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Abstract 

The concept of a brain tumor is one of the most significant health issues in terms 

of both economic and social stability. This disease is extensive growth of abnormal 

cells in the brain and any growth inside can lead to any serious problem. The cost of a 

patient’s life is a primary concern, so multiple monitoring and treatment systems are 

still improving to build up the long-term life expectancy of the better life of those 

patients who have severe brain tumor problems. However, there exists a lack of data 

available associated with medical diagnosis and images in which intensive diagnostic 

analytics (DA) techniques are demanded today. In these cases, accurate performance 

improvement is a major factor of positive enhancement in treatment and diagnostics 

by the fact that a lack of medical images has constant distribution compared with real 

image distributions. Therefore, deep learning of structural variability of brain tumors 

substantially offers contrast-enhanced images to eliminate attainable data gaps and 

lacks in image distribution.  
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CHAPTER 1 

 

Introduction 

Statistically, incidence rate of brain tumors for women is 26.55 per 100,000 and this 

rate for men is 22.37 per 100,000 on average. The most dangerous occurring type of 

these tumors are known as Gliomas. The form of cancerous tumors so-called 

Glioblastomas are so aggressive that patients between ages 40 to 64 have only a 5.3% 

chance with a 5-year survival rate. In addition, it mostly depends on treatment course 

procedures since 331 to 529 is median survival time that shows how this class is 

commonly severe form of brain cancer. Unfortunately, a mean expenditure of 

glioblastoma costs 100,000$. Due to high mortality rates, gliomas and glioblastomas 

should be determined and diagnosed accurately to follow early stages of those cases. 

However, a method that is suitable to diagnose a course of treatment and screen 

deterministic features including location, spread and volume is multimodality magnetic 

resonance imaging for gliomas. The tumor segmentation process is determined through 

the ability to advance in computer vision. For instance, CNN (convolutional neural 

networks) demonstrates stable and effective outcomes similar to one of other 

automated methods in terms of tumor segmentation algorithms. However, I will present 

all methods separately to specify effectiveness and accuracy of segmentation of tumor. 

In addition, widely recognized techniques based on GANs (generative adversarial 

networks) have an advantage in some domains to analyze nature of manual 

segmentations today. In this thesis, first section examines Fuzzy C-means (FCM), 

Atlas-based, Markov Random Fields (MRF), and Support Vector Machines (SVM) 

algorithms as a part of classification and clustering methods for brain tumor 

segmentation. Second section explains deformable model methods that include 

Parametric deformable models and Geometric deformable models. In third section, 

trilinear interpolation algorithm techniques apply image Pre-processing, 

Morphological Operation and Otsu Method for 3D MRI Brain image processing.  In 

final section, we discuss the term Magnetic Resonance (MR) based on medical 

technology representing realistic images but different from original images. The 

Progressive Growing of GANs (Generative Adversarial Networks) and a large 

diversification of the GAN training method can determine the art of brain tumor 

segmentation in terms of the results of MRI (Magnetic Resonance Imaging) and the 

evaluation of proposed GAN method. GAN is suggested for brain tumor segmentation 
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as it may achieve the high achievable and competitive performance of networks which 

was proven in the BRATS 2020 database. Our ultimate goal is on this ongoing  

operation to show that the GAN-based method could follow future reasonable trends 

and promising results in not only brain tumor detection but also other possible MRI 

related medical models. 

 

1.1. Brain Tumor Segmentation Methods  

Today, three major categories can explain brain tumor segmentation based on different 

principles and degree of human interaction requirements. These include semi-

automatic, fully automatic and manual segmentations [1]. Firstly, semi-automatic brain 

tumor segmentation consists of software, interaction and user.  The realization of tumor 

segmentation algorithms is a target area for software computing. The interaction covers 

the adjustment of segmentation information between the software and the user. For 

user case, it provides feedback response and visual information for software 

computing, but it requires to input some parameters before processes. Moreover, three 

processes of semi-automatic segmentation include feedback response, evaluation and 

initialization. One of the disadvantages of this segmentation category is to obtain same 

user at different times or different results from different experts. However, semi-

automatic segmentation shows better results in comparison to manual segmentation. 

On the other hand, fully automatic brain tumor segmentation algorithm is a 

combination of prior knowledge and artificial intelligence. It is more likely to stimulate 

human intelligence to develop machine learning algorithms, but this method helps the 

computer analyze brain tumor segmentation without human interaction.   

The manual brain tumor segmentation paints the regions of anatomic structure by using 

various labels and it draws the boundaries of brain tumor [1]. In this case, anatomy as 

a representation of brain tumor images should be studied by brain tumor experts, but 

most of the time manual segmentation yields poor results due to error-prone and time-

consuming issues. This is because the more brain tumor images in the clinic are 

emerging, the more errors occur for the experts. The solutions are semi-automatic and 

fully automatic segmentation methods which address such problems directly in an 

advanced way. In contact, these two segmentation methods exhibit partial-volume 

effects and irregular boundaries with discontinuities for tumor images. Currently, 

alternative three categories are proposed through MRI-based methods for brain tumor 
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segmentation in order to solve challenges faced by semi-automatic and fully automatic 

brain tumor segmentation images. 

 

1.2. Literature Review 

MR imaging is a valuable detector of brain tumors in terms of size, type, shape and 

position. MRI scan detects fatal brain tumors known as glioma and meningioma 

without harmful radiations for patients. Early stages of these dangerous tumors can be 

easily diagnosed through multiple medical applications in order to cure further serious 

damages. According to World Health Organization (WHO), physicians classified 

tumors in four grades including grade 1, grade 2, grade 3, and grade 4. In first two 

grades, they detect meningioma as a lower level tumor. However, grade 3 and grade 4 

examine glioma as one of more sever tumors. The study found that meningioma is 

about 20% of the brain tumors with a spherical shape and slow growth rate. Despite a 

low growth rate and low risk of the meningioma, it should be cured in early stages due 

to permanent damages for any patient in long term.  

MR image analysis and interpretation processes can be complicated, sensitive and time 

consuming if color intensity for the lesions in brain tumors describes many variations 

and size of lesions are not detectable. For that reason, surgeons and neurologists must 

be responsible on correct decision making in order to analyze promising methods for 

misinterpretations in MRI scans. These methods can be quantitative image detection 

techniques in dealing with such misleading and imperfections.  

Paul et.al suggested convolutional neural networks (CNN) for the dataset for brain 

tumor classification. Three classifiers were examined for images including fully 

connected neural network, random forest and convolutional neural network. CNN 

showed 90.26% accuracy rate with two convolutional layers and two fully connected 

layers with 800 neurons. MaxPool layers follow the convolutional layers with 64 filters 

of 5x5 size whereas SoftMax layer follows the output layer containing three neurons 

as the number of classes.  

Abiwinanda et al. applied CNN with two convolutional layers of 3x3 size and 32 filters 

by using a fully connected layer of 64 neurons. The accuracy rate was 84.19% on this 

dataset. On the other hand, the features were extracted from CNN and employed with 

a Kernel ELM classifier. The accuracy rate was 93.68%. Anaraki et al. investigated 
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CNN architecture using a genetic algorithm to evolve the results and accuracy rate for 

this method was 94.2%.  

Abdel-Qader and Ismael examined 90 neurons for a hidden layer, 3 neurons for an 

output layer, 270 inputs for a neural network with 91.9% accuracy rate by extracting 

statistical features from MR images. Tahir et al. improved the outcomes of statistical 

models and determined multiple preprocessing methods for classification. 86% 

accuracy was reported for Support Vector Machines (SVM) used to standardize the 

model.  

Zhou et al. investigated resolution of slice labeling through LSTM based network as a 

purpose of a sequence of images in MRI scans. LSTM and autoencoder enable features 

to be extracted from classified scans and axial view respectively. The report on this 

dataset shows 92.13% accuracy rate. Despite the fact that selected slices in this dataset 

are only a component of the main dataset, some zero matrices are added to each image 

for evaluation.  

Afshari et al. employed Capsule Net to classify three tumor types for MR images by 

using default architecture. Segmented tumors and raw brain images presented 86.56% 

and 72.13% accuracy rate for classification respectively. The final accuracy in early 

phase and better results for network in these processes were questionable and undefined 

due to stopped learning phase after ten epochs. The second paper proposed by Afshari 

et al. introduced the position of the tumor using Capsule Net for MR image with 

90.89% accuracy rate. Moreover, Phaye et al. applied various capsule network 

architectures using CapsNet on the dataset with 95.03% accuracy rate. Cheng et al. 

examined gray level covariance matrix, intensity histogram and bag of words as a part 

of three feature extracting methods with accuracy rate of 91.28%. 

 

1.3. The problem of the study 

The problem of the study is a solution for curing brain cancer in its first stages 

without permanent damages to the patient in a long term. If not treated and cured in 

early stages, it can cause the death for a large number of patients and some of them 

can get harmful ionizing radiations. Moreover, most researchers investigate brain 

tumor segmentation algorithms, but not the feature extraction. In this case, it is better 

to consider types of brain tumors in actual applications and variance in appearance of 
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various brain tumor grades. The experience in feature extraction for brain tumor 

would potentially improve validity, accuracy, and robustness of tumor segmentation 

based on MR images. 

1.4. Methodology  

In this thesis, most of brain tumor segmentation methods provide the possibility of 

getting high accuracy rate and reliability for a deep learning for tumor classification 

in magnetic resonance images (MRI). First, semi-automatic, fully automatic and 

manual segmentations are presented to explain fundamental realization of tumor 

segmentation algorithms. Then, preprocessing operations and imaging modalities 

based on MRI brain tumor segmentation are introduced in terms of classification and 

clustering method, as well as deformable model methods. In addition, another image 

detection technique known as trilinear interpolation algorithm for 3D MRI brain 

images were proposed by five major steps to construct 3D image from 2D MRI 

human cortex images. Finally, we present generative adversarial networks (GAN) to 

achieve a well-defined image resolution for medical imaging. In this part, the deep 

details network by modalities including T1, T2, T1c, and FLAIR are generated 

through BRATS2020 dataset. Furthermore, two GAN-based approaches (DCGAN 

and WGAN) and results with GAN pre-train on both introduced split and random 

split were evaluated to better learn the structure of MR images for brain tumor 

segmentation based on provided datasets.  

