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Abstract 

The loss of genetic diversity of crops is one of the global problems of agriculture 

nowadays. Different methods are currently used for evaluation of genetic 

polymorphism in plants, which include various types of markers (morphological, 

molecular etc.).  Assessment of genetic diversity based on electrophoretic profiles of 

seed storage proteins is still considered one of the most precise, simple and 

economical methods in the marker-assisted selection. The genetic diversity of 

gliadins has been studied among 50 genotypes of T. durum, using acid 

polyacrylamide-gel electrophoresis (Acid-PAGE). In total, 33 bands and 50 gliadin 

patterns were identified. Twelve different bands and 40 patterns were found in ω-

gliadins, 8 polymorphic bands and 31 patterns were determined in γ-gliadins, along 

with 5 bands and 10 different patterns in β-gliadins, and 8 bands in combination 

resulted in 42 different patterns in the α-gliadin zone. Fifty patterns were found for 

each of the Gli-1 (γ/ω region) and Gli-2 (α/β region) loci. The genetic diversity index 

(H) was higher for α-gliadins (0.972), followed by ω and γ-gliadins (0.963 and 0.956, 

respectively), and the lowest value was detected in β-gliadin patterns (0.825). Cluster 

analysis based on Jaccard coefficient of similarity divided the analyzed collection 

into four clusters. The data obtained from electrophoretic analysis of gliadins is 

highly useful for identification of genotypes and selection of genetically distant 

varieties for breeding. 
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Introduction 

The study of plant genetic diversity (PGD) is now being considered an important 

area due to global population explosion with high level of urbanization and decrease 

of cultivable land area, which put food security in the world under risk. PGD can be 

assessed and stored in the form of plant genetic resources (PGR) such as gene bank, 

DNA library etc., which preserve genetic material for long period (Narain, 2000). 

Genetic erosion, or loss of genetic diversity, in crops caused by the constant use of 

the same parental genotypes for breeding, is one of the global problems of agriculture 

nowadays. 

Plant genetic diversity can be evaluated with the use of different morphological and 

molecular markers (Mondini et al., 2009). In wheat, seed storage proteins (gliadins 

and glutenins) serve as highly efficient markers, because of their codominant 

inheritance, low-cost methods of identification, stability and independence of the 

growth conditions (Ruiz & Carrillo, 1993).  

Gliadins, alcohol-soluble seed storage proteins, are characterized by high degree of 

intervarietal polymorphism and can be studied by a standard method of acid 

electrophoresis (A-PAGE). According to the differences in mobility and intensity of 

staining, gliadin components can be separated by gel electrophoresis into four 

subfractions: α (the fastest), β, γ, and ω-gliadins (the slowest). However, some 

genetic studies suggested that α- and β-gliadins are very similar and only three types 

of gliadins (α/β, γ and ω) are classified. Due to high polymorphism of gliadins a 

unique electrophoretic pattern can be observed for almost every cultivar (Sozinov, 

1985; Sozinov & Pperelya, 1979). Within some heterogeneous cultivars two or more 

biotypes can be determined with different gliadin alleles in the same locus. The 

gliadin pattern does not depend on environmental factors and serves as a specific 

characteristic of a particular cultivar (Lee & Ronalds, 1967). 

Each gliadin-coding locus consists of several tightly linked genes which are always 

inherited together as a single Mendelian trait. A group of gliadin polypeptides 

encoded by one locus is called a block of gliadin components (Sozinov, 1985; 

Sozinov & Pperelya, 1979). Gliadin-coding loci are located on the short arms of 

chromosomes of homoeological groups 1 (loci Gli-A1, Gli-B1, Gli-A3, Gli-B3 or 

Gli-B5 in different studies) and 6 (loci Gli-A2, Gli-B2) (Payne et al., 1984; Ruiz and 

Carrillo, 1993). Gli-1 loci code for the majority of γ-gliadins and the ω-gliadins, 

while the α/β and some of the γ-gliadins are encoded by the Gli-2 loci. The number 

of gene copies varies from 25 to 150 copies for α/β -gliadin, from 16 to 39 for γ-

gliadin and from 15 to 18 for ω-gliadin (Payne et al., 1984; Ruiz & Carrillo, 1993). 
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The genetics of gliadins has been studied extensively in common (Metakovsky, 

1991; Metakovsky and Branlard, 1998; Metakovsky and Novoselskaya, 1991) and 

durum (Kudryavtsev et al., 1996; Melnikova et al., 2012; Melnikova et al., 2010; 

Sadigov, 2015) wheat. Gliadin alleles do not have uniform geographical distribution: 

certain alleles are rare or absent in some countries and are highly frequent in some 

others. It is possible that certain alleles have high frequencies because they provide 

adaptation to the particular agro-climatic conditions. In addition, the allele 

distribution might be a result of the historical process of national agricultures 

formation of or a consequence of particular breeding programs (Melnikova et al., 

2012). 

