результате аккреции частично падает на звезду, часть вещества диссипирует или конденсируется на твердые тела около центральной звезды [4, 9]. РЭС объектов I класса согласуется в модели оболочки с падением вещества 1-4·10⁻⁶ M_o год⁻¹ [4, 9, 10]. РЭС II-го объектов класса хорошо согласуются в модели диска, но тут неясно, то ли диск переизлучает звездное излучение, то ли сама звезда излучает за счет вязкой диссипации или же в излучении участвует комбинация этих процессов [10, 11].

Целью настощей работы является анализ кривых РЭС группы молодых звезд в диапазоне 0.36-100 мкм, для которых наиболее полноценно известны фотометрические звездные величины в оптической и ИК части спектра. Это позволило бы для достаточно большой выборки молодых звезд более детально посторить кривые РЭС и провести их анализ. Мы считаем, что особенности РЭС у разных молодых звезд можно объяснить не только излучением околозвездного диска, но и тепловым излучением компактных ИК источников, находящихся в околозвездном окружении.

АНАЛИЗ И РЕЗУЛЬТАТЫ

Средние значения блеска всех исследуемых звезд, охватывающие от 0.36 до 100 мкм, были взяты из списка [8], в котором были накоплены данные разных авторов, полученные за многие годы. Там же приведены ИК результаты наблюдений IRAS. Нами были отобраны такие звезды, для которых имеются измерения по всем вышеуказаным полосам. Около 90 % объектов нашей выборки удалось составить из таких звезд. Список ограничивался тем, что для некоторых звезд нет фотометрических данных одновременно по всем полосам. Кроме того, в список включены объекты, наблюдаемые только в ИК части спектра. Для сравнения средние цветовые были использованы звезд-карликов, показатели стандартных взятые из работ [12, 13]. Следуя Растопчиной [14], звездные величины были др. исправлены за межзвездное покраснение для диапазона 0.36-5 мкм. Величина покраснения

становится меньше 1% при длинах волн больше 5 *мкм*. Нами были использованы средние кривые межзвездного покраснения по формулам перехода, которые приведены в [15].

перевода имеющихся Для звездных величин в средние абсолютные потоки в каждой отдельной фотометрической полосе использована следующая методика. Известно, что точно определены абсолютные потоки у звезд со спектральным классом AOV (см. Табл. Зная наблюдаемые звездные 20 в [16]). величины соответствующих в фотометрических полосах, мы построили распределение энергии звезды в абсолютных потоках. Перевод в потоки был осуществлен по всем фотометрическим полосам. Заметим, что только в двух полосах имеется небольшое различие по максимуму эффективной полосы пропускания по данным [16] и [17]. Это полосы N и Q, которые имеют эффективные длины волн 10.4 и 20 мкм, соответственно. Однако ЭТО далекий ИК-диапазон, излучение звезды является весьма слабым, и небольшое различие эффективных длинах волн не дает существенного различия в потоках. В работе Исмаилова и Алиевой [2] подробо изложен метод построения РЭС для молодых звезд.

На Рис.1а сверху приведено распределение энергии типичной стандартной звезды со спектральным классом K0V, построенное по цветам, приведенным в [8]. Сплошной жирной линией дается распределение энергии самого стандарта K0V. Там же приведена кривая РЭС чернотельного излучения для температур 4500 и 5000 *К*.

Как видно из Рис.1, распределение энергии, построенное по средним цветовым показателям спектрального класса K0V [8] хорошо описывается РЭС чернотельного излучения с температурой 5000 ± 250 °К. Отсюда видно, что уже небольшое различие в температуре дает ощутимое смещение в РЭ звезды и чернотельного излучения.

На второй панели Рис.1b приведено РЭС излучения трех стандартов, построенные по данным, взятым из работы [18]. Спектральные классы этих звезд- карликов очень близки. Как отсюда видно, лучшее согласие с РЭС чернотельного излучения получено у звезд со

спектрами К0 и К1. Максимум в РЭС звезды BS222 со спектром К2 уже заметно сдвинулось вправо, что свидетельствует о том, что этот метод является, по крайней мере, достаточно чувствительным в пределах двух подклассов.