1.5. Database  

The database contains 371 brain MR images in total and four modalities of MR 

images (T1, T2, T1c, and FLAIR). The dataset of these modalities is from 2018, 

2019, 2020 Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) 

challenges. Another database mainly includes 3064 T-CE MR images with 1426 

glioma images, 708 meningioma images, and 930 pituitary tumor images proposed by 

Cheng et al. 
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CHAPTER 2 

 

Classification and clustering methods 

Due to the practice of radiology by radiologists, making accurate decisions and learning 

patterns from empirical data or learning complex relationship can be studied by 

providing machine learning that simplifies the diagnosis and anaylsis for medical 

images [2]. In medical practice, unsupervised, semi-supervised and supervised learning 

are essential categories of classification and clustering methods based on different 

principles and utilization of labels of training samples. Unsupervised learning 

algorithm contains no label information and only one set of observations for each 

sample. Obviously, latent variables and a set of unobserved variables cause such 

features and observations. The main objective of the unsupervised learning is to reveal 

the latent variables and to determine relationship between samples between samples 

and behind the observations respectively. Hence, clustering algorithm explains 

unsupervised learning effectively. Semi-supervised learning explores a combination of 

unsupervised and supervised learning algorithms. Due to having high costly labeling 

of data and being inapplicable for some applications semi-supervised learning was 

targeting the development of its algorithms [3]. Indeed, it has an advantage in terms of 

using unlabeled and labeled data in the training process. In addition, supervised 

learning algorithms study two major parts which include output observations (called as 

effects) or labels and input observation (called as causes) or features. Supervised 

learning shows a functional relationship which is a set of numerical coefficients and 

equations from training data. This data generalizes given procedures to testing data so 

that classification algorithm effectively explains supervised learning as a representative 

method. Classification or clustering methods in brain tumor segmentation include 

Fuzzy C-means (FCM), Atlas-based algorithms, Markov Random Fields (MRF), and 

Support Vector Machines (SVM).  

2.1. FCM algorithms  

Pattern recognition is commonly used area for FCM method which corresponds to each 

cluster center between the data point and the cluster on the basis of distance issue, but 

before it assigns membership to each data point [4]. Getting high possibility of 

membership towards the cluster center depends how nearer the data is to the cluster 

center. Getting encouraging results of MR data, getting satisfactory results better than 
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k-means algorithm and better for overlapped data set, assigning membership of data 

points to not only one cluster center in which most data point exclusively belongs to 

one cluster center not similar to k-means are significant advantages of FCM algorithm.   

Brain tumor segmentation is divided into tissue classes which generate segmentation 

images in order to demonstrate neuropathological and neuroanatomic issues by 

generating contrast information from raw MR image data. Necrotic core, active cells 

and unsupervised FCM clustering algorithm used edema are included in these classes. 

Furthermore, the integration of multispectral histogram analysis and knowledge based 

methods enables MRI images to determine segmentation of brain tumor [5]. Fuzzy 

clustering as a knowledge-based method is an alternative procedure for MRI images of 

brain tumor segmentations. It is also used to build the tumor shape based on 3-D 

connected components. In addition to fuzzy knowledge and modified seeded region 

growing, a segmentation method which is so-called Fuzzy Knowledge-based Seeded 

Region Growing (FKSRG) shows effective segmentation results for multispectral MR 

images compared to segmentation of functional MRU with Brain Automated 

Segmentation Tool.   

The FCM is considered as an iterative algorithm which is very time consuming 

clustering method. In fact, Fast Generalized FCM (FGFCM) and Bias-Corrected FCM 

(BCFCM) algorithms are major solutions to decrease possible execution time in 

advance. FGFCM clustering algorithms are considered as robust FCM framework for 

segmentation of brain tumor [6]. While BCFCM is a time-efficient algorithm in terms 

of providing brain images with good quality segmentation. In this method, supporting 

virtual brain endoscopy is a process obtained effectively by this algorithm in order to 

better analyze brain tumor segmentation.  

A modified FCM-based method determines fast and accurate segmentation aiming to 

decrease sensitivity issue of standard FCM algorithm. For that reason, this method was 

proposed for mixed noises including impulse, intensity non-uniformity and Gaussian 

noises. Moreover, this method uses context based dependent filtering technique to 

better realize gray and spatial level distances. In this case, first step is extraction of a 

scalar feature value through neighborhood of each pixel. The next procedure is an 

observation of enhanced FCM algorithm regarding histogram-based approach 

connected with clustering process. Most researchers study a neighborhood attraction 

concept depending on features and relative location of pixels in order to develop the 

performance of FCM algorithm. However, segmentation results depend on degree of 
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attraction in which determination of this process is difficult to obtain in most cases. 

The Genetic Algorithm (GAs) and Particle Swarm Optimization (PSO) have been 

introduced to reach optimal solutions [7]. PSO has no challenges in finding exact 

solutions while GAs show low performance for this issue. While the determination of 

the optimum value for degree of attraction is practically achieved through the 

combination of PSO and GAs. In addition to segmentation of brain tumor, the 

combination of fuzzy c-means and k-means algorithms are essential to determine the 

stage and size of tumor accurately. In contrast to the manual segmentation, this 

combination offers reproducibility and accuracy with tumor tissue segmentation that 

reduces time for the improvement of segmentation.  

2.2. Atlas-based algorithms 

Atlas-based algorithm is used to register various images, guide segmentation of brain 

tissue, and restrict tumor location. It is also used for generative classification models 

and three major steps are included in this algorithm. First of all, the atlas and the patient 

are added to global correspondence by assistance of an affine registration. Second, a 

template is introduced for brain tumor regarding seeding of a synthetic tumor into brain 

atlas. Third, brain tumor growth and optical flow principles explain seeded atlas 

deformation. Furthermore, researchers examine the tissue model through defining 

probabilistic information and imposing spatial constraints depending on atlases. 

Moreover, Expectation Maximization (EM) method is introduced to modify an atlas 

from different MRI modalities knowing that the information about tumor location is 

linked to the modified atlas with patient-specific information [8].  This procedure 

enables a probabilistic tissue model to be employed and brain tumor to be segmented. 

One of advantages of atlas-based methods is about better integration between domain 

knowledge and consideration of atlas-based segmentation. While it is challenging to 

account the variability of such prior information. In fact, lesion growth prior model 

shows radial expansion of lesion which comes from the starting point for brain atlas 

deformation. Obviously, this process results in better segmentation results of brain 

tumor by analyzing large space-occupying tumors. In a population, brain atlases 

contain averaging pre-segmented images which are equally constructed and these 

methods experience lower segmentation guidance capability and local inter-subject 

structural variability. In order to solve such problems a multi-region-multi-reference 

framework is a best alternative to consider for atlas-based neonatal segmentation of 

brain tumor. As a result of using a spatial regularization and generative probabilistic 

model, the combination of a latent brain tumor atlas and healthy brain atlas is an 

accurate determination of brain segmentation from multi-sequence images [9]. The 
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Figure 2-1 demonstrates the results of T1 and T2 brain tumor segmentation as a part of 

atlas-based segmentation of magnetic resonance brain images. The localization 

suggests multi-modal segmentation optic pathway gliomas to be used for classification 

with probabilistic tissue model based on brain atlas at a recent time. The effectiveness 

and practicability of atlas-based methods have a close relationship with the precise 

atlas. In Table 2-1, Talairach-Tournoux, Whole Brain, BrainWeb, and Brodmann are 

examples for atlases described as follows:  

 
 
Figure 2-1. The results of T1 and T2 brain tumor segmentation 

 
 

Table 2-1. The current existing atlases. 

 

Name Representation References 

Brodmann The first brain atlas [10] 

Talairach-Tournoux Construct a three-

dimensional coordinate 

to provide a standard 

space 

[11] 

BrainWeb Widely used in the brain 

MRI images analysis 

[12] 

Whole Brain Used in neurosurgery at 

Harvard Medical School 

[13] 
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2.3. MRF algorithms  

 

These algorithms describe the integration of spatial information with classification or 

clustering process [14]. Overlapping and effect of noise are possible issues that have 

been reduced by adding MRF in clustering methods. If the neighbor of labeled region 

is the same, MRF will determine this process by the fact that the region is strongly 

labeled (non-brain tumor or brain tumor). Sequence data is labeled and segmented 

through building probabilistic models using Conditional Random Fields (CRF) [15]. 

Both MRF and CRF provide high accuracy for segmentation of brain tumor results by 

representing complex dependencies among data sets. GMM as an example of the 

mixture model can model different tissues including Necrotic Core (NC), Edema (E), 

GM, WM, Active Cells (AC) and CSF. This model uses Iterated Condition Modes 

(ICM) algorithm to train the MRF [16]. Each tissue can be segmented by different 

models of different tissues. A multi-layer MRF framework can easily detect brain 

abnormalities so that such layers include input, structural coherence, region intensities, 

and spatial locations [17]. Moreover, it is clear that a change in high-level classification 

depends on a given voxel which is correlated with strong similarities shared by the 

attributes of lower-level layers. Spatial accuracy-weighted Hidden Markov random 

field and Expectation maximization (SHE) provides better quality of tumor 

segmentation in terms of enhanced-tumor and automated tumor segmentation. In 

clinical applications, high-resolution images are commonly determined together with 

low-resolution sequences. The process of tumor segmentation follows multi-channel 

MR images using different resolutions through incorporation of the optimization 

procedure of the Hidden MRF (HMRF) with the spatial interpolation accuracy of low-

resolution images proposed by SHE. Consequently, SHE algorithm presents more 

accuracy for the results of tumor segmentation. In case of an automatic method, brain 

tissues are segmented based on non-rigid registration of an average atlas which is 

combined with a biomechanically justified tumor growth model. It aims to detect 

causality of tumor mass-effect in a way to simulate soft-tissue deformations. 

Correspondence between the patient image and the atlas is the process provided by the 

tumor growth model which is considered and formulated as mesh-free MRF energy 

minimization problem before registration step. Compared to other approaches, tumor 

growth model is fast, simple and non-parametric due to maintaining similar accuracy. 