Multiple allelism at gliadin loci allows studying the relations between the allelic state 

of individual loci and economically important parameters of wheat. The presence of 

some particular gliadin alleles was shown to be correlated with some qualitative and 

quantitative characters of the cultivars (Sozinov, 1985). 

The present study was aimed to evaluate polymorphism in gliadin-coding loci and 

to determine genetic relationships among 50 durum wheat cultivars and varieties of 

Azerbaijan. 

 

Material and methods 

Fifty genotypes of durum wheat (Triticum durum Desf.) listed in Table 1 were 

provided by National Gene Bank of Azerbaijan Genetic Resources Institute, 

Azerbaijan National Academy of Sciences. 

Table 1. Samples of durum wheat used for analysis of gliadin electrophoretic profiles 

№ Sample Variety № Sample Variety 

G1 BB-FS-0151 v.leucurum  G26 BB-FS-01583 v.aegiptiacum 

G2 BB-FS-0159 v. mutico leucurum  G27 BB-FS-015128 v.boeuffi 

G3 BB-FS-01512 v.hordeiforme G28 BB-FS-015144 v.apulicum 

G4 BB-FS-01513 v.mutico 

hordeiforme 

G29 BB-FS-015146 v.coerulescens 

G5 BB-FS-01516 v.mutico 

hordeiforme 

G30 BB-FS-015133 v.coerulescens 

G6 BB-FS-01519 v.murciense G31 Ag bugda  v.affine 

G7 BB-FS-01520 v.murciense G32 Sari bugda  v. hordeiforme 

G8 BB-FS-01526 v.affine G33 Qaraqilchiq  v.provinciale 

G9 BB-FS-01532 v.affine G34 Qara bugda  v. leucomelan 

G10 BB-FS-01533 v.mutico affine G35 Bozakh  v.hordeiforme 
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G11 BB-FS-01535 v.erythromelan G36 Vuqar  v. leucurum 

G12 BB-FS-01539 v.melanopus G37 Arandeni  v.apulicum 

G13 BB-FS-01541 v.melanopus G38 Sherq  v.leucurum 

G14 BB-FS-01543 v.mutico melanopus G39 Khoranka  v.horanoleucuru

m 

G15 BB-FS-01546 v.coerulescens G40 Sevinj  v. hordeiforme 

G16 BB-FS-01551 v.niloticum G41 Jafari  v.horanoleucuru

m 

G17 BB-FS-01556 v.obscurum G42 Ag bugda 13  v.leucurum 

G18 BB-FS-01557 v.obscurum G43 Shirvan 3  v.affine 

G19 BB-FS-01569 v.alboprovinciale G44 Mugan  v.leucomelan 

G20 BB-FS-01573 v.alexandrinum G45 Mirbashir 50  v.leucurum 

G21 BB-FS-01574 v.reichenbachii G46 Qaraqilchıq 2  v.apulicum 

G22 BB-FS-01576 v.africanum G47 Tartar  v.provinciale 

G23 BB-FS-01579 v.lybicum G48 Barakatli 95  v.hordeiforme 

G24 BB-FS-01580 v.lybicum G49 Alinja 84  v.leucurum 

G25 BB-FS-01589 v.hordeiforme G50 Qarabag  v.provinciale 

 

The extraction of gliadins has been performed using A-PAGE method (Acid 

PolyAcrilamide Gel Electrophoresis) of Bushuk and Zillman with modifications 

proposed by Poperelya and colleagues (Bushuk & Zillman1978; Sozinov & 

Poperelya 1979). Two grains (from different spikes) of each genotype were tested. 

Gliadins were extracted from individually ground seeds by adding 250 µL of 70% 

ethanol. The gel solution contained 8% acrylamide, 0.4% methylenebisacrylamide, 

0.1% ascorbic acid and 0.001% Fe2(SO4)3 x 7H2O. PAGE was carried out in a 0.005 

M glycine acetate buffer solution (pH 3.1) for 4 h at a constant voltage of 450 V. 

Following electrophoresis, the gel was fixed with 60% trichloroacetic acid (TCA) 

for at least 20 min and stained overnight in a solution containing 0.04% Coomassie 

Brilliant Blue R-250 and 60% TCA. Langdon cultivar has been used as a standard 

for identification of the alleles of gliadin-coding loci.  