Полученные кривые РЭС у разных звезд отсортированы по разным группам, имеющим подобные РЭС. Каждый из участков с избытками излучения («горбов») по РЭС у этих звезд нами были сопоставлены с РЭС абсолютно черного тела (АЧТ) и определены температуры излучения, согласующиеся с избыточным распределением энергии. Ошибка в определении температур по этому методу составляет от 250 % в полосе 0.36 мкм до 50 % в полосах 50-100 мкм.

Рис.1. а - распределение энергии по средним цветовым показателям стандарта K0V(жирная линия) и чернотельного излучения при температурах 4500 *К* (тонкая линия) и 5000 *К* (пунктир). b - распределение энергии трех стандартных звезд по данным [18] и для чернотельного излучения при 5000 *К*.

В Табл.1 приводится список выбранных звезд, тип РЭС по [3-5], спектральные классы соответственные ЭТИМ классам эффективные температуры Т_{еff}, температуры участков избыточного излучения Т1 - Т3, С наиболее коротковолнового начиная участка, определенные нами при сравнении РЭС звезды со спектром излучения АЧТ. Для получения температуры T_{eff}, соответствующий спектральному классу, была использована шкала температур, приведенная в [8].

Для большинство звезд первая температура

 T_1 , полученная по «горбу» в РЭС, в основном согласуется с эффективной температурой T_{eff} звезды, соответствующей ее спектральному классу. Надо сказать, что вообще говоря, эффективная температура, соответствующая спектральному классу, не всегда согласуется с температурой, полученной по первому пику. Кроме того, у разных звезд часто наблюдается еще 2-3 участка, избыточное излучение которых соответствуют температурам T_2 и T_3 , что приводится в Табл.1.

No	Объект	Класс РЭС по [8]	Класс РЭС	SP	T_{eff}	T_1	T_2	T_3
1	BP Tau	II	IV	K7	4060	5000	2500	90
2	CW Tau	II	IV	K3	4730	6000	2000	90
3	V410 Tau	III	IV	K3	4730	5500	2500	90
4	V819 Tau	III	IV	K7	4060	5500	2550	120
5	DE Tau	II	II	M2	3580	3000		90
6	RY Tau	II	IV	K1	5080	6500	3000	90
7	FV Tau	II	IV	K5	4350	7500	5000	2500
8	DF Tau	II	III	M3	3470	6500	2500	90
9	IP Tau	Π	II	M 0	3850	4000	2500	90
10	DG Tau	II	Ι	K7-M0	4000	4500	2000	90
11	HBC 388	III	V	K1	5080	5000	2500	200
12	GV Tau	Ι	Ι	K3	4730	4700	1500	90
13	IQ Tau	II	II	M0.5	3785	4500	2500	90
14	FX Tau	II	II	M1	3720	4500	2500	90
15	DK Tau	II	Ι	K7	4060	5000	2000	
16	V710 Tau	II	II	M1	3720	4000	2500	90
17	GG Tau	II	III	K7	4060	4500	2500	90
18	UZ Tau	II	IV	M1	3720	4000	2000	90
19	DL Tau	II	II	K7	4060	4000	2000	90
20	HN Tau	II	Ι	K5	4350	5000	2000	90
21	CI Tau	II	IV	K7	4060	7500	5000	2500/90
22	DM Tau	II	II	M1	3720	2500		90
23	AA Tau	II	III	K7	4060	5000	2500	90
24	DN Tau	II	III	M0	3850	5000	2500	90
25	DP Tau	II	III	M0.5	3785	5000	2500	90
26	DQ Tau	II	III	M 0	3850	5000	2500	90
27	Haro 6-37	II	IV	K6	4205	5000	2500	90
28	DR Tau	II	IV	K7	4060	7500	5000	2000/90
29	DS Tau	II	IV	K5	4350	5000	2500	90
30	UY Aur	II	III	K7	4060	5500	2500	90
31	GM Aur	II	III	K3	4730	5500	3000	90
32	AB Aur	II	V	B9	10500	6500		
33	SU Aur	II	V	G2	5860	5500		
34	HBC 427	III	II	K7	4060	4500	3000	
35	V836 Tau	III	III	K7	4060	5000	2500	90
36	RW Aur	II	IV	K3	4730	5500	2500	90
37	FM Tau	II		M0	3850	7500	2500	
38	LkCa 15	II		K5	4350	5000	2500	
39	LkCa 3	III		M1	3720	5000	2500	
40	LkCa4	III	111 T	K7	4060	5000	2500	
41	LkCa1	II		M4	3370		2500	90
42	LkCa7	III		K7	4060	5000	3000	
43	HD283572	III		G5	5770	5000		
44	FS Tau	n		M1	3720	4500	1500	
45	V955 Tau	II		K7	4060	7500	5000	2500
46	DO Tau	II		M0	3850	7500	2500	
41/	GI Tau	II		K6	4205	4500	2500	
48	GK Tau	II		K7	4060	4500	2500	
49	HL Tau	II		K7	4060	2000	1000	
50	XZ Tau	II	IV	M3	3470	2200	500	