An automated hierarchical probabilistic framework supported through the use of an 

adapted MRF framework and multi-window Gabor filters enables brain tumors to be 

segmented from multispectral brain MRI [18]. BRATS database in the framework 

assists segmentation of brain tumor as edema and non-edema. The Figure 2-2 shows 

how labels of algorithm correspond to labels of expert closely.  
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 Figure 2-2. (a) unlabeled TIC slice; (b) expert labelling; (c)algorithm labels (red – edema, green – non-edema) 

[96] 

 

 

2.4. SVM algorithms 

 

Vladimir N. Vapnik invented the original version of SVM algorithm, but Cortes and 

Vapnik in 1993 studied current standard incarnation [19]. To deal with supervised 

classification issues, a parametrically kernel-based method was proposed as SVM and 

brain tumor segmentation was a commonly known field for SVM algorithms [20]. One-

class SVM examines the ability to learn the nonlinear distribution of image data which 

uses no prior knowledge [21].  It is also applicable to achieve better segmentation 

results by following an implicit learning kernel and automatic procedure of SVM 

parameters training. These results support the extraction of brain tumors for better 

segmentation results compared to fuzzy clustering method. The researchers were 

willing to build voxel-wise intensity-based feature vectors via a high number of MRI 

modalities classified by SVM [22]. The healthy tissues and also sub-compartments of 

healthy and tumor regions are segmented by this method, but similar approach based 

on SVM used a lower number of modalities and segmented one tumor region [23]. The 

feature selection with kernel class was introduced to improve this method and it showed 

better results. In order to segment the brain tumor from multi-sequence MRI images a 

fusion process and a multi-kernel based SVM in collaboration with a feature selection 

was offered as an alternative. Ameliorating the contour of tumor region (use of the 

          a                                    b                                          c 
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distance and the maximum likelihood measures) and classification of tumor region (use 

of a multi-kernel SVM) are major two steps of  

a multi-kernel based SVM integrated with fusion and feature selection processes. In 

addition to classifying the tumor region, this step focuses on the performance of multi-

image sources and multi-results. The accuracy and diminution of total error are 

expected results obtained through this method compared to traditional version of single 

kernel SVM.  A fully automatic method was also essential to define segmentation of 

brain tissue which used multispectral intensities for SVM classification as a 

combination [24]. This method textured with hierarchical approach (specifically, 

subsequent hierarchical regularization) based on CRF to get acceleration and 

robustness. Thus better results and accuracy can be achieved by different levels of 

regularization at various stages. The Figure 2-3 denoted potentially useful effects of 

SVM algorithms for MRI images in segmentation of brain tumor. The Table 2-2 

explains the relatively good methods and their presentations of MRI-based brain tumor 

segmentation.  

   

Figure 2-3. (a) manual segmentation; (b) hierarchical SVM-classification with CRF-regularization; (c) non-

hierarchical SVM-classification without regularization. 

                                                                                                                                                                          
Table 2-2. Some good algorithms based on MRI brain image segmentation.  

Method Presentation References 

Combination of k-means 

and fuzzy c-means 

Better accuracy and 

reproducibility 

[25] 

FKSRG Lower over- and under-

segmentation 

 

             A                                               B                                                 C 
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Multi-region + multi-

reference framework 

Higher tissue overlap 

rates and lower standard 

deviations 

 

Generative probabilistic 

model + spatial 

regularization 

Improvement over the 

traditional multivariate 

tumor segmentation (25 

glioma) 

[9] 

Probabilistic model + 

localization 

More robust applied to 

monitor disease 

progression 

 

Non-rigid registration + 

atlas + MRF 

Multivariate tumor 

segmentation 

[9] 

SVM + CRF 10 multispectral patient 

datasets more detail 

segmentation low 

computation times 

[24] 

Decision Forests + 

tissue-specific Gaussian 

mixture models 

Segmenting the 

individual tissue types 

simultaneously such as 

AC, NC, E, etc. 

[26] 

SVM + Kernel feature 

selection 

Good results tested in 

T1w, T2w and T1c, low 

computation time 

[27] 
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CHAPTER 3 

 

Deformable model methods  

Parametric and geometric deformable models are major components of model-based 

segmentation methods that can handle the issue of the appearance of 3-D MRI data 

with respect to extraction of boundary elements which belong to same structure and 

integration of those elements into a consistent and coherent structure model. In most 

cases, such issues are challenging to be segmented through simple methods compared 

with combination of SVM classification techniques which demonstrate high accuracy 

and diminution of total error. The capability of segmenting images of anatomic 

structures helps to determine resistance of deformable models. This segmentation 

exploits constraints about size, shape and location of anatomic structures which stem 

from image data with a prior knowledge. Deformable models are highly adjustable for 

the variability of biological structures in terms of various individuals [28]. In addition 

to deformable models, they are more likely to assist clinicians and medical researchers 

through intuitive interaction mechanisms in order to determine necessary model-based 

image interpretation task.  

3.1.  Parametric deformable models  

These models were so-called active contour models and snakes in some periods. After 

introduction of snakes in 1988, they are used to locate object contours including 

appropriate initialization in practice [29]. The snakes are capable and sensitive to detect 

the boundary of brain tumors that is highly significant as a step of brain tumor 

segmentation in parametric deformable models. According to studies done about the 

resolution of the boundary, the snake technique shows more effective results compared 

to conventional edge detection including Canny, Sobel and Laplacian algorithms. 

However, the snake function in homogeneous regions is positively obtained while it is 

zero at the edges. Therefore, the improvement of brain tumor segmentation results on 

T1 brain tumor MRI was achieved using the balloon model and the Gradient Vector 

Flow (GVF). GCF aimed to analyze inability and short capture range which stem from 

the traditional snakes to track concavity of boundary. Moreover, the spatial relations as 

refinement step enable a parametric deformable model to estimate boundaries of any 

type of brain tumors accurately which is on T1 MRI [30]. The growth of snakes capture 

range can be defined by the balloon model apart from the parametric deformable 
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model. The combination of deformable registration and segmentation of brain scans 

was proposed based on Expectation Maximization (EM) algorithm to a normal atlas in 

a way to explain incorporation of atlas seeding and a glioma growth model. This 

process studies modified atlas which represents the normal atlas into one with edema 

and a tumor. In addition, utilization of the posterior probability estimation of different 

tissue labels and registration into the patient space are essential characteristics of the 

modified atlas. The Expectation Maximization algorithm is highly optimistic to refine 

the posterior probabilities of tissue labels, the tumor growth model parameters and the 

estimates of registration parameters. It is also necessary to note that manual location of 

initial position of the parametric deformable model demonstrates avoidance of 

converging to wrong boundaries if it is close to desired boundary.  

3.2. Geometric deformable models  

Geometric Deformable Models (GDM) is sometimes known as level sets which 

improves topological changes for merging of contours and splitting processes. In fact, 

these procedures are more challenging to be handled naturally in terms of topological 

changes when using segmentation of 3D MRI data through parametric deformable 

models [31]. In most cases, segmentation methods of brain tumor cannot be easily 

achieved in practice when dealing with regularly shaped objects. On the other hand, 

the issue stems from improvement of initialization of parametric active contours and 

symmetrical placement of initial contour with respect to boundaries of interest. Level-

set snakes were highly preferable to gain an advantage compared to mathematical 

morphology and conventional statistical classification, because snakes experience 

careful initialization which have constant propagation and leak through missing 

boundary parts. A knowledge-based segmentation algorithm combines level-set snakes 

and pixel-intensity distribution that present more precise boundaries. Some researchers 

examined a deformable model using a Charged Fluid Framework (CFF) to aim brain 

tumor segmentation for a certain period of time [32]. However, CFF was extended and 

modified for brain tumor segmentation by proposing the Charged Fluid Model (CFM). 

Brain tumor can be segmented in a variable level set formulation by proposing a region-

based active contour model. This model suggested that the image intensities were 

approximated on two sides of contour by two fitting functions originated from data 

fitting energy. A regulation term as a part of the level set formulation shows derivation 

of a curve evolution which potentially targets energy minimization. The level set 

regularization term preserved regularity of level set function in a way to eliminate 
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expensive re-initialization. In this case, the progress of level set function depends on 

accurate computation of the level set regularization term. A few researchers determined 

a local clustering criterion function which is specified for intensities considered in a 

neighborhood of each point. However, a local intensity clustering property was also 

studied through brain tumor and other images with respect to intensity 

inhomogeneities. Integration of the local clustering criterion supports an energy 

functional over the neighborhood center in order to convert to formulation of the level 

set. Estimation of bias field and level set evolution with an interleaved process lead to 

minimization of the energy [33]. Combination of tumor segmentation and level set 

including tumor probability was achieved by a tumor-cut algorithm which resulted 

spatial smoothness. 

To sum up, FCM, ANN and MRF are commonly used algorithms in terms of 

deformable model analysis. This method can aim the accuracy of brain tumor 

segmentation by incorporating two or more algorithms. Therefore, brain tumor 

segmentation has a direct effect on medical image analysis for surgical planning that is 

most important issue in term of validity of segmentation process. As a part of tumor 

segmentation, commonly applied evaluation standards include Dice Similarity 

Coefficient (DSC) and Jaccard coefficient which range from 0 indicating no overlap to 

1 indicating perfect overlap. Moreover, probabilistic brain tumor segmentation was 

analyzed through three following validation metrics; Mutual Information (MI), Dice 

Similarity Coefficient (DSC) and the Receiver Operating Characteristic curve (ROC). 

These methods aim to sustain tumor monitoring, a preliminary judgment on diagnosis 

as well as the physician with therapy planning.  
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CHAPTER 4 

Trilinear Interpolation Algorithm Techniques for 3D MRI Brain 

Image. 

There are many diagnosis and detection imaging techniques for treatment of potential 

risks caused by brain tumor diseases. Computed Tomography (CT), Scanner, Position 

Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) are commonly 

used diagnostic imaging tools to practice for tumor segmentation [63-65]. In recent 

year, researches show that the process of obtaining 3D images from 2D medical images 

becomes increasingly necessary to determine an appropriate identity and regional 

development of tumors. Moreover, Machine Cube supports 2D CT image constructed 

3D spine image or 3D surface of knee [34]. In this method, data blocks are divided into 

cubes that were made up of eight adjacent voxels. By using the triangular mesh material 

surfaces were constructed from there eight adjacent voxels. As a result, simple 

construction operations, 3D image production with high resolution and fast calculation 

are advantageous procedures experienced through this method.  If the large number of 

2D image data is processed, the calculation process slows down. In most cases, noise 

occurred due to images captured from sensor should be reduced by pre-processing 2D 

images in order to construct the 3D image with high quality of improvement. Therefore, 

a mean-unsharp filter is able to increase filtered noise and high frequency components. 