The presence and absence of each band in the electrophoregrams obtained was coded 

as "1" and "0", respectively. The genetic distance and similarity were computed with 

the PAST software (Hammer et al., 2001). Cluster analysis was conducted based on 

the Jaccard similarity coefficient. The genetic diversity for each gliadin pattern was 

calculated according to Nei formula (1973) as H =1 - ΣPi2, in which H is the genetic 

variation index, and Pi is the proportion of a particular pattern in each group 

of α, β, γ and ω-gliadins separately. The mean value of H was calculated for all the 

four groups of gliadins. 
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Results and discussion 

Figure 1 shows electrophoregrams of the genotypes obtained by Acid-PAGE 

method. Among the 50 genotypes analyzed, 33 different bands were detected 

assuming that the bands with the same relative mobility represent the same protein. 

These bands were grouped into patterns at each of the four zones of gel (α-, β-, γ- 

and ω-gliadins). Each zone (α, β, γ and ω) was considered as a single locus and 

different patterns as allelic variants. The patterns within each gliadin zone were 

identified by comparing banding patterns of each genotype with all the other 

genotypes. Table 2 presents the number of gliadin bands and patterns and the genetic 

diversity in gliadins for the genotypes analyzed.  

 

 

Figure 1. Electophoregrams of the analyzed Triticum durum genotypes. 
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A total of 12 different mobility bands and 40 gliadin patterns were identified in the 

ω-gliadin zone. Bands range from 2 to 10 in this zone. The highest frequency is 

characteristic of the bands ω-5 and ω-9 (58.82% and 66.67%, respectively). The 

lowest frequency of occurrence was observed in ω-2 band (3.92%) which has been 

determined only in two genotypes.  

1-2 – G1, 3-4 – G2, 5-6 – G3, 7 – Langdon, 8-9 – G4, 10-11 – G5, 12-13 – G6, 14-

15 – G7, 16-17 – G8, 18-19 – G9, 20-21 – G10, 22-23 – G11, 24 – Langdon, 25-26 

– G12, 27-28 – G13, 29-30 – G14, 31 – G15, 32 – G16, 33 – G17, 34 – G18, 35 – 

G19, 36 – G20, 37 – G21, 38 – G22, 39 – G23, 40 – G24, 41 – Langdon, 42 – G25, 

43 – G26, 44 – G27, 45 – G28, 46 – G29, 47 – G30, 48 – G31, 49 – G32, 50 – G33, 

51 – G34, 52 – G35, 53 – G36, 54 – G37, 55 – G38, 56 – G39, 57 – G40, 58 – 

Langdon, 59 – G41, 60 – G42, 61 – G43, 62 – G44, 63 – G45, 64 – G46, 65 – G47, 

66 – G48, 67 – G49, 68 – G50. 

Table 2. Number of bands, patterns, and genetic diversity indices for gliadins in the 

genotypes of T.durum 

Genotypes Number of bands 

ω γ  β  α  α + β +γ + ω  

1 7 6 3 6 22 

2 5 4 3 3 15 

3 2 6 4 4 16 

4 7 5 4 2 18 

5 5 6 3 4 18 

6 2 3 3 2 10 

7 4 3 4 3 14 

8 5 4 3 2 14 

9 5 2 3 2 12 

10 4 4 4 5 17 

11 2 2 5 3 12 

12 10 4 5 6 25 

13 7 4 5 5 21 

14 5 4 4 4 17 

15 6 5 5 5 21 

16 2 1 4 4 11 

17 2 3 5 2 12 

18 4 3 5 2 14 

19 3 4 3 4 14 

20 3 4 4 2 13 

21 2 4 3 5 14 

22 4 5 3 2 14 
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23 2 3 3 3 11 

24 2 3 3 4 12 

25 4 2 3 3 12 

26 5 3 3 4 15 

27 3 3 3 5 14 

28 3 2 2 3 10 

29 3 3 2 3 11 

30 4 3 3 3 13 

31 2 3 4 6 15 

32 2 3 4 2 11 

33 2 3 4 5 14 

34 2 2 4 3 11 

35 2 4 3 4 13 

36 5 3 2 2 12 

37 2 3 3 5 13 

38 5 2 3 3 13 

39 4 3 2 2 11 

40 4 2 2 2 10 

41 5 3 3 2 13 

42 2 3 3 2 10 

43 3 3 3 3 12 

44 7 3 4 4 18 

45 3 3 3 1 10 

46 6 3 4 2 15 

47 2 2 3 3 10 

48 2 3 2 2 9 

49 4 3 2 3 12 

50 2 2 4 2 10 

Number of bands 12 8 5 8 33 

Range of bands 2-10 1-6 2-5 1-6 9-25 

Number of patterns 40 31 10 42 50 

Genetic diversity indices 0.963 0.956 0.825 0.972 0.929 

 

In the γ-gliadin area, 8 bands were detected, the most frequent bands were γ-5 

(66.67%) and γ-6 (60.78%) which were present in 34 and 31 genotypes, respectively. 