Табл.1.	Температуры,	полученные по РЭС для молодых звезд
---------	--------------	-------------------------------------

51	HK Tau	I/II	II	M0.5	3785	4500	2000	
52	CZ Tau	II	III	M1.5	3600	4000	2500	
53	DD Tau	Π	II	M1	3720	4500	2500	
54	DH Tau	II	III	M1	3720	7500	5000	2500
55	DI Tau	Π	III	M0	3850	4000	3000	
56	GH Tau	II	II	M2	3580	4500	2500	
57	HP Tau	Π	IV	K3	4730	5000	2000	
58	HP Tau/G2	III	IV	G 0	6030	5000	2500	
59	Hubble4	III	II	K7	4060	2500	500	
60	IT Tau	II	IV	K2	4900	5500	2500	
61	IW Tau	III	II	K7	4060	5000	3000	
62	T TauN	II	IV	K0	5250	5000	2500	
63	UX Tau	II	IV	K2	4900	5000	2500	
64	V807 Tau	II	V	K7	4060	6500		
65	V826 Tau	III	II	K7	4060	4500	2500	
66	V827 Tau	III	II	K7	4060	4500	2500	
67	V892 Tau	II	Ι	A6	8350	5000	2000	
68	V928 Tau	II	II	M0.5	3800	5000	2500	
69	VY Tau	III	III	M0	3850	4000	2500	
70	LkHa358	II	I/II	M5.5	3200	1500		
71	Haro6-13	I/II	II				1500	
72	FZ Tau	II	II			4000	1700	
73	L1551 IRS5	Ι	Ι			500	100	
74	IC 2087 IR	II	II			1250		
75	04154+2823	II	II			1200		
76	04169+2702	Ι	Ι			1000	500	
77	04187+1927	II	II			3850	2000	
78	04248+2612	Ι	II			2000		
79	04278+2253	II	II			7050	1200	
80	04295+2251	Ι	I/II			1200		
81	04361+2547	Ι	Ι			1000	400	
82	04381+2540	Ι	Ι			800	500	
83	04385+2550	II	II			1700	400	
84	04489+3042	Ι	Ι			1600	400	
85	I04303+2240	II	III			1500	500	90
86	I04385+2550	II	II			1000	500	90
87	I04016+2610	Ι	Ι			500	90	

Как видно из Табл.1, температура T_{еff}, полученная по спектру в видимой части спектра, оказывается систематически меньшей, чем температура T₁. Это различие температур может достигать у разных объектов от 500 до 2500 *К*, что значительно больше, чем ошибки определений этих температур.

На Рис.2 приведен график, в котором сравниваются температуры $T_{\rm eff}$ и $T_{\rm 1}.$ Здесь

не приведены температуры ИК объектов, т.к. спектральный класс для них остается неопределенным из-за слабости видимого и ближнего ИК излучения. Как отсюда видно, светлые кружки, соответствующие температурам T_1 , систематически больше, чем $T_{\rm eff}$, обозначенные темными кружками. В среднем, T_1 систематически больше на 1000 $^{\prime}$ К от $T_{\rm eff}$.

Рис.2. Сравнение температур T_{eff} (темные кружки) и T₁ (светлые кружки) для программных объектов. По абсциссе приведен номер объекта по Табл.1.

Рис.3. Зависимость температур T₁ от T₂. Так как значения этих температур часто одинаковы для разных звезд, многие точки совпадают.

Интересно, что полученные значения температур имеют определенную взаимосвязь. На Рис.3 приведена зависимость между температурами T_1 и T_2 для разных объектов. Коэффициент корреляции между значениями этих температур оказывается достаточно высоким – r = 84%. Многие объекты имеют идентичные температуры T_1 и T_2 и поэтому пары точек по этим температурам на графике совпадают. На рисунке также приведена линейная аппроксимационная зависимость: $T_2 = 0.5796 T_1 - 376.84$.

были Нами также построены статистические диаграммы распределений полученных температур для разных пиков на кривой РЭС. На Рис.4 приведены три панели, В каждой ИЗ которых приведено относительное распределение каждой ИЗ температур T_1 - T_3 . Как отсюда видно, на верхней панели рисунка максимальное количество объектов показали температуру Т₁ =5000 °К (27.5%), что в целом является характерной температурой для звезд позднего спектрального класса. Кроме того, здесь мы

также видим область второго максимума при температуре 1500 *К* (11.25%), что характерно только для ИК объектов. Такие объекты приведены в конце Табл.1 начиная с номера 70.

На второй панели Рис.4 приведено аналогичное распределение для температуры Т₂. Как отсюда видно, подавляющая часть объектов (63.5%) имеют температуру

 $T_2 \approx 2500 \ \%$.

Ha третьей панели Рис.4 приведено T₃, распределение температуры которое получено в основном за счет избытка в далекой ИК части спектра. Здесь большинство объектов (45%) имеют избытки в РЭС, соответствующие температуре 500 % и меньше.

Рис.4. Распределение температур T₁, T₂ и T₃ для исследуемых объектов. По ординате приведено относительное количество звезд с данной температурой.

типы кривых рэс

Мы построили кривых РЭС для 87 молодых объектов, 16 из которых являются ИК объектами, не наблюдаемых в оптическом диапазоне. По формам полученных кривых РЭС выбранные нами объекты разделены на следующие 5 подгрупп: 1) Объекты с кривыми РЭС, имеющих несколько широких максимумов в ближней и дальней ИК части спектра. Подобные спектры показывают в основном ИК источники. Таких объектов в нашей выборке оказалось всего 9. На Рис.5 приведены кривые РЭС для таких объектов, а также список этих объектов.

Рис.5. Кривые РЭС объектов I типа.

Как видно из Рис.5. одновременно максимумы в спектре I типа могут быть наблюдены в разных диапазонах спектра, но чаще всего, такой избыток находится при 25 *мкм*, что хорошо описывается излучением АЧТ с температурой 90-120 *К*.

2) Объекты с одним очень широким максимумом в РЭС. Максимум в РЭС в таких объектах изредка может находиться в оптическом диапазоне, но часто находится в ближней ИК части спектра при 1.25-1.62 мкм. В нашей выборке наблюдено всего 14 таких объектов. На Рис.6 приводятся кривые РЭС для таких объектов. Типичный представитель – DL Tau и IP Tau. У DL Tau также наблюдается избыток излучения в далекой ИК части спектра, соответствующий Т₃ = 90 %. Единственный широкий максимум у таких объектов часто можно представить как комбинацию излучений двух тел с различными температурами.

Надо сказать, что большинство объектов из этой группы имеют максимум при 0.25 *мкм* (J - полоса), что соответствует температуре T ≈ 2500 *°K*.

3) К III группе мы отнесли объекты, имеющие не меньше 2-ух максимумов в кривых РЭС, причем второй максимум по интенсивности превосходит первый. Подавляющая часть таких объектов имеют кривые РЭС с наиболее сильным максимумом при 0.25 *мкм*. Температура излучения этого пика соответствует Т≈2500 *°К*. Первый, относительно слабый максимум, наблюдается при 0.56 *мкм* (Т≈ 5000 *К*). Часто имеется гораздо более слабый, чем предыдущие максимумы, третий пик, соответствующий температуре 90-150 *К*. На Рис.7 приведены кривые РЭС таких объектов. Всего наблюдалось 28 таких объектов. Типичные представители GG Tau и DN Tau. На Рис.7 также приведены названия некоторых из этих звезд Ш-го типа.

4) К объектам IV группы относятся объекты, у которых единственное различие от предыдущей группы то, что здесь первый пик, наблюдаемый в РЭС, является более сильным, чем второй. Максимумы, также как в предыдущей группе, получены при 0.56 мкм и при 0.25 мкм, и соответствуют температурам 5000 и 2500 %, соответственно. Также имеется признак избыточного излучения в далекой ИК части спектра, ЧТО соответствует температуре ~ 100 °К. На Рис.8 приведены кривые РЭС для таких объектов. Таких звезд оказалось всего 17. Этот тип относится в основном к классическим звездам типа Т Тельца. Типичным объектом является ВР Таи и Т ТаиN.

5) К V группе были отнесены объекты с гладкими кривым РЭС. У таких звезд наблюдается ЛИШЬ один максимум В оптическом диапазоне И единственная температура по РЭС с Т1≥5000 °К. На Рис. 9 приведены примеры кривых с РЭС подобного типа. Таких объектов в нашей выборке

оказалось всего 6. Из них AB Aur DK Tau имеют очень высокую крутизну в области 1-5 *мкм*. Остальные объекты из этой группы, возможно, в области 1.62-2.2 *мкм* имеют незначительный избыток, соответствующий температуре излучения АЧТ 2500 *К*. Избыток в далекой ИК части спектра у таких звезд не наблюдается.

Рис.6. Кривые РЭС объектов II типа.

Рис.7. Кривые РЭС объектов III типа.

Нужно отметить, что полученные кривые РЭС разных звезд оказались V весьма сложными. Если следуя 7, 8] ввести коэффициент а, выражающий наклон кривой РЭС в ИК части спектра, то поскольку для звезд с классами I, II наклон в кривой РЭС является разнообразным в разных участках, значение α не будет выражать определенное значение. Для классов III и IV после $\lambda \ge 1.6$

мкм наклон кривых даст отрицательное значение α , а для класса V α будет отрицательным сразу после $\lambda \ge 0.6$ мкм. Поэтому, мы не стали оценивать наклон кривых РЭС коэффициентом α , что применялось другими авторами как критерий для определения класса излучения объектов в ИК части спектра.

Рис.8. Кривые РЭС объектов IV типа.

Рис.9. Кривые РЭС объектов V типа.

Предложенная нами схема классификации кривых РЭС объектов молодых принципиально не отличается от классификации [3-5], а ЛИШЬ вводит дополнительные классы, учитывающие особенности РЭС некоторых типов объектов.

ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

Проведенный нами анализ кривых РЭС у 87 молодых звезд показал, что разные объекты имеют от 1 до 4 разных участков спектра с избыточным излучением энергии. В отличии от классификации РЭС по признакам в ИК части спектра, предложенным в [3-5], мы разделили РЭС молодых звезд на 5 подгрупп. Наша схема классификации сохраняет все особенности классификации [3-5] и дает ясную эволюционную схему вещества вокруг центральной звезды. В нашей схеме I тип -ИК источники с очень сложной околозвездной структурой вещества. Переход І→ІІ→ІІІ→ІV→V можно представить как эволюционную схему протозвездных облаков OT начала ЭВОЛЮЦИИ до полного формирования молодых звезд. С увеличением номера типа переход показывает, что к тому времени из околозвездной материи может формироваться несколько протозвездных ИК источников. В начальном этапе формирования оболочки образованные сгустки способны небольшие вещества излучать энергию за счет гравитационного

сжатия и вязкого трения между отдельными слоями диска. На последующем этапе после частичной диссипации вещества диска может энергия излучения таких сгустков значительно уменьшаться из-за отсутствия Обнаружение источников энергии. В последние годы таких ИК источников В околозвездном окружении подтверждают эти предположения [19].

Было показано, что наиболее вероятное значение температур по спектру избыточного излучения равно 2500, 1500 и 90-120 %. Высокая степень корреляции между температурами Т₁ и Т₂ может указывать на то, что тепловые источники, образованные в околозвездном окружении, при конденсации околозвездной оболочки взаимозависимы по массам. Если околозвездное вещество после диссипации и конденсации превращается в такие типичные тепловые источники, велика вероятность формирования на Π этапе развития субзвезд и протопланет. При моделировании ранней стадии эволюции необходимо учитывать тот факт, что на этом происходит диссипация развития этапе околозвездного диска.

Сравнение эффективных температур звезд T_{eff}, определенных по спектральному классу и температуре T_1 наиболее высокой В коротковолновой части РЭС показывает, что эти температуры могут показать различие от 500 до 2500 °К. В среднем Т₁ систематически больше, чем Т_{еff} на 1000 *К*. Такое различие в температурах, определенных по фотосферному абсорбционному спектру (T_{eff}) И по распределению энергии $(T_1),$ свидетельствует о том, что существует дополнительный источник тепловой энергии неизвестной природы, максимум спектра излучения, которого попадает в видимую часть спектра.

В настоящее время считается, что существующую у молодых звезд «проблему углового момента» нельзя разрешить без вмешательства магнитного поля [20]. Это аргументируется тем, что в целом магнитное поле и в частности перенос магнитным полем углового момента играет ключевую роль при фрагментации космических газо-пылевых облаков. Очень может быть, что когда фрагменты после сгущения достигают фазы

затемнения, дальнейшее перераспределение углового момента продолжается до выхода объекта на главную последовательность.

Обобщая результаты можно сделать следующие выводы:

1. По анализу кривых РЭС 87 молодых звезд обнаружено всего 5 типов кривых РЭС. Выделенные нами типы расширяют схему классификации кривых РЭС у молодых звезд и могут описать эволюционную картину околозвездного первичного вещества в течении времени выхода объекта на ГП.

2. Обнаружена высокая степень корреляции полученных температур теплового излучения околозвездного вещества, определенная по избыточному излучению на кривых РЭС в разных участках спектра.

3. Сравнение показало, что большинство типичных молодых звезд позднего типа по кривой РЭС показывают систематически завышенную температуру (T₁), примерно на 1000 *К* больше, чем эффективные температуры звезд (T_{eff}).

4. Определенные температуры тепловых источников имеют характерные значения – чаще всего 1500 – 2500 *К* и 90 – 150 *К*. Это может быть характерной особенностью околозвездных оболочек у молодых звезд: при конденсации оболочки могут, в основном, образовываться объекты только определенной массы и температуры.

СПИСОК ЛИТЕРАТУРЫ

- P.Hartigan, L.Hartmann, S.J.Kenyon, S.E.Strom, M. F.Skrutskie. *Correlations of optical and infrared excesses* in T Tauri stars. Astrophys. J. 1990, v. 354, p. L25-L28.
- Н.З.Исмаилов, А.А.Алиева. Анализ избытков ближних УФ и ИК излучений у звезд типа Т Тельца. Известия НАН Азерб., Сер.физ.-тех. наук, 2005, т.25, с.189-195.
- 3. C.J.Lada. In: Star Forming Regions, ed. M. Peimber & J.Jugaka, 1987, 254 p.
- 4. F.C.Adams, C.J.Lada, F.H.Shu. Spectral evolution of young stellar objects. Astrophys. J. 1987, v.312, p.788-793.
- B.A.Wilking, C.J.Lada, E.T.Young. *IRAS observations of* the Rho Ophiuchi infrared cluster - Spectral energy distributions and luminosity function. Astrophys. J. 1989, v.340, p.823-831.
- S.Terebey, C.J.Chandler, P.Andre. The contribution of disks and envelopes to the millimeter continuum emission from very young low-mass stars. Astrophys. J. 1993, v.414, p.759-767.

- 7. P.Andre, T.Montmerle. From T Tauri stars to protostars: Circumstellar material and young stellar objects in the rho Ophiuchi cloud. Astrophys.J. 1994, v.420, p.837-849.
- S.J.Kenyon, L.Hartmann. Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud. Astrophys. J. Suppl. Ser., 1995, v. 101, p. 117-171.
- F.H.Shu, J.Najita, D.Galli, E.Ostriker, S.Lizano. *In: Photostars and Planets III.1993*, ed. E.H. Levy & J.I.Lunine (Tuscon, Univ.Arizona), 335 p.
- S.J.Kenyon, N.Calvet, L.Hartmann. The embedded young stars in the Taurus-Auriga molecular cloud. I - Models for spectral energy distributions. Astrophys.J. 1993, v.414, p.676-692.
- F.C.Adams, F.H.Shu, C.J.Lada. The disks of T Tauri stars with flat infrared spectra. Astrophys.J. 1988, v.326, p.865-883.
- 12. E.E.Mendoza. *Infrared Photometry of T Tauri Stars and Related Objects.* **Astrophys.J.** 1966, v.143, p.1010-1024.
- M. Cohen. Infrared observations of young star. II. T Tauri stars and the Orion population. MNRAS. 1973, v.161, p.97-112.

- A.N.Rastopchina, V.P.Grinin, A.Okazaki, P. S.The, S.Kikuchi, D. N.Shakhovskoy, N. Kh.Minikhulov. *Dust* around young stars. Photopolarimetric activity of the classical Herbig Ae/Be star RR Tauri. Astronomy and Astrophysics. 1997, v.327, p.145-154.
- G.H.Rieke, M.J.Lebofsky. The interstellar extinction law from 1 to 13 microns. Astrophys.J. 1985, v.288, p.618-621.
- В.Л.Страйжис. Многоцветная фотометрия звезд. 1977, Вильнюс, Москлас, -288с.
- 17. H.L.Johnson. *Astronomical Measurements in the Infrared.* Annual Review of Astronomy and Astrophysics. 1966, v.4, p.193-201.
- H.L.Johnson, J.W.MacArthur, R.I.Mitchell. *The spectral* energy curves of subdwarfs. Astrophys.J. 1968, v.152, p.465-481.
- R. J.White, A.M.Ghez. Observational Constraints on the Formation and Evolution of Binary Stars. Astrophys.J. 2001, v.556, p.265-281.
- L.Mestel. Stellar Magnetism, J.Birman and S.F.Edward (eds.), Clarendon press, Oxford, 1999, 636 p.

Поступила в редакцию 12 августа 2008 года.

0.36-100 MKM İNTERVALINDA CAVAN ULDUZLARIN SPEKTRAL ENERJİ PAYLANMASI

N.Z.Ismayılov, F.N.Əlimərdanova

Genişzolaqlı yerüstü və atmosferdənkənar fotometrik müşahidələrin nəticələrindən istifadə edərək 87 cavan ulduzun 0.36-100 mkm intervalında spektral enerji paylanması (SEP) öyrənilmişdir. Toplumda olan ulduzlar cəmi 5 tip SEP əyrisi göstərmişdir. Cavan ulduzların infraqırmızı (İQ) oblastda spektri əsasında əvvəl təklif olunmuş fotometrik klassifikasiya sxemi genişləndirilmişdir. Bir çox ulduzlar üçün 4-ə qədər enerji artıqlığı olan spektral oblast aşkar edilmişdir ki, bu da sistemdə əlavə istilik şüalanması yaradan cisimlərin olması ilə izah olunur. Əlavə mənbələrin temperaturlarının ən ehtimallı qiymətləri ~1500-2500 və 90-120 K təşkil edir.

Aparıcı sözlər: T Buğa tipli ulduzlar, enerji paylanması, İQ şüalanma, ulduzətrafi materiya

SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG STARS IN THE RANGE 0.36-100 MKM

N.Z. Ismayilov, F.N.Alimardanova

Using results broad-band ground-based and exoatmospheric infrared photometric observations the spectral energy distributions (SEDs) of 87 young stars in the range 0.36-100 mkm have been studied. Selected objects showed only 5 types of SED curves. It was expanded a photometric classification scheme on the IR spectrum of young stars which earlier has been proposed. For some stars we can see up to four excess radiation ranges in the spectrum which can be explained with presence of additional thermal radiation bodies in the system. More probable temperatures of additional members is equal ~1500-2500 and 90-120 K.

Key words: T Tauri type stars, energy distribution, IR radiation, circustellar matter