Before low-level image separation the intensity values of grayscale image may process 

the growth method of MRI images. In this case, low-contrast images can be easily 

changed to higher-contrast images. Furthermore, making the tumor boundary depends 

on how morphological operations are utilized in order to stretch and fill a possible 

object for segmentation process. In this section, we will determine Otsu method for 

constructing 3D image with a support of segmentation of 2D images by finding the 

gray level threshold values.  

On the other hand, segmentation method can be jointly connected with the algorithm 

of regional development with respect to similarity of adjacent pixels related to the 

nuclear point. Choosing the error and nuclear initial point which depend on between 

neighboring pixels and nuclear point can be defined as a result of combination of 

algorithm. Practically, the acquisition of 2D medical image may process noise on it, 

but Otsu technique as a threshold of traditional method segment some of the areas 

required for 3D image development. According to some research studies done on Otsu 
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method, it may not often demonstrate better results. Instead, dividing 2D image into 

many layers by Otsu method with multilevel may provide better and efficient results.  

Pixels in 2D image are combined with region development algorithm to process 

segmentation of the image in which pixels have same regions [35]. The process may 

continue until the 2D image reaches coordinate axes (x, y, z) after segmentation. The 

calculation of approximate value of a point allows to construct the 2D image surface 

between two consecutive layers which are represented in the spatial domain. In fact, 

the linear interpolation approves this construction of 2D image surface before 

calculation of a value of the point.  

Binh Duong General Hospital provided dataset for construction of 3D image by 

considering 44 2D MRI brain images with 256x192 pixels. There are some major 

following steps to describe the construction of 3D image from 2D MRI human cortex 

images. First step is to re-process 2D image including image enhancement and noise 

rejection. Second step is to employ morphological operator and eliminate pixels in 2D 

images around object boundaries. Third step is called Otsu method or image 

segmentation where segmented and pre-processed images for 3D construction separate 

the brain area from the cortex. Final step is to construct 2D images after the 

segmentation to obtain 3D image by using a trilinear interpolation algorithm (also 

known as 3D image construction).  
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4.1. Image pre-processing  

Image pre-processing follows an average filter process to smooth 2D MRI images with 

noise in order to construct 3D image. The equation (1) below describes elimination of 

noise by applying the average filter that is convoluted with each 2D MRI image.  

  

𝑟(𝑥, 𝑦) =
1

𝑎𝑏
 ∑ ∑ 𝑤(𝑠, 𝑡)𝑓(𝑥 + 𝑠, 𝑦 + 𝑡)

𝑏

𝑡=−𝑏

𝑎

𝑠=−𝑎

 

 r(x,y) is output image after the process of filtering; 

 w(s,t) is axb filter window.  

 

2D MRI cortex images 

2D image pre-processing 

Morphological operators 

Image Segmentation (Otsu method) 

3D image construction (Interpolation algorithm) 

 

 

(1) 
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In Figure 4-1, the average filter with a 3-by-3 kernel after convolution is given as the 

result of 2D MRI cortex image  
1

9
( 

1 1 1
1 1 1
1 1 1

). 

                      

1                                                     2         

Figure 4-1:  (1) Original human cortex image; (2) Cortex image after the mean filter. 

 

After separation of complete brain region form the cortex image, the convoluted image 

provides smoother processing results in terms of using mean filter compared with using 

the median filter.  
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1                                              2 

Figure 4-2:  (1) Image after using the mean filter;  (2) Image after using the median filter. 

 

In Figure 4-3, not only enhancement of image with high frequency components but 

removal of low frequency components may be realized through application of unsharp 

filter with 3x3 size.  

1

2
( 

−1 0 −1
0 6 0

−1 0 −1
) 

 

(2) 
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Figure 4-3 :  2D MRI cortex image after the unsharp filter 

 

Moreover, image enhancement is a solution to make object better on higher contrast in 

case of low contrast after image filtering. Spreading the pixel values in the image is a 

significant procedure to expect transformation of the higher contrast image when 

proposing a histogram equalization algorithm [36]. This algorithm uses a special 

equation (3) to enhance the image as follows:  

𝑝𝑟(𝑘) =  
𝑛𝑘

𝑀𝑁
 

 nk is the number of pixels observed at the kth gray level in terms of the input image;  

 MN is total pixels of the image; 

 Pr(k) denotes the probability density function in the image connected with the kth gray level 

values.  

Apart from probability density function (PDF), the calculation of the output expression 

of the image is defined:  

𝑠 = (𝐿 − 1) ∑ 𝑝𝑟(𝑗)

𝑘

𝑗=0

 

 L denotes the number of gray levels in the image; 

 S(x,y) denotes the number of the pixels with respect to output image at the kth gray level.  

 

In Figure 4-4, first image represents before enhancement issue which uses unsharp 

filtering process. While, second image clearly shows after enhancement procedure. 

Nevertheless, the histogram equalization stimulates unsharp image with high frequency 

components to be enhanced for creation of higher contrast. Hence, Figure 4-5 (1 & 2) 

demonstrates representation of images where image before enhancement experiences 

the large number of pixels with distribution of being closed to the zero point. However, 

image after enhancement offers the histogram equalization with pixel values spreading 

on gray level axis.  

(3) 

(4) 
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Figure 4-4:  (1) Image using the unsharp filter; (2)Image after enhancement. 

 

                                  

1                                                   2 

Figure 4-5: (1) Image before enhancement; (2) Image after enhancement using the histogram equalization 

 

4.2. Morphological Operation 

The enhanced image continues the process for image imperfection after filtering 2D 

MRI cortex image, but this filtering removes noise and enhances the image. As a result 

of the image enhancement, a morphological algorithm removes a few unnecessary parts 

around objects for the image. Only potentially important object is remained for 3D 
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image construction by morphological algorithm. In addition, Dilation and Erosion are 

common operations of this algorithm in which the dilation operator considers structures 

and shapes of 2D image enhancement. At this moment, the morphological operation 

removes the undesired parts and combines boundaries around the objects. On the other 

hand, the morphological image determines the convolution between a kernel and the 

input image for image calculation as given below:  

𝑚(𝑥, 𝑦) = 𝑚𝑎𝑥 {
𝑠(𝑥 − 𝑖, 𝑦 − 𝑗) + ℎ(𝑖, 𝑗)

|(𝑥 − 𝑖), (𝑦 − 𝑗) ∈ 𝐷𝑠, (𝑖, 𝑗) ∈ 𝐷ℎ
 

 

 h(i,j) is a kernel with the size of 2x2 matrix 

 Ds and Dh are the domains of s image and k kernel.  

 S(x-i,y-j) denotes output images.  

 M(x,y) denotes input images.   

 

In Figure 4-6, the matrix of the 2x2 kernel is structured as follows:  

 

 

 

 

Figure 4-6 

 

In Figure 4-7 (2), the dilation operator in morphological algorithm enlarges the 

boundaries of object regions when producing the 2D MRI cortex image. For this 

reason, image after morphological operation combines the boundaries of object regions 

and provides better results compared with the enhanced image given as in Figure 4-7 

(1).  

1 1 

1 1 
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Figure 4-7.  (1) Representation of the enhanced image; (2) Image after the 

morphological operation.  

 

4.3. Image Segmentation using Otsu Method  

Otsu algorithm is employed for calculation of many gray level thresholds which 

determines 2D MRI image segmentation before construction. The threshold value in 

this particular algorithm is selected corresponding to minimum variance within the 

class. The segmentation algorithm equation (6) in terms of the set of 2D MRI cortex 

images can be shown as given;  

𝜎𝐵
2 = 𝜔0(𝜇0 − 𝜇𝑇)2 + 𝜔1(𝜇1 − 𝜇𝑇)2 

 

𝜔0 = ∑ 𝑝𝑞(𝑟𝑞)

𝑘−1

𝑞=0

 

𝜔1 = ∑ 𝑝𝑞(𝑟𝑞)

𝐿−1

𝑞=𝑘

 

(6) 

(7) 

(8) 
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𝜇0 = ∑
𝑞𝑝𝑞(𝑟𝑞)

𝜔0

𝑘−1

𝑞=0

 

𝜇1 = ∑
𝑞𝑝𝑞(𝑟𝑞)

𝜔1

𝐿−1

𝑞=𝑘

  

𝜇𝑇 = ∑ 𝑞𝑝𝑞(𝑟𝑞)

𝐿−1

𝑞=0

 

𝑝𝑞(𝑟𝑞) =
𝑛𝑞

𝑛
  

where Pr(rq) is the probability density function of image histogram, rq and L is the 

maximum gray level of the image, ω0 and ω1 denote the background and foreground 

variances, nq describes the total number of pixels with gray level, and n is the total 

number of pixels in the image.  

In Figure 4-6 (2), traditional Otsu method is applied for 2D cortex image after 

segmentation from morphological image. Otsu method in segmentation provides 

quick segmented image using 7 thresholding, but the segmentation almost depends on 

a threshold aiming to minimum variance. In some cases, this procedure can result 

undesired object with some lost parts corresponding to the segmented image as 

shown in Figure 4-8.  

 

Figure 4-8. MRI cortex image segmentation with traditional Otsu method with the 7 thresholding.  

(9) 

(10) 

(11) 

(12) 
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Similar to Figure 4-8, same Otsu method is proposed to segment the spine image and 

Figure 4-9 demonstrates some lost parts of object in the image. Obviously, traditional 

Otsu method supports better outcomes of constructing the 3D images choosing a 

threshold for segmentation which will enhance for diagnosis of doctors. 

 

                              1                                                 2 

Figure 4-9. (1) Original image; (2) Image after the traditional Otsu segmentation. 

 

An Otsu method also utilizes multilevel to remove unnecessary parts in the image and 

retain the whole desired objects before 3D image construction. An equation (13) 

expresses the Otsu segmentation with two thresholding multilevel as follows:  

{𝑡1
∗, 𝑡2

∗} = 𝑎𝑟𝑔1≤𝑡1<𝑡2<𝐿𝑚𝑎𝑥{𝜎𝐵
2(𝑡1, 𝑡2)} 

where t1* and t2* are two thresholds based on maximum variance within the class.  

In Figure 4-10, traditional Otsu method is proposed for 2D MRI cortex image to 

simulate the result of image segmentation with two thresholds, but this image describes 

the mouth object more clearly compared to Figure 4-8.  

(13) 
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Figure 4-10. 2D MRI cortex segmentation with a support of Otsu method with two multilevel.  

 

4.4. Interpolation Algorithm 

A set of 2D images generates 3D brain image on a coordinate system after 

segmentation established to overlap in order. The 3D brain image enables to 

observe possible issues inside 3D brain part considering different angles. 

The calculation of pixels between two slices is realized through 

representation of a trilinear interpolation method as shown in Figure 4-11. 

This method assists to construct a typical object from a group of discrete 

points. A special equation (14) below provides the calculation of value in 

spatial domain (u, v, w) with respect to an approximate point of 2D images:  

𝑝𝑢𝑣𝑤 =  𝑝000(1 − 𝑢)(1 − 𝑣)(1 − 𝑤) + 𝑝100𝑢(1 − 𝑣)(1 − 𝑤) 

+𝑝010(1 − 𝑢)𝑣(1 − 𝑤) + 𝑝001(1 − 𝑢)(1 − 𝑣)𝑤 + 𝑝101𝑢(1 − 𝑣)𝑤 

+𝑝011(1 − 𝑢)𝑣𝑤 + 𝑝110𝑢𝑣(1 − 𝑤) + 𝑝111𝑢𝑣𝑤 

where 𝑝𝑢𝑣𝑤 explains the intensity of pixels corresponding to (u, v, w) 

coordinates. 

(14) 
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Figure 4-11. The calculation of pixels between two slices based on trilinear interpolation method. 

 

4.5. Results and Discussions 

According to data from an MRI machine with a set of 44 MRI cortex images provided 

by Binh Duong General Hospital. The results show that the thresholds with two levels 

are more significant and efficient to produce the desired image. To reach such 

procedures using Otsu method, 2D MRI cortex images should be processed for 

segmentation and enhancement of 2D images in order to reach a 3D brain image 

construction. In Figure 4-12, Otsu multilevel method is used to segment the image and 

the region growing method continues to process the segmented image shown as Figure 

4-13, (4 and 5). The pixel values for the segmented image is [0,1] which is a binary 

image. Moreover, Figure 4-12 represents the combination of region growing algorithm 

and Otsu method with two thresholds from 12 MRI cortex image described in Figure 

4-13.  
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1.Original MRI cortex image   2.Image after average filter 

 

3.Image after unsharp filter     4.Image after enhancement  

               .  

5.Image after segmentation 

using the Otsu with two levels                  

 

Figure 4-12. The pre-processing image representation. 

6.Image after segmentation using 

the region growing using the 

region growing 
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Figure 4-13. The morphological cortex images. 

The binary images in the whole MRI cortex image sustains the brain part through the 

segmented brain images. After processing to obtain 3D image, the binary image retains 

the structure of original image. In addition, the convoluted images in Figure 4-14 are 

processed between the original images of 12 image slices corresponding to 44 2D MRI 

cortex images and the segmented image. 
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Figure 4-14. Images after convolution . 
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CHAPTER 5 

Generative Adversarial Nets (GAN) for Brain Tumor Segmentation 

                                                                     

5.1. Introduction  

According to the statistics provided by the Cancer.net in 2020 (from ASCO), the 

estimated number of people who will be diagnosed with primary cancerous brain tumor 

in America is expected to be totally 23,890 adults- 10,300 women and 13,590 men have 

a high sensitivity in this problem. This year, approximately more than 3500 children 

are trying to survive brain tumor disease and they also are under the age of 15 and these 

tumors cover 90% of all CNS tumors (Central Nervous System). However, previous 

years, the statistics of this disease primarily were estimated to be diagnosed among 

80000 children, men and women. The base categories of brain tumors at that time 

included malignant (cancerous) and benign (noncancerous) tumors [37]. 

So, it is obvious that brain tumor challenge automatically reflects the life expectancy 

of human being. Indeed, this segmentation requires high-order smoothing standards 

and perspectives targeting positive solutions.  The current follow-ups and treatment 

planning can be applied by using 2D measurement to properly identify glioma 

structures in brain and also non-invasive delineation. Gliomas have been studied as 

brain tumors from infiltrating tissues and glial cells [38].  Low-grade gliomas (LGG) 

and High-grade gliomas (HGG) are primary components of those given neoplasms.  In 

case of assessment based on the area of MRI (Magnetic Resonance Imagining) as 2D 

measurement, this technique (MR) is most efficient sequence to obtain accurate 

complementary information in evaluation of successful treatment planning in practice. 

MR allows us to determine the gyromagnetic properties of tissues in the brain and it 

basically deals with the phenomenon of nuclear resonance. However, there are still 

many reasons for the problem of gliomas segmentation, because this task cannot be 

easily segmented in terms of structure of brain tumors and their location. As diagnostics 

of accurate brain tumor is getting serious issue in treatment planning, automatic or 

semi-automatic segmentation is expected to be essential instead of arrangement of 

time-consuming and expensive manual approach. Nowadays both biological and 

natural image processing is successfully considered as achievement of deep learning 

of neural network in brain tumor analysis. Compared to other methods, CNN in 

biological image processing enables us to obtain accurate biomedical problems and to 

build neural network to show specific diseases such as Alzheimer, lesion and even 

cancer by scanning specific areas of brain [44]. However, this method no longer 
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maintains its stability in structuring analysis of brain tumor segmentation, because 

CNN needs more extensive medical data [39], but indeed it is hard to achieve under 

desired conditions. The solution for better performance is intensity or geometry 

transformations as a component of data augmentation techniques which aims 

reconstructing following original images. 

Practically, generalization abilities in performance improvement lead to limitation of 

better reconstruction of original images, but those images present so realistic image 

distribution meaning that new images obtained are similar to original ones.  

Deep learning generative adversarial networks (GAN) based on generative models and 

data augmentation is used as a framework to optimize general computer vision tasks. 

It simply acquires the real outcomes by matching distribution that is generated from 

entire noise variables. Moreover, GAN creates essential medical diagnostic reliability, 

potential physician teaching and training, but for some extent, it turns out to be 

challenging to train these tasks. The reason behind these approaches is that brain MR 

images with generated potential GAN applications are shown graphically (Figure 5-1) 

in terms of how realistic pathological images help to better understand misdiagnosis in 

different diseases by physician training and how data augmentation is better 

determinant of accurate diagnosis by generating realistic tumor images in random 

locations.  

 

Figure 5-1. The proposed GAN-based synthetic brain MR image generation. 
 
(C. Han et al., "GAN-based synthetic brain MR image generation," 2018 IEEE 15th International 

Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, 2018, pp. 734-738, doi: 

10.1109/ISBI.2018.8363678) 
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5.2. Related Works  

Anomaly detection, CT images from MR and image super-resolution are areas where 

mostly GAN is commonly used by researchers in medical image processing. 

Conditional GANs allow to evaluate desired images by adding conditioning on class 

images and also labels. The discrepancy appears when it reaches hidden spaces, then 

learning these robust spaces are getting complicated. Another research based on GANs 

proposed for fluorescence microscopy (biological synthesis of images) provides details 

of generated realistic MR images by GANs and data augmentation or physician 

training.  

Our predictions about all label variables depend on how independently they are chosen 

from each other for any kind of network.  The use of conditional random fields (CFR) 

is a high-order smoothing technique in optimization of output label map with details in 

it. CRF is a best approach for spatial contiguity considering that post-processing for all 

label variables in output label maps needs reinforcement of spatial contiguity [79]. 

Although the application of gaussian kernel frequently defines pairwise potentials [80], 

the use of potentials is limited for CRF methods. Therefore, instead of focusing CRFs 

we may propose Generative Adversarial Nets (GAN) framework to detect 

inconsistencies and correct these higher-orders between segmentation net with maps 

and group truth segmentation maps [40].   

In addition to adversarial training, generating probability maps with five-classification 

is not stable as much as a segmentation image this is generated as a result of the training 

of segmentation network. We should consider multi-angle GAN framework according 

to image-to-image translation and a GAN is fundamental element for generator as it is 

taken as segmentation network in Luc’s method. Actually, the probability maps 

optimized by Luc’s model also combines generative and discriminative models in a 

direct way. Another model suggests to separate segmentation network and the 

generator in a practice to generate an image based on feature space where segmentation 

network and generator share same feature space. Then, we combine the probability 

maps and generated image that is a single image with five kinds of pixel values 

(0,0.25,0.5,0.75,1). No matter how the discriminator analyzes the differences between 

ground truth and generative image, optimization of segmentation results leads to a poor 

training as it is used in an indirect way. Multi-patch discriminator is most efficient 

method to train this problem in order to reinforce spatial contiguity instead of proposing 

GAN segmentation method.  
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Figure 5-2 .  The architecture of framework which include four parts of network: Feature Extraction, 

Segmentation Part, Generative Part and finally Result Fusion. 

 (H. Chen, Z. Qin, Y. Ding and T. Lan, "Brain Tumor Segmentation with Generative Adversarial Nets," 2019 

2nd International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 2019, pp. 

301-305, doi: 10.1109/ICAIBD.2019.8836968) 

 

A. Feature Extraction  

Feature extraction of original images begins with classified pixels and generated 

images.  The construction simply demonstrates top-down pathway as similar to 

generative networks in DCGAN and bottom-up pathway combination in terms of U-

net and FPN [41]. Firstly, it might be better to figure out that the top-down pathway is 

DeconvNet in all layers with a stride of 2. While, the bottom-up pathway as a ConvNet 

in all layers with conv-stride of 2 targets to extract hierarchical features in which the 

features are common for four morphological brain images. The goal of top-down 

pathway is to generate fine-grained features from coarse grained ones by taking input 

which is the output of bottom-up pathway. In fact, lateral connection combines those 

features (fine-grained features) obtained following procedures. In fact, there is no need 

to consider lateral connection in case of 1x1 convolution and to check periodically 

pyramidal feature as FPN uses.  

There are three commonly proposed solutions to determine whether discriminating 

each image with the class of each pixel and segmentation images generated have same 

feature representation. The first solution is to choose one pathway for classification and 

another pathway for generating images and they are called as two parallel pathways. 
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The second solution is to make 1x1 convolution follow lateral connection as a matter 

of fact that two mentioned tasks share different DeconvNets, but same ConvNets. 

The final solution is to test a hypothesis of knowing same feature space for both five-

classification result and generative segmentation image. This hypothesis shows a 

positive relationship between Generative Part and Segmentation Part in same feature 

extraction layers optimized by GAN which are basically optimal for classification.  

B. Segmentation Part  

This part is providing primary results in a way to analyze optimization method for 

classification results. The segmentation consists of the probability map which 

demonstrates the output of segmentation and there are two 1x1 convolution layer as 

cross-channel parametric polling showing feature map polling mainly used for 

decreasing feature maps and dimensionality. Since five-classification task shown as 

brain tumor segmentation and SoftMax classification in the segmentation part are 

introduced with respect to the function which is basically cross-entroy loss as 

following:  

𝐿𝑠𝑝 =  ∑𝑖∑𝑗 ∣ {𝑦𝑖𝑗 = 𝑗} log 𝑃𝑖𝑗 

In this function j and n are labels and number of training data, respectively.  

C. Generative Adversarial Part 

Although GAN high-level optimization is key factor to acquire primary results, it has 

two stages representing generative and discriminative stages where they optimize the 

primary results not by generating probability maps directly, but indirectly targeting 

segmentation images.  

In this paper, we focus the generator G without second convolution layer that has same 

structure as segmentation part has accordingly. Additionally, we extract features from 

Feature Extraction Part in order to generate 240x240 segmentation image. So, 

patchGAN is a structural technique which can penalize and restrict structure at scale of 

local image patches. To check whether each patch has real or fake segmentation image, 

estimated result provided by discriminator D in patchGAN is potentially required. 

Choosing randomized fixed size patches and their average responses are best 

fulfillment of patchGAN. For simplicity, we fix output of discriminator and take 

average of dense responses in a fact that the discriminator consists of different 

convolutional layers connected with segmentation image and also four-modal images. 

After several periods of observing training of generator, we analyzed a main difference 

between ground truth and generative image is not practically conducive and the best 

(15) 
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alternative to better solve this problem is to apply multiple-angle patchGAN. The 

discriminator here is representing multi channels apart from the discriminator with 

single channel output. Furthermore, the discriminator in multi-angle patchGAN can be 

explain with an example of people having no only one perspective, but multiple 

perspectives of looking at object. However, for convenience, we make an argument 

about difference between ground truth and segmentation images as we mention before 

and indeed, they both are treated by discriminator. Therefore, we provide the result of 

the output of D by taking all average responses. The function of generative adversarial 

loss is as following: 

𝐿𝐺𝐴𝑁(𝐷; 𝐺) = 𝐸[log 𝐷(𝑦|𝑥)] + 𝐸[log(1 − 𝐷(𝑥))] 

 Y is shown as the probability distribution of ground truth  

 X is shown as the joint probability distribution of four-modal images 

  

Then we apply L1 distance variable to generate better training and image of network: 

𝐿𝐿1(𝐺) = 𝐸[||𝑦 − 𝐷(𝑥)||] 

Generative adversarial loss function changes to:  

𝐿𝐺𝐴𝑁 = 𝐿𝐺𝐴𝑁(𝐷; 𝐺) +∣1 𝐿𝐿1(𝐺) 

 

D. Result Fusion 

Even if there are a few differences between generative image and primary result, both 

results use 1x1 convolutional layer to be jointly significant and final result of 

segmentation is the output generated. The final function is below shown as sum of 

following determinants; cross-entropy loss function Lrf is a loss function, similarly Lsp 

and loss function of generative adversarial part. 

𝐿 = 𝐿𝐺𝐴𝑁 +∣2 𝐿𝑠𝑝 +∣3 𝐿𝑟𝑓 

 

5.3. Experiments  

In this part, we are going to evaluate the deep details of network and segmentation 

result by using potential network training details and parameters.  

A. Database  

(16) 

(17) 

(18) 

(19) 



  

45 | P a g e  
  

BRATS 2020 dataset consists of two sub-datasets including the Testing Set and the 

Training Set. There are four conceptual modalities in BRATS 2020 in each brain and 

different abnormal and healthy tissues are described by following each of modalities 

[42]:  

1. T1-weighted (T1) – There is the lowest intensity value in which CSF as an 

example of Fluids have same outcomes. Gray matter has less intensities 

compared to white matter shown in Figure 5-3. 

2. T2-weighted (T2) – it is another modality which is common MR imaging 

sequence and part of MR imaging protocols with T1. It has intermediate intensity 

of grey matter, less intensity of matter and high intensity values of fluids.   

3. T1 with gadolinium contrast (T1c) – this MR modality is especially used to 

highlight breakdowns in inflammation, tumors and even abscesses and vascular 

structure in these blood-brain barriers is common for this type of modality. The 

effect of T1 signal increases, while T1 relaxation time decreases.  

4. T2 - FLAIR – This image are inverse recovery sequences where they are 

proposed to obtain bright abnormalities and attenuated dark CSF. The sensitive 

sequences differentiate an abnormality and CRF during pathology. 

  

     T2-Flair                           T1-weighted                 T1- contract gadolinium         T2-weighted 

 

Figure 5-3. Four different MR modalities. 

(Puch, Santi. (2018). Multimodal brain tumor segmentation in Magnetic Resonance Images with Deep 

Architectures. 10.13140/RG.2.2.35829.63208) 

 

B. Experiments Setup 

Table 5-1 and Table 5-2 below represent hyper-parameters and batch normalization 

is a base method applied [86]. Alternatively output and input layers are not included 

in this analysis for all layers. As it is studied with activation function mainly LRelu, 
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normal distribution for all variables is N(0,0.002). We experience optimization of 

network at training time considering λ2 = λ3 = 1 and λ1 = 60 with 0:9 momentum 

used as Adam Solver [90] and Minibatch SGD. The epoch is 10, learning rate is 

0.0004 and batch size is 5. Randomly selected data follows step by step techniques 

to train the generator. First is one descent on D and second is twice step on G. 

 

Table 5-1. ARCHITECTURES OF THE GENERATION AND CLASSIFICATION NETWORK. 

layer Type 
Filter 

size 
Stride #filters 

1 conv 4*4 2*2 64 

2-3 conv 4*4 2*2 128 

4-7 conv 4*4 2*2 256 

8 conv 4*4 2*2 512 

9-12 deconv 4*4 2*2 256 

13-

14 

deconv 4*4 2*2 128 

15 deconv 4*4 2*2 64 

16 deconv 4*4 2*2 32 

17-1 conv 4*4 1*1 64 

17-2 conv 4*4 1*1 64 

18-1 conv 4*4 1*1 5 

18-2 conv 4*4 1*1 1 

19 conv 4*4 1*1 64 

20 conv 4*4 1*1 5 

 

Table 5-2. ARCHITECTURES OF THE DISCRIMINATION NETWORK. 

layer Type 
Filter 

size 
Stride #filters 

1 conv 3*3 2*2 64 

2 conv 3*3 2*2 128 

3 conv 3*3 2*2 128 

4 conv 3*3 2*2 128 
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5 conv 3*3 1*1 32 

 

C. Evaluation 

In order to train segmentation results and performance, Dice Similarity Coefficient 

(DSC) is a significant method to be defined and the function is: 

DSC = 2×TP/(2×TP+FP+FN) 

where TP denotes the number of true positive segmentation, FP is false positive 

segmentation and FN is false negative segmentation. Tumor core, enhancing tumor and 

complete tumor with (labels 1+3+4), (labels 4), (labels 1+2+3+4), respectively are 

basic three tumor sub-compartments. We consider five-classification task in 

segmentation result where background and normal tissue with number 0, necrosis with 

1, edema with 2 and non-enhancing tumor with 3 and 4 are represented at evaluation 

time. 

 

5.4. Results and Discussions 

 

A) Several methods on HGG 

In this section, we practice HGG cases for testing and training in training set. Clearly, 

220 HGG cases are selected based on training set in which 30 cases are used for testing 

and 190 cases are followed by training. Due to high fluctuation in the results, random 

30 HGG cases in 220 cases are not mostly recommended as the segmentation among 

220 cases highly changes cosidering their difficulties. We commonly use the method 

of FCN+CRF and OriGan as our framework in the analysis. However, OriGan in 

practice proposed by Luc is not stable during training procedures and it does not have 

precise and good results after our observation (Table 5-3). Obviously, Complete tumor 

is better obtained in our method without GAN, but we get a bad result for segmentation 

of Tumor core. Ideally, GAN experiences low performance in Enhancing and Tumor 

core segmentation, but high performance in Complete tumor. 

 

Table 5-3.  Several methods on the HGG data 
 

Method Complete 

tumor 

Tumor 

core 

Enhancing 

tumor 

FCN+CRF 0.8306 0.7553 0.7806 

(20) 
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FCN 0.800 0.801 0.770 

SegNet+OriGAN 0.7509 0.5876 0.5652 

SegNet 0.8744 0.7732 0.8587 

Our method 0.8838 0.7465 0.8451 

 

 

B) Several methods on Testing Set 

The result for patchGAN compared to the method without GAN is a complete 

evaluation method to get an optimal performance shown in Table 5-4. According to 

testing set BRATS 2020, 274 patient cases are included in training set and 110 patient 

cases are also added to testing set as our general network evaluation. The comparison 

among proposed methods is clearly demonstrated in Table 5-4. Havaei focuses patch-

based segmentation analysis by using multi-scale CNN. On the other hand, Pereira [43] 

proposed small filter kernel similarly for patch-based segmentation. Another approach 

by Kamnitsas was presented for patch-based segmentation by using 3D multi-scale 

CNN. He also optimized the probability maps named SoftMax by proposing 3D CRF. 

The results show a better performance for both Havaei and Pereira’s method in terms 

of tumor core and complete tumor. Also the result of our method is better than the 

methods mentioned and even better than Kamnitsas’s method. Compared to 3D 

segmentation our method is designed for 2D slices segmentation. For this reason, 

processing a patient brain varies among the methods. For instance, Havaei’s method 

takes about 25s to 3 min and Kamnitsas’ method takes 2 min to 3 min, but our method 

takes 10.8s which has better time efficiency for processing among all methods.  

 

Table 5-4. Several methods on the testing set.  

Method Complete tumor Tumor core Enhancing tumor 

Havaei 0.79 0.58 0.69 

Pereira 0.78 0.65 0.75 

Kamnitsas 0.85 0.67 0.63 

Our method 0.82 0.66 0.58 

SegNet+CREF 0.81 0.64 0.60 



  

49 | P a g e  
  

SegNet+patchGAN 0.81 0.60 0.59 

SegNet 0.79 0.63 0.51 
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CHAPTER 6 

Data implementation for GAN-based MR brain images.   

6.1. Introduction  

Generative Adversarial Networks (GAN) presents realistic and promising results in 

analysis of image generation and deals with training accompanying mode collapse and 

oscillations that is hard to achieve without a well-defined objective function [92]. 

Nowadays, GAN is an optimal solution in an image super-resolution for most of 

medical imaging researchers. It is also more practical to estimate CT images from MR 

image accordingly. To produce desired images, conditional GANs supports class labels 

and images by adding conditioning. Moreover, data augmentation and physician 

training are major approaches focused by GAN-based MR image generation for brain 

tumor segmentation.      

The requirement of few tests is to provide values of hyperparameters before final model 

evaluation. The parameters include number of filters, fully connect layer size, and filter 

size [96]. In addition to best values for parameters, dropout rate, or learning rate, 

optimizer after pre-training the network are more likely to change. The choices of 

values depend on few tests conducted on training data. According to a 5-fold cross-

validation split introduced by Cheng et al., two major issues of random splitting data 

were resolved using this split for model evaluation. First, the test set does not contain 

two scans of same patient. Second, the same amount of date is presented in the test data 

per each class and the results do not illustrate the class imbalance of dataset. Despite 

the fact that 5-fold validation presents more reliable use of the classification, cross-

validation or random train-test split are used in most of the works. Moreover, both 

introduced and random 5-fold cross-validation are proposed in order to make the results 

significantly comparable and reasonable. 

We will also achieve synthetic brain MR images by using GANs to generate realistic 

brain images. Whereas Multimodal Brain Tumor Image Segmentation Benchmark 

(BRATS) produces significantly satisfactory resolution and data for GANs to explore 

a dataset of multi-sequence MR images. Therefore, T1-weighted (T1), T2-weighted 

(T2), contrast enhanced T1-weighted (T1c), Fluid Attenuation Inversion Recovery 

(FLAIR) sequences are resampled to 240 X 240 X 155 image dimension and 1mm X 

1mm X mm isotropic resolution. High-Grade Glioma (HGG) and Low-Grade Glioma 

(LGG) support the sequences among different sectional planes to generate the whole 
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brain anatomy. This procedure allows us to show visual consistency among various 

brain lobes. In Figure 6-1, real MR images specifies training of the GANs by using 

resized sagittal multi-sequence MRI scans with HGG for patients. 

In this Chapter, we compare two GAN-based approaches to avoid mode collapse 

through well-suited GAN between Deep Convolutional GAN (DCGAN) and 

Wasserstein GAN (WGAN) for realistic MR image generation with high resolution. In 

the second part, we will also study GAN pre-training based MRI images through 

statistically testing both random and introduced splits based classification after GAN-

pre training. These tests will explain highest accuracy of different types of brain tumors 

in order to reach best tumor segmentation results.  

 

Figure 6-1. Real MR images for training the GANs 

 

6.2. Pre-processing approach 

We practiced #80 to #149 slices to eliminate final slices among all 240 slices in order 

to obtain sufficient data as a part of the training. 64 x 64 (stable training for DCGAN 

architecture results) and 128 x 128 (a high-resolution) are the sizes of images for 

effective GAN training from 240 x 155 [46]. In Figure 6-1, GAN training based real 

MR images with patients of HGG shows 15,400 images for each sequence in terms of 

220 patients x 70 slices, but 61,600 in total.  

6.3. GAN-based MR Image Generation  

Six types of images are generated by WGAN and DCGAN; 

T1 sequence with 128 x 128 size from the real T1 

T2 sequence with 128 x 128 size from the real T2 
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T1c sequence with 128 x 128 size from the real T1c 

FLAIR sequence with 128 x 128 size from the real FLAIR 

Concat sequence with 128 x 128 size from all the MRI sequences (the real T1, T2, T1c, 

FLAIR) 

Concat sequence with 64 x 64 size from all the MRI sequences (the real T1, T2, T1c, 

FLAIR) 

Concat sequence contains the features of all four sequences that refers to alternative 

data augmentation. In addition to Concant sequence, 64 x 64 images compare the 

performance of generation by considering image size.  

WGAN: It achieves stable learning through replacing less mode collapse to the Earth 

Mover (EM) distance and an alternative to traditional GAN training. In equation 21, ∏ 

(pg, pr) shows respective marginals pg and pr  for a set of joint distributions p, but p is 

a determinant of transporting one distribution to another one in terms of amount of 

mass.  

𝑊(𝑝𝑔 , 𝑝𝑟) = inf
𝑝∈𝛱(𝑝𝑔,𝑝𝑟)

𝐸(𝑥,𝑥′)~𝑝‖𝑥 − 𝑥′‖,            

 

Implementation details of WGAN: We implement learning rate of 5.0 x 10^(-5) with 

Root Mean Square Propagation (RMSprop) optimizer, as well as a batch size of 64.  

DCGAN: This generative model achieves unsupervised learning through 

convolutional architecture being as a standard GAN. It uses a combination of batch-

normalization and non-linearity as a part of up-convolutions. Consider pdata is 

generating distribution and data space on input noise variable for generator G (z, θg) is 

pz (z). In this term, G with parameters θg is a neural network. In addition, D (x, θd) 

with parameters θd uses synthetic data and real data. X comes from the real data and D 

(x, θd) is a neural network. D is a discriminator that maximizes samples from G and 

probability of classifying training examples. However, G is a generator that minimizes 

the likelihood. In equation 22, value function V (G, D) is formulated for two-player 

game as a minimax. This formulation is the minimization of Jensen-Shannon (JS) that 

is divergent between distribution pg and distribution pdata due to derivation of pz and 

G.  

(21) 
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min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))]      

Implementation details of DCGAN: We implement learning rate of 2.0 x 10^(-4) 

with Adam optimizer, as well as a batch size of 64. A half channel size for DCGAN 

training, 4 X 4 sized filters, discriminator ELU and DCGAN architecture in the 

generator with no tanh are used to better analyze the satisfactory results. 

6.4. GAN generated MR Images.  

This part shows generated synthetic brain MR images obtained by WGAN and 

DCGAN. The training during classification of random selection of 50 real/50 synthetic 

MR images took 2 hours to define 128 x 128 and 64 x 64 sequences separately. The 

results show how to identify the quantitative evaluation of the realism and instances of 

synthetic images. Moreover, the sequences are demonstrated on learning realistic 

features that include Nvidia GeForce GTX 980 GPU.  

WGAN: Synthetic MR images proposed by WGAN in Figure 6-2 shows successful 

appearance of the tumors and the sequence-specific texture in realistic original MR 

brain images. Whereas unexpected intensity patterns suggest unrealistic artifacts from 

128 x 128 Concat images compared to 64 x 64 Concat images which are mostly 

experienced around the boundaries of the brain.  

                                                                                                                                   

 

Figure 6-2. Synthetic MR images based on WGAN. 

 

DCGAN: Synthetic MR images proposed by DCGAN in Figure 6-3 shows unstable 

value function and generates hyper-intense images similar to T1 for mode collapse of 

(22) 
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64 x 64 Concat images. In this generative model, all four sequences are used for 

combination of patterns and appearances via Concat images. 

  

Figure 6-3. Synthetic MR images based on DCGAN. 

 

Table 6-1.  The physician classified real and synthetic images accordingly according to Visual Turing Test 

(VTT). 50% in the test indicates excellent performance in accuracy as it is a chance = 50%.  

 Accuracy 

(%) 

Real Selected 

as Real 

Real as 

Synthetic 

Synthetic as 

Real 

Synthetic as 

Synthetic 

T1 (WGAN, 

128x128) 

64 20 30 6 44 

T1c (WGAN, 
128x128) 

55 13 37 8 42 

T2 (WGAN, 

128x128) 

58 19 31 11 39 

FLAIR 

(WGAN, 

128x128) 

62 16 34 4 46 

Concat 

(WGAN, 

128x128) 

66 31 19 15 35 

Concat 
(WGAN, 

128x128) 

53 18 32 15 35 

T1 (DCGAN, 
128x128) 

70 26 24 6 44 

T1c (DCGAN, 

128x128) 

71 24 26 3 47 
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6.5. GAN pre-training based on MRI images  

Table 6-1 and 6-2 show different learning rates and different optimizers based on these 

tests. The dropout rate with 0.5 and learning rate with 0.001 are assigned to the 

optimizer Adam algorithm as described in Table 6-2 and 6-1, respectively. Table 6-3 

demonstrates the results on introduced split based on classification after GAN-pre 

training while Table 6-4 introduces the results on random split based classification after 

GAN-pre training. Furthermore, the results without GAN pre-training is illustrated in 

Table 6-5. In Figure 6-4, it is obvious that GAN pre-training proposes model accuracy 

on learning pace. An increase in epoch leads to an increase in accuracy rate over time 

depending on the model with or without GAN. In Table 6-6, summary of results on the 

main dataset suggests various methods, approximate number of images used in those 

methods, evaluation methods, manual segmentation, and accuracy rates according to 

reported outcomes on given methods. In fact, the method proposed by Phaye et al., and 

GAN + ConvNet (random split) represent the highest accuracy rates among other 

methods with 95.03% and 95.6%, respectively. The comparisons of methods in Table 

6-6 reveals that Convolutional Neural Network (CNN) without manual segmentation 

shows overall better performance with high accuracy rate. Whereas CNN pre-training 

as a GAN discriminator is highly applicable in deep learning depending on limited 

number of data. 

 

 

 

T2 (DCGAN, 

128x128) 

64 22 28 8 42 

FLAIR 

(DCGAN, 

128x128) 

54 12 38 8 42 

Concat 

(DCGAN, 

128x128) 

77 34 16 7 43 

Concat 

(DCGAN, 

128x128) 

54 13 37 9 41 
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6.5.1. Tables 

Table 6-1: The difference between various optimizers and learning rates.  

Optimizer Learning rate 

 1 0.1 0.01 0.001 0.0001 

SGD [47] 30.83 47.15 70.80 75.53 69.00 

RMSprop [47] 30.83 30.83 47.15 93.64 89.56 

Adam [48] 47.15 47.15 47.15 95.27 91.35 

Adadelta [49] 94.45 90.70 71.45 48.12 39.15 

Adagrad [50] 47.15 47.15 92.82 87.28 68.52 

 

Table 6-2: The difference between different dropout rates.  

Dropout rate 0.1 0.3 0.5 0.7 0.9 

Accuracy 94.78 95.27 95.27 94.12 47.15 

 

Table 6-3: The results for GAN pre-train on introduced split.  

Class Accuracy Sensitivity Specificity Precision F1-score 

Glioma 94.95 94.92 94.95 94.16 94.53 

Meningioma 93.71 84.82 96.41 87.64 86.12 

Pituitary tumor 97.35 96.29 97.80 95.05 95.63 

Total 93.01 92.01 96.39 92.28 92.10 

 

Table 6-4: The results for GAN pre-train on random split.  

Class Accuracy Sensitivity Specificity Precision F1-score 

Glioma 96.60 96.83 96.38 95.89 96.35 

Meningioma 96.01 89.98 97.79 92.43 91.19 

Pituitary tumor 98.60 97.93 98.89 97.54 97.73 

Total 95.60 94.91 97.69 95.29 95.10 

 

Table 6-5: The results without GAN pre-train on introduced split. 

Class Accuracy Sensitivity Specificity Precision F1-score 

Glioma 93.84 94.96 92.77 91.93 93.42 

Meningioma 92.82 79.86 96.76 87.96 83.63 

Pituitary tumor 96.73 95.67 97.21 93.61 94.58 

Total 91.70 90.16 95.58 91.17 90.54 
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Figure 6-4. Model accuracy of GAN pre-training effect on learning pace.  

 

Table 6-6. Comparison of our method with reported results on the main dataset.  

Method Number of images 

used 

Best accuracy Manual 

segmentation 

Evaluation 

method 

Paul et al. ConvNet, 64 × 

64 

989 (axial only) 84.52 No 5-Fold 

Paul et al. ConvNet, 256 

× 256 

989 (axial only) 90.26 No 5-Fold 

Phaye et al. [51] Diverse 

CapsNet 

3064 95.03 Not mentioned 10-Fold 

Tahir et al. [52] SVM + 
Preprocessing 

3064 86 No 10-Fold 

Afshar et al. CapsNet 3064 86.56 using 

segmentation 
72.13 on raw 

images 

Both Not mentioned 

Ismael and Abdel-Qader 

[53] Statistical features 

3064 91.9 Yes Train-validation 

Afshar et al. [54] CapsNet 3064 90.89 Only bounding 
box 

Not mentioned 
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6.6. Results and Discussions  

6.6.1. Visual Turing Test (VTT) 

Even though the physician felt odd from artificial sequence and classified real and 

synthetic images provided by Visual Turing Test (VTT), Concat images compared to 

T1, T2, T1c and FLAIR images are evaluated uniformly. The images were more 

challenging due to less detailed appearances in lower resolution and 64 X 64 Concat 

images by DCGAN that was highly hyper intense. However, WGAN generates good 

generalization for multi-sequence brain MR images to clinical applications. DCGAN 

does not provide suitable results due to mode collapse and inferior realism. WGAN 

only fails in FLAIR (128 x 128) as it has 62% accuracy rate compared to 54% accuracy 

rate for DCGAN FLAIR (128 x 128).  

6.6.2. GAN pre-training results 

Pre-training and fine-tuning are major two phases of learning algorithm in our method. 

Pre-training method solves size problem of low dataset while and it can use any MRI 

dataset. Based on our results, the overall performance was optimistic and prevailing in 

terms of proposed pre-training method. A discriminator in GAN was considered as the 

pre-training for deep network. Glioma tumor (1426 images), Meningioma tumor (708 

images), and Pituitary (920 images) are three brain tumor types that are components of 

final classification task as T1 type in MRI scans. 93.01% accuracy rate for the 

Pashaei et al. [55] KE-

CNN 

3064 93.68 Not mentioned Train-validation 

Anaraki et al. [56] GA+ 

CNN 

989 (axial only) 94.2 No Train-validation 

Abiwinanda et al. [57] 
Different ConvNets 

2100 (700 from 
each tumor type) 

84.19 No Train-validation 

Zhou et al. [58] LSTM 

+Autoencoder 

989 (axial only) 92.13 No Train-validation 

test 

Cheng et al. Bag of words 3064 91.28 Yes Introduced split 

Ours, GAN + ConvNet 

(introduced split) 

3064 93.01 No Introduced split 

Ours, GAN + ConvNet 

(random split) 

3064 95.6 No 5-Fold 
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introduced split and 95.6% accuracy rate for a random split were achieved compared 

to previous methods and works proposed by researchers. According to generative 

adversarial nets (GAN) limitations, 64 X 64 was the network input size. This process 

is not using other architectures except GAN as the discriminator due to larger input 

size. On the other hand, a few works illustrated effective results in creating 256 X 256 

images [59]. Such methods can be analyzed through deep CNNs such as ResNet-152 

or VGG-16.
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CHAPTER 7 

7.1. Conclusion  

The preliminary results show unsuitable implementation of DCGAN for realistic multi-

sequence brain images in terms of intensity due to mode collapse and inferior realism. 

In contract, WGAN has an ability to better generalize and generate 128 X 128 realistic 

multi-sequence MR images for brain segmentation by the fact that an expert physician 

could not distinguish the images from real accurately.  

The study suggests that more objective computational GAN-based evaluation methods 

such as Classifier Two-Sample Tests (C2ST) [60] needs to be followed for assessing 

two samples that are drawn from same distribution. In future, transverse and coronal 

images will be common demanding applications to analyze more detailed segmentation 

processes. It is clear that images that are more realistic do not always mean better data 

augmentation meaning that we generate Concat images and high-resolution images in 

a way to find suitable image sequences. According to physician training, adding 

conditioning to generate desired realistic tumors requires the latent space of GANs.  

To sum up, we examined the effect of end-to-end network architecture for brain tumor 

segmentation proposed by GAN. The end-to-end framework speeds up the image 

processing and solve the issue for repeated calculations. Although the generator and 

the segmentation net present same feature extraction part, they are different in our 

method by the fact that the generator is not segmentation net. Comparing with our 

method analyzed, the generator and generative adversarial training generate and 

optimize SoftMax probability maps, respectively and these traditional segmentation 

methods by GAN are difficult in the network to be trained. Furthermore, the generator 

makes single segmentation images generated and those images achieve final 

segmentation result after joining SoftMax probability maps. The concept of multiangle 

patchGAN is introduced to raise the issue for discriminator where the problem can be 

detected between the generative image and the ground truth. Finally, we practiced 

CNN-based segmentation models and evaluated the network in BRATS 2020. As the 

results vary across proposed methods, we achieved 10.8s to process a single patient 

brain. Unlike the result with average DSC of 0.82, 25s to 3 min required to achieve the 

processing same patient brain. Overall, our analysis for GAN-based MR images 

uniformly highlights suitable image resolutions and realistic tumors by medical 

applications.  Future studies on GAN-based realistic MR image applications for brain 
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tumor will support prognostic and diagnostic medical contributions to reach 

satisfactory results.  
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Glossary 

 

GAN Generative adversarial network 

DA Diagnostic analytics 

MRI Magnetic Resonance Imaging 

CNN Convolutional neural networks 

FCM  Fuzzy C-means 

MRF  Markov Random Fields 

SVM Support Vector Machines 

MR Magnetic Resonance 

FKSRG Fuzzy Knowledge-based Seeded Region Growing 

FGFCM Fast Generalized FCM 

BCFCM Bias-Corrected FCM 

GAs Genetic Algorithm 

PSO Particle Swarm Optimization 

EM Expectation Maximization 

CRF Conditional Random Fields 

NC Necrotic Core 

E Edema 

AC Active Cells 

SHE Spatial accuracy-weighted Hidden Markov random field and 
Expectation maximization 

HMRF Hidden MRF 

GVF Gradient Vector Flow 

GDM Geometric Deformable Models 

CFF Charged Fluid Framework 

 CFM Charged Fluid Model 

DSC Dice Similarity Coefficient 

MI Mutual Information 

DSC Dice Similarity Coefficient 

ROC Receiver Operating Characteristic curve 

CT Computed Tomography 

PET Position Emission Tomography 



  

63 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Brain Tumor Segmentation by Generative Adversarial Network (GAN)
	Acknowledgements
	Abstract
	CHAPTER 1
	Introduction
	1.1. Brain Tumor Segmentation Methods
	1.2. Literature Review
	1.3. The problem of the study
	1.4. Methodology
	1.5. Database

	CHAPTER 2
	Classification and clustering methods
	2.1. FCM algorithms
	2.2. Atlas-based algorithms
	2.3. MRF algorithms
	2.4. SVM algorithms

	CHAPTER 3
	Deformable model methods
	3.1.  Parametric deformable models
	3.2. Geometric deformable models

	CHAPTER 4
	Trilinear Interpolation Algorithm Techniques for 3D MRI Brain Image.
	4.1. Image pre-processing
	4.2. Morphological Operation
	4.3. Image Segmentation using Otsu Method
	4.4. Interpolation Algorithm
	4.5. Results and Discussions

	CHAPTER 5
	Generative Adversarial Nets (GAN) for Brain Tumor Segmentation
	5.1. Introduction
	5.2. Related Works
	5.3. Experiments
	5.4. Results and Discussions

	CHAPTER 6
	Data implementation for GAN-based MR brain images.
	6.1. Introduction
	6.2. Pre-processing approach
	6.3. GAN-based MR Image Generation
	6.4. GAN generated MR Images.
	6.5.1. Tables
	6.6.1. Visual Turing Test (VTT)

	6.6.2. GAN pre-training results
	CHAPTER 7
	7.1. Conclusion

	Glossary