γ-1 and γ-2 bands were observed only in 7.84% of the studied genotypes (four 

genotypes). In this zone 31 different γ-gliadin patterns were found, each γ-gliadin 

pattern includes from 1 to 6 bands.  

The frequency of individual patterns in the ω- and γ-zones varies from 1.9% to 9.8%. 

Here, most of the patterns are unique, i.e. specific for a particular genotype. Five 

bands were determined in the β-gliadin zone. Their combination forms 10 different 
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patterns, and each pattern contains from 2 to 5 bands. Patterns with three β-gliadin 

bands dominated being present in 24 out of the 50 genotypes. In the β-zone, band 4 

was detected in all genotypes, i.e. this band is monomorphic. The next most common 

bands are β-3 and β-5 (92.16% and 78.43%, respectively). 

In the α-zone, 8 bands were determined which form 42 patterns. The frequencies of 

the bands vary from 13.73 (band α-2) to 60.78% (band α-5). The genetic diversity 

index in four zones varies from 0.825 (β -zone) to 0.972 (α -zone). Based on the 

analysis of the patterns, it was found that the α-zone was characterized by the greatest 

genetic diversity (the Nei index is 0.972), where 35 of the 42 occurring patterns were 

unique. The frequency of individual patterns in the α-zone varies from 1.9% to 5.9%. 

The α-zone is followed by the ω- and γ-gliadin zones (Nei indices are 0.963 and 

0.956, respectively). The β-zone has the lowest polymorphism (the genetic diversity 

index is 0.825), where only one of 10 patterns is unique. The frequency of individual 

patterns in the β-zone changes from 1.9% to 33.3%. 

This variability was higher than that the indices of diversity found in durum wheat 

landraces from other countries: England, Italy and France with H = 0.676, 0.754 and 

0.714, respectively. High level of genetic diversity of the samples analyzed could be 

caused by the variation of ecological conditions and wide geographical distribution 

of the genotypes. 

In addition, cluster analysis has been conducted based on Jaccard coefficient of 

similarity (Figure 2). This method of grouping divided the genotypes analyzed into 

four clusters.  

Cluster 1 embodies 15 genotypes. High genetic similarity is observed between 

genotypes 17 and 18 (Jaccard index of similarity is 0.86), 12 and 13 (index of 

similarity is 0.84), 13 and 15 (index of similarity is 0.83). The lowest similarity in 

this cluster is observed between genotypes 44 and 6, 44 and 9 (the indices of 

similarity are equal to 0.22 and 0.2, respectively).  

Cluster 2 unites the largest number of genotypes. It includes 25 genotypes. Here, the 

highest index of similarity is found between G 28 and G 29 (0.75), 21 and 24 (0.73). 

The next high index of similarity is equal to 0.71 (between genotypes 31 and 27, 31 

and 33). The lowest values for similarity are observed between genotypes 40 and 47, 

42 and 28 (the index of similarity is 0.18).    

Cluster 3 includes 7 genotypes. G 41 demonstrates high level of similarity with 

genotypes 38 and 39 (the indices of similarity are 0.857 and 0.846, respectively). 

The lowest value of similarity in this cluster is observed between genotypes 39 and 

26 (0.3).   
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Figure 2. Clustering of the genotypes based on Jaccard coefficient of similarity 

Cluster 4 consists of only three genotypes. In this cluster, the highest level of 

similarity (0.75) is observed between genotypes 48 and 49, while genotype 48 

demonstrates the lowest index of similarity with genotype 50 (0,36).  

Thus, the data obtained from analysis of electrophoretic patterns and subsequent 

clustering of the genotypes based on these patterns allows identification of 

genetically distant samples which can be used for breeding and increase of genetic 

variation. Because of simplicity, reproducibility and high efficiency, electrophoretic 

analysis of gliadins in polyacrylamide gel can be used as a powerful method for 

evaluation of genetic diversity.  
